PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 October 1; 64(Pt 10): m1321.
Published online 2008 September 24. doi:  10.1107/S1600536808030237
PMCID: PMC2959322

Bis(2-chloro­benzoato-κO)bis­(1-vinyl­imidazole-κN 3)copper(II)

Abstract

In the title compound, [Cu(C7H4ClO2)2(C5H6N2)2], each CuII ion, located on an inversion center, has a slightly distorted square-planar coordination geometry formed by two 1-vinyl­imidazole mol­ecules [Cu—N = 1.954 (6) Å] and two 2-chloro­benzoate anions [Cu—O = 1.958 (6) Å]. Weak inter­molecular C—H(...)O hydrogen bonds contribute to the crystal packing stability.

Related literature

A square-planar coordination environment of CuII was also observed in bis­(3-hydroxy­benzoato-κO)bis­(1H-imidazole-κN 3)copper(II), see: Liu et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1321-scheme1.jpg

Experimental

Crystal data

  • [Cu(C7H4ClO2)2(C5H6N2)2]
  • M r = 562.89
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1321-efi1.jpg
  • a = 7.9360 (16) Å
  • b = 11.236 (2) Å
  • c = 14.190 (3) Å
  • β = 104.36 (3)°
  • V = 1225.8 (5) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.15 mm−1
  • T = 293 (2) K
  • 0.20 × 0.10 × 0.10 mm

Data collection

  • Bruker SMART 1K CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004 [triangle]) T min = 0.803, T max = 0.894
  • 2204 measured reflections
  • 2115 independent reflections
  • 1620 reflections with I > 2σ(I)
  • R int = 0.039

Refinement

  • R[F 2 > 2σ(F 2)] = 0.073
  • wR(F 2) = 0.192
  • S = 1.04
  • 2115 reflections
  • 154 parameters
  • 49 restraints
  • H-atom parameters constrained
  • Δρmax = 0.73 e Å−3
  • Δρmin = −0.89 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808030237/cv2449sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808030237/cv2449Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the National Natural Science Foundation of China (grant No. 20601015) and the Natural Science Foundation of Shandong Province (Y2006B12).

supplementary crystallographic information

Comment

In the title compound, (I) (Fig. 1), each Cu ion is coordinated by a pair of 1-vinylimidazole ligands and a pair of monodentate carboxylate groups, affording a square planar N2O2 coordination geometry. The CuN2O2 core involving the central atoms is almost perfectly square planar. The trans angles are all 180° for symmetry requirements and the cis ones are 89.52 (19)° and 90.48 (19)° for N—Cu—O, respectively. The Cu—N(imidazole) distance is 1.954 (6)Å and The Cu—O bond distance is 1.958 (4) Å. These bond distances are comparable with the reported data (Liu et al., 2006). The five atoms of CuN2O2 are coplanar. Distances and angles in 1-vinylimidazole are normal. The weak intermolecular C—H···O interactions (Table 1) stabilize the structure.

Experimental

Copper(II) acetate hydrate(2.00 g, 10 mmol), 1-vinylimidazole(0.99 g, 10 mmol) and 2-chlorobenzoic acid(1.55 g, 10 mmol) were dissolved in water(40 ml). The pH of the solution was adjusted to 7 with 0.2M sodium hydroxide. The solution was filtered; blue single crystals of (I) were isolated after several days.

Refinement

H atoms were positioned geometrically (C—H = 0.93 Å) and allowed to ride on their parent atoms with Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.
The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme. The unlabelled atoms are related with the labelled ones by symmetry operation (-x, -y, -z).

Crystal data

[Cu(C7H4ClO2)2(C5H6N2)2]F(000) = 574
Mr = 562.89Dx = 1.525 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 7.9360 (16) Åθ = 10–14°
b = 11.236 (2) ŵ = 1.15 mm1
c = 14.190 (3) ÅT = 293 K
β = 104.36 (3)°Block, blue
V = 1225.8 (5) Å30.20 × 0.10 × 0.10 mm
Z = 2

Data collection

Bruker SMART 1K CCD area-detector diffractometer2115 independent reflections
Radiation source: fine-focus sealed tube1620 reflections with I > 2σ(I)
graphiteRint = 0.039
Thin–slice ω scansθmax = 25.2°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 2004)h = −9→9
Tmin = 0.803, Tmax = 0.894k = 0→13
2204 measured reflectionsl = 0→16

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.073Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.192H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.07P)2 + 6P] where P = (Fo2 + 2Fc2)/3
2115 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.73 e Å3
49 restraintsΔρmin = −0.89 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu0.00000.00000.00000.0439 (4)
Cl0.3736 (3)−0.36078 (18)0.02395 (17)0.0794 (6)
O10.0066 (5)−0.1740 (3)0.0077 (3)0.0455 (10)
N1−0.3796 (8)0.0695 (5)0.1425 (4)0.0550 (14)
C1−0.6165 (13)0.1373 (8)0.2115 (6)0.088 (3)
H1A−0.67540.06550.19610.105*
H1B−0.66380.19720.24220.105*
O20.1925 (7)−0.1406 (4)0.1509 (3)0.0647 (14)
N2−0.1911 (7)0.0008 (4)0.0642 (4)0.0527 (14)
C2−0.4664 (11)0.1540 (7)0.1896 (5)0.066 (2)
H2A−0.41200.22700.20630.079*
C3−0.2436 (8)0.0933 (6)0.1068 (5)0.047
H3A−0.19070.16760.11140.057*
C4−0.3049 (9)−0.0881 (6)0.0741 (5)0.0504 (15)
H4A−0.3010−0.16540.05130.060*
C5−0.4234 (9)−0.0489 (6)0.1212 (5)0.0537 (16)
H5A−0.5138−0.09170.13600.064*
C60.1057 (9)−0.2068 (5)0.0889 (5)0.0501 (16)
C70.1031 (8)−0.3403 (5)0.1088 (4)0.0433 (13)
C80.2177 (9)−0.4153 (6)0.0813 (4)0.0513 (15)
C90.2146 (11)−0.5370 (6)0.0999 (6)0.0662 (19)
H9A0.2926−0.58820.08120.079*
C100.0945 (11)−0.5801 (6)0.1461 (6)0.0676 (19)
H10A0.0906−0.66130.15800.081*
C11−0.0196 (11)−0.5057 (7)0.1749 (5)0.0648 (18)
H11A−0.0990−0.53600.20710.078*
C12−0.0162 (10)−0.3853 (6)0.1558 (5)0.0580 (17)
H12A−0.0943−0.33440.17460.070*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu0.0696 (7)0.0204 (5)0.0350 (5)0.0026 (5)0.0001 (5)0.0014 (4)
Cl0.1031 (15)0.0558 (11)0.0838 (14)0.0230 (11)0.0319 (12)0.0061 (10)
O10.060 (2)0.030 (2)0.043 (2)0.0052 (19)0.0066 (19)0.0033 (18)
N10.088 (4)0.033 (3)0.035 (3)0.009 (3)−0.004 (3)0.002 (2)
C10.115 (7)0.071 (6)0.079 (6)0.004 (5)0.029 (6)−0.011 (5)
O20.094 (4)0.029 (2)0.058 (3)−0.003 (2)−0.006 (3)−0.009 (2)
N20.075 (3)0.024 (2)0.048 (3)0.008 (3)−0.008 (3)0.001 (2)
C20.096 (6)0.054 (5)0.042 (4)0.004 (4)0.004 (4)0.007 (3)
C30.0470.0470.0470.0000.0120.000
C40.068 (4)0.035 (3)0.043 (3)0.008 (3)0.006 (3)0.003 (3)
C50.067 (4)0.043 (3)0.045 (4)−0.001 (3)0.001 (3)0.009 (3)
C60.074 (4)0.020 (3)0.050 (4)−0.004 (3)0.004 (3)0.000 (3)
C70.064 (3)0.028 (3)0.031 (3)0.002 (2)−0.001 (2)−0.002 (2)
C80.072 (4)0.037 (3)0.040 (3)0.011 (3)0.004 (3)−0.002 (3)
C90.091 (5)0.039 (3)0.062 (4)0.017 (3)0.008 (4)−0.001 (3)
C100.091 (5)0.035 (3)0.063 (4)−0.005 (3)−0.007 (3)0.007 (3)
C110.086 (4)0.053 (4)0.051 (4)−0.017 (3)0.010 (3)0.013 (3)
C120.085 (4)0.042 (3)0.047 (3)−0.002 (3)0.017 (3)0.007 (3)

Geometric parameters (Å, °)

Cu—N2i1.954 (6)C3—H3A0.9300
Cu—N21.954 (6)C4—C51.356 (9)
Cu—O1i1.958 (4)C4—H4A0.9300
Cu—O11.958 (4)C5—H5A0.9300
Cl—C81.751 (7)C6—C71.528 (8)
O1—C61.278 (7)C7—C81.366 (8)
N1—C31.327 (8)C7—C121.383 (9)
N1—C51.389 (9)C8—C91.394 (10)
N1—C21.433 (9)C9—C101.372 (11)
C1—C21.317 (10)C9—H9A0.9300
C1—H1A0.9300C10—C111.367 (11)
C1—H1B0.9300C10—H10A0.9300
O2—C61.225 (7)C11—C121.381 (9)
N2—C31.320 (8)C11—H11A0.9300
N2—C41.377 (8)C12—H12A0.9300
C2—H2A0.9300
N2i—Cu—N2180.0 (3)C4—C5—N1104.5 (6)
N2i—Cu—O1i89.52 (19)C4—C5—H5A127.7
N2—Cu—O1i90.48 (19)N1—C5—H5A127.7
N2i—Cu—O190.48 (19)O2—C6—O1125.6 (5)
N2—Cu—O189.52 (19)O2—C6—C7119.7 (6)
O1i—Cu—O1180.0 (4)O1—C6—C7114.6 (5)
C6—O1—Cu109.9 (4)C8—C7—C12119.8 (6)
C3—N1—C5107.1 (6)C8—C7—C6120.9 (6)
C3—N1—C2125.1 (6)C12—C7—C6119.4 (6)
C5—N1—C2127.8 (6)C7—C8—C9120.4 (7)
C2—C1—H1A120.0C7—C8—Cl120.9 (5)
C2—C1—H1B120.0C9—C8—Cl118.6 (5)
H1A—C1—H1B120.0C10—C9—C8118.9 (7)
C3—N2—C4103.6 (6)C10—C9—H9A120.5
C3—N2—Cu125.9 (4)C8—C9—H9A120.5
C4—N2—Cu130.4 (4)C11—C10—C9121.1 (7)
C1—C2—N1125.6 (8)C11—C10—H10A119.4
C1—C2—H2A117.2C9—C10—H10A119.4
N1—C2—H2A117.2C10—C11—C12119.6 (7)
N2—C3—N1113.2 (6)C10—C11—H11A120.2
N2—C3—H3A123.4C12—C11—H11A120.2
N1—C3—H3A123.4C11—C12—C7120.1 (7)
C5—C4—N2111.6 (6)C11—C12—H12A119.9
C5—C4—H4A124.2C7—C12—H12A119.9
N2—C4—H4A124.2
N2i—Cu—O1—C692.5 (4)Cu—O1—C6—O2−4.0 (9)
N2—Cu—O1—C6−87.5 (4)Cu—O1—C6—C7172.6 (4)
O1i—Cu—N2—C3−17.5 (5)O2—C6—C7—C8−92.3 (8)
O1—Cu—N2—C3162.5 (5)O1—C6—C7—C890.9 (7)
O1i—Cu—N2—C4160.1 (5)O2—C6—C7—C1287.2 (8)
O1—Cu—N2—C4−19.9 (5)O1—C6—C7—C12−89.6 (7)
C3—N1—C2—C1168.6 (8)C12—C7—C8—C90.4 (10)
C5—N1—C2—C1−8.3 (11)C6—C7—C8—C9179.9 (6)
C4—N2—C3—N10.2 (7)C12—C7—C8—Cl−178.6 (5)
Cu—N2—C3—N1178.3 (4)C6—C7—C8—Cl0.9 (8)
C5—N1—C3—N2−0.6 (7)C7—C8—C9—C100.1 (10)
C2—N1—C3—N2−178.0 (5)Cl—C8—C9—C10179.0 (6)
C3—N2—C4—C50.3 (7)C8—C9—C10—C11−0.8 (11)
Cu—N2—C4—C5−177.7 (4)C9—C10—C11—C121.1 (11)
N2—C4—C5—N1−0.7 (7)C10—C11—C12—C7−0.7 (11)
C3—N1—C5—C40.8 (7)C8—C7—C12—C110.0 (10)
C2—N1—C5—C4178.0 (6)C6—C7—C12—C11−179.6 (6)

Symmetry codes: (i) −x, −y, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C1—H1A···O2ii0.932.563.484 (10)174
C3—H3A···O1iii0.932.492.918 (8)108
C5—H5A···O2ii0.932.453.342 (9)160
C11—H11A···O2iv0.932.603.460 (9)155

Symmetry codes: (ii) x−1, y, z; (iii) −x, −y, −z; (iv) −x, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2449).

References

  • Bruker (2001). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Liu, J.-W., Zhu, B. & Ng, S. W. (2006). Acta Cryst. E62, m3514–m3515.
  • Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography