PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 October 1; 64(Pt 10): m1228.
Published online 2008 September 6. doi:  10.1107/S160053680802758X
PMCID: PMC2959325

(1H-Imidazole-κN 3){N-[1-(2-oxidophenyl-κO)ethyl­idene]-l-phenyl­alaninato-κ2 N,O}copper(II)

Abstract

In the title compound, [Cu(C17H15NO3)(C3H4N2)], the CuII atom is four-coordinated by two O atoms and the N atom of the tridentate Schiff base ligand, and one N atom from the imidazole ligand in a distorted square-planar geometry. In the crystal structure, mol­ecules are linked into dimers by inter­molecular N—H(...)O hydrogen bonds.

Related literature

For related literature, see: Basu Baul et al. (2007 [triangle]); Casella & Guillotti (1983 [triangle]); Ganguly et al. (2008 [triangle]); Parekh et al. (2006 [triangle]); Plesch et al. (1997 [triangle]); Usman et al. (2003 [triangle]); Vigato & Tamburini (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1228-scheme1.jpg

Experimental

Crystal data

  • [Cu(C17H15NO3)(C3H4N2)]
  • M r = 412.92
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1228-efi1.jpg
  • a = 16.8029 (16) Å
  • b = 19.8231 (19) Å
  • c = 11.3642 (11) Å
  • V = 3785.3 (6) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 1.18 mm−1
  • T = 291 (2) K
  • 0.43 × 0.34 × 0.25 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.630, T max = 0.759
  • 10101 measured reflections
  • 3534 independent reflections
  • 3008 reflections with I > 2σ(I)
  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.028
  • wR(F 2) = 0.067
  • S = 1.01
  • 3534 reflections
  • 245 parameters
  • H-atom parameters constrained
  • Δρmax = 0.21 e Å−3
  • Δρmin = −0.16 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1557 Friedel pairs
  • Flack parameter: −0.029 (12)

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680802758X/ci2661sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680802758X/ci2661Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This research was supported by the National Science Foundation of China (grant No. 20676057).

supplementary crystallographic information

Comment

In the past decades, significant progress has been achieved in understanding the chemistry of transition metal complexes with Schiff base ligands composed of salicylaldehyde, 2-formylpyridine or their analogues, and α-amino acids (Vigato & Tamburini, 2004; Ganguly et al., 2008; Casella & Guillotti, 1983). A few stuctural studies have been performed on Schiff base complexes derived from 2-hydroxyacetophenone and animo acids (Usman et al., 2003; Basu Baul et al., 2007; Parekh et al., 2006). We report here the crystal structure of the title CuII complex.

The structure consists of discrete monomeric square-planar CuIIcomplex (Fig. 1 and Table 1). The four basal positions are occupied by three donor atoms from the tridentate Schiff base ligand, which furnishes an ONO donor set, with the fourth position occupied by one N atom from the imidazole ligand. The nitrogen heterocycle is planar and it forms an angle of 14.7 (2)° with the C1—C6 ring.

The crystal structure is stabilized by N—H···O type hydrogen bonds (Fig. 2 and Table 2). The H atom attached to N3 is hydrogen-bonded to the neighboring carboxylate oxygen O2 to form a dimer.

Experimental

The title compound was synthesized as described in the literature (Plesch et al., 1997). To L-phenylalanine (1.00 mmol) and potassium hydroxide (1.00 mmol) in 10 ml of methanol was added 2-hydroxyacetophenone (1.00 mmol in 10 ml of methanol) dropwise. The yellow solution was stirred for 2 h at 333 K. The resultant mixture was added dropwise to copper(II) acetate monohydrate (1.00 mmol) and imidazole (1.00 mmol) in an aqueous methanol solution (20 ml, 1:1 v/v), and heated with stirring for 2 h at 333 K. The dark blue solution was filtered and left for several days; the resulting dark blue crystals were filtered off, washed with water, and dried under vacuum.

Refinement

All H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (CH) or 0.97 Å (CH2) and Uiso(H) = 1.2Ueq(C), C—H = 0.96 Å (CH3) and Uiso(H) = 1.5Ueq(C), and with N—H = 0.86 Å and Uiso(H) = 1.2Ueq(N).

Figures

Fig. 1.
The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.
Fig. 2.
A view of the crystal packing along the c axis. Hydrogen bonds are shown as dashed lines.

Crystal data

[Cu(C17H15NO3)(C3H4N2)]F(000) = 1704
Mr = 412.92Dx = 1.449 Mg m3
Orthorhombic, C2221Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2c 2Cell parameters from 3925 reflections
a = 16.8029 (16) Åθ = 2.4–23.2°
b = 19.8231 (19) ŵ = 1.18 mm1
c = 11.3642 (11) ÅT = 291 K
V = 3785.3 (6) Å3Block, dark blue
Z = 80.43 × 0.34 × 0.25 mm

Data collection

Bruker SMART CCD area-detector diffractometer3534 independent reflections
Radiation source: fine-focus sealed tube3008 reflections with I > 2σ(I)
graphiteRint = 0.027
[var phi] and ω scansθmax = 25.5°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −20→16
Tmin = 0.630, Tmax = 0.759k = −24→23
10101 measured reflectionsl = −13→13

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.067w = 1/[σ2(Fo2) + (0.0324P)2 + 1.1795P] where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
3534 reflectionsΔρmax = 0.21 e Å3
245 parametersΔρmin = −0.16 e Å3
0 restraintsAbsolute structure: Flack (1983), 1557 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: −0.029 (12)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.10619 (2)0.367615 (16)0.77896 (3)0.04364 (11)
N10.13985 (13)0.27457 (10)0.80032 (19)0.0406 (5)
N20.10665 (16)0.46531 (10)0.75384 (17)0.0459 (5)
N30.13752 (15)0.57138 (11)0.7787 (3)0.0547 (6)
H3D0.15440.60780.81150.066*
O10.05861 (14)0.34996 (10)0.63167 (17)0.0624 (6)
O20.20326 (14)0.32527 (10)1.08596 (17)0.0577 (6)
O30.14173 (11)0.37985 (8)0.94100 (15)0.0470 (5)
C10.04519 (18)0.29043 (15)0.5868 (2)0.0485 (7)
C20.06894 (17)0.22761 (15)0.6360 (2)0.0461 (7)
C30.0429 (2)0.16858 (17)0.5793 (3)0.0615 (9)
H30.05640.12710.61170.074*
C4−0.0015 (2)0.1697 (2)0.4781 (4)0.0778 (11)
H4−0.01920.12960.44470.093*
C5−0.0197 (2)0.2304 (2)0.4260 (3)0.0704 (10)
H5−0.04750.23120.35530.084*
C60.0028 (2)0.28950 (16)0.4780 (3)0.0585 (8)
H6−0.00980.33010.44160.070*
C70.11970 (16)0.22199 (12)0.7394 (2)0.0444 (7)
C80.15118 (19)0.15280 (12)0.7715 (3)0.0580 (8)
H8A0.19010.15700.83280.087*
H8B0.17530.13250.70350.087*
H8C0.10810.12500.79840.087*
C90.19625 (17)0.27141 (13)0.8989 (2)0.0454 (7)
H90.18970.22840.94040.054*
C100.17829 (18)0.32911 (13)0.9830 (2)0.0439 (7)
C110.28234 (18)0.27726 (15)0.8539 (3)0.0563 (8)
H11A0.31850.27380.92010.068*
H11B0.29330.23980.80140.068*
C120.29811 (17)0.34248 (14)0.7897 (3)0.0520 (7)
C130.2807 (2)0.34864 (17)0.6704 (3)0.0656 (10)
H130.26060.31170.62960.079*
C140.2928 (3)0.4089 (2)0.6120 (3)0.0845 (12)
H140.28130.41220.53210.101*
C150.3216 (3)0.4640 (2)0.6713 (4)0.0921 (13)
H150.32920.50470.63210.110*
C160.3390 (3)0.45879 (18)0.7879 (5)0.0925 (14)
H160.35890.49600.82810.111*
C170.3274 (2)0.39883 (19)0.8466 (4)0.0814 (11)
H170.33960.39620.92630.098*
C180.13541 (19)0.51078 (14)0.8262 (3)0.0560 (9)
H180.15240.50130.90240.067*
C190.1082 (2)0.56540 (16)0.6691 (3)0.0731 (10)
H190.10250.59980.61400.088*
C200.0885 (2)0.49998 (17)0.6544 (3)0.0708 (11)
H200.06600.48160.58680.085*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0632 (2)0.03698 (15)0.03072 (15)0.00253 (17)−0.00760 (17)−0.00122 (14)
N10.0497 (13)0.0383 (11)0.0339 (13)0.0008 (10)0.0026 (10)−0.0022 (9)
N20.0637 (15)0.0421 (11)0.0319 (12)0.0013 (11)−0.0068 (12)0.0016 (9)
N30.0760 (18)0.0383 (12)0.0498 (14)0.0005 (11)−0.0040 (14)0.0027 (12)
O10.0910 (16)0.0539 (14)0.0424 (11)−0.0013 (11)−0.0241 (11)−0.0035 (10)
O20.0849 (16)0.0513 (12)0.0368 (10)0.0122 (11)−0.0180 (11)0.0010 (9)
O30.0702 (13)0.0376 (10)0.0333 (10)0.0094 (9)−0.0094 (8)−0.0010 (8)
C10.0508 (18)0.0605 (19)0.0342 (15)−0.0049 (15)0.0044 (13)−0.0126 (14)
C20.0489 (18)0.0522 (17)0.0374 (15)−0.0067 (14)0.0086 (13)−0.0135 (13)
C30.062 (2)0.0598 (19)0.062 (2)−0.0079 (16)0.0073 (17)−0.0249 (17)
C40.070 (2)0.084 (2)0.080 (3)−0.017 (2)−0.001 (2)−0.039 (2)
C50.057 (2)0.109 (3)0.046 (2)−0.010 (2)−0.0005 (17)−0.030 (2)
C60.0519 (19)0.084 (2)0.0400 (19)−0.0024 (19)0.0000 (13)−0.0078 (18)
C70.0538 (18)0.0392 (13)0.0400 (16)−0.0032 (12)0.0140 (13)−0.0051 (11)
C80.078 (2)0.0403 (15)0.0562 (18)0.0001 (13)0.0123 (18)−0.0059 (15)
C90.0586 (19)0.0357 (14)0.0419 (15)0.0043 (13)−0.0051 (14)0.0034 (12)
C100.0550 (19)0.0377 (15)0.0391 (15)−0.0003 (13)−0.0068 (14)0.0017 (12)
C110.056 (2)0.0505 (18)0.063 (2)0.0117 (15)−0.0050 (16)−0.0008 (16)
C120.0463 (18)0.0467 (16)0.063 (2)0.0048 (13)0.0034 (17)0.0049 (16)
C130.082 (3)0.061 (2)0.0542 (19)−0.0013 (17)0.0195 (18)−0.0042 (16)
C140.115 (3)0.079 (3)0.059 (2)−0.003 (2)0.022 (2)0.009 (2)
C150.111 (4)0.065 (3)0.100 (3)−0.008 (2)0.013 (3)0.018 (2)
C160.116 (4)0.055 (2)0.107 (4)−0.026 (2)−0.029 (3)0.010 (2)
C170.087 (3)0.073 (2)0.084 (3)−0.011 (2)−0.027 (2)0.009 (2)
C180.088 (3)0.0427 (16)0.0375 (16)0.0023 (15)−0.0107 (15)0.0019 (13)
C190.108 (3)0.0540 (19)0.057 (2)−0.002 (2)−0.013 (2)0.0230 (16)
C200.115 (3)0.0569 (19)0.0401 (17)−0.004 (2)−0.025 (2)0.0128 (15)

Geometric parameters (Å, °)

Cu1—O11.8876 (19)C7—C81.514 (4)
Cu1—N11.945 (2)C8—H8A0.96
Cu1—O31.9511 (18)C8—H8B0.96
Cu1—N21.958 (2)C8—H8C0.96
N1—C71.296 (3)C9—C101.520 (4)
N1—C91.469 (3)C9—C111.539 (4)
N2—C181.312 (4)C9—H90.98
N2—C201.358 (4)C11—C121.508 (4)
N3—C181.317 (4)C11—H11A0.97
N3—C191.346 (4)C11—H11B0.97
N3—H3D0.86C12—C171.381 (4)
O1—C11.305 (3)C12—C131.392 (4)
O2—C101.246 (3)C13—C141.383 (5)
O3—C101.271 (3)C13—H130.93
C1—C21.422 (4)C14—C151.371 (6)
C1—C61.427 (4)C14—H140.93
C2—C31.405 (4)C15—C161.361 (6)
C2—C71.457 (4)C15—H150.93
C3—C41.371 (5)C16—C171.377 (5)
C3—H30.93C16—H160.93
C4—C51.376 (5)C17—H170.93
C4—H40.93C18—H180.93
C5—C61.365 (4)C19—C201.349 (4)
C5—H50.93C19—H190.93
C6—H60.93C20—H200.93
O1—Cu1—N193.33 (9)H8B—C8—H8C109.5
O1—Cu1—O3171.74 (9)N1—C9—C10108.6 (2)
N1—Cu1—O384.90 (8)N1—C9—C11110.4 (2)
O1—Cu1—N293.20 (9)C10—C9—C11109.8 (2)
N1—Cu1—N2162.84 (10)N1—C9—H9109.3
O3—Cu1—N290.77 (8)C10—C9—H9109.3
C7—N1—C9122.8 (2)C11—C9—H9109.3
C7—N1—Cu1128.33 (19)O2—C10—O3124.3 (3)
C9—N1—Cu1108.86 (16)O2—C10—C9118.5 (2)
C18—N2—C20104.9 (2)O3—C10—C9117.1 (2)
C18—N2—Cu1126.11 (19)C12—C11—C9113.0 (2)
C20—N2—Cu1128.4 (2)C12—C11—H11A109.0
C18—N3—C19106.8 (3)C9—C11—H11A109.0
C18—N3—H3D126.6C12—C11—H11B109.0
C19—N3—H3D126.6C9—C11—H11B109.0
C1—O1—Cu1125.97 (19)H11A—C11—H11B107.8
C10—O3—Cu1113.79 (16)C17—C12—C13117.4 (3)
O1—C1—C2126.1 (3)C17—C12—C11122.0 (3)
O1—C1—C6115.9 (3)C13—C12—C11120.6 (3)
C2—C1—C6118.0 (3)C14—C13—C12120.8 (3)
C3—C2—C1117.5 (3)C14—C13—H13119.6
C3—C2—C7119.2 (3)C12—C13—H13119.6
C1—C2—C7123.3 (2)C15—C14—C13120.2 (4)
C4—C3—C2122.7 (4)C15—C14—H14119.9
C4—C3—H3118.6C13—C14—H14119.9
C2—C3—H3118.6C16—C15—C14119.6 (4)
C3—C4—C5119.7 (3)C16—C15—H15120.2
C3—C4—H4120.1C14—C15—H15120.2
C5—C4—H4120.1C15—C16—C17120.4 (4)
C6—C5—C4120.2 (3)C15—C16—H16119.8
C6—C5—H5119.9C17—C16—H16119.8
C4—C5—H5119.9C16—C17—C12121.5 (4)
C5—C6—C1121.6 (3)C16—C17—H17119.3
C5—C6—H6119.2C12—C17—H17119.3
C1—C6—H6119.2N2—C18—N3112.3 (3)
N1—C7—C2121.5 (2)N2—C18—H18123.9
N1—C7—C8120.6 (3)N3—C18—H18123.9
C2—C7—C8117.9 (2)N3—C19—C20106.8 (3)
C7—C8—H8A109.5N3—C19—H19126.6
C7—C8—H8B109.5C20—C19—H19126.6
H8A—C8—H8B109.5C19—C20—N2109.2 (3)
C7—C8—H8C109.5C19—C20—H20125.4
H8A—C8—H8C109.5N2—C20—H20125.4

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N3—H3D···O2i0.861.952.789 (3)166

Symmetry codes: (i) x, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2661).

References

  • Basu Baul, T. S., Masharing, C., Ruisi, G., Jirásko, R., Holčapek, M., Dick, D. V., Wolstenholme, D. & Linden, A. (2007). J. Organomet. Chem.692, 4849–4862.
  • Bruker (2000). SMART and SAINT Bruker Axs Inc., Madison, Wisconsin, USA.
  • Casella, L. & Guillotti, M. (1983). Inorg. Chem.22, 2259–2266.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Ganguly, R., Sreenivasulu, B. & Vittal, J. J. (2008). Coord. Chem. Rev.252, 1027–1050.
  • Parekh, H. M., Mehta, S. R. & Patel, M. N. (2006). Russ. J. Inorg. Chem.35, 67–72.
  • Plesch, G., Friebel, C., Warda, S. A., Sivý, J. & Švajlenová, O. (1997). Transition Met. Chem.22, 433–440.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Usman, A., Fun, H.-K., Basu Baul, T. S. & Paul, P. C. (2003). Acta Cryst. E59, m438–m440.
  • Vigato, P. A. & Tamburini, S. (2004). Coord. Chem. Rev.248, 1717–2128.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography