PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 October 1; 64(Pt 10): m1300–m1301.
Published online 2008 September 20. doi:  10.1107/S1600536808029280
PMCID: PMC2959321

2,6-Diamino­pyridinium bis­(4-hydroxy­pyridine-2,6-dicarboxyl­ato-κ3 O 2,N,O 6)ferrate(III) dihydrate

Abstract

The reaction of iron(II) sulfate hepta­hydrate with the proton-transfer compound (pydaH)(hypydcH) (pyda = pyridine-2,6-diamine; hypydcH2 = 4-hydroxy­pyridine-2,6-dicarboxylic acid) in an aqueous solution led to the formation of the title compound, (C5H8N3)[Fe(C7H3NO5)2]·2H2O. The anion is a six-coordinated complex with a distorted octa­hedral geometry around the FeIII atom. Extensive inter­molecular O—H(...)O, N—H(...)O and C—H(...)O hydrogen bonds, involving the complex anion, (pydaH)+ counter-ion and two uncoordinated water mol­ecules, and π–π [centroid-to-centroid distance 3.323 (11) Å] and C—O(...)π [O–centroid distance 3.150 (15) Å] inter­actions connect the various components into a supra­molecular structure.

Related literature

For other complexes with pyridine­dicarboxylic acids, see: Rafizadeh et al. (2004 [triangle], 2006 [triangle], 2007a [triangle],b [triangle]); Rafizadeh & Amani (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1300-scheme1.jpg

Experimental

Crystal data

  • (C5H8N3)[Fe(C7H3NO5)2]·2H2O
  • M r = 564.23
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1300-efi4.jpg
  • a = 6.9389 (4) Å
  • b = 20.8845 (12) Å
  • c = 14.9908 (8) Å
  • β = 96.371 (1)°
  • V = 2159.0 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.78 mm−1
  • T = 100 (2) K
  • 0.40 × 0.40 × 0.20 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.746, T max = 0.860
  • 33555 measured reflections
  • 8157 independent reflections
  • 5648 reflections with I > 2σ(I)
  • R int = 0.073

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045
  • wR(F 2) = 0.110
  • S = 1.02
  • 8157 reflections
  • 342 parameters
  • H-atom parameters constrained
  • Δρmax = 0.49 e Å−3
  • Δρmin = −0.61 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I. DOI: 10.1107/S1600536808029280/hy2152sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808029280/hy2152Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Noncovalent interactions including hydrogen bonding, ion pairing, hydrophobic or hydrophilic and donor–acceptor interactions play a key role in chemical, catalytic and biochemical processes, as well as supramolecular chemistry and crystal engineering. Our research group has recently focused on synthesis of water soluble self-assembly systems that can function as suitable ligands in the synthesis of metal complexes. We have reported some complexes with pyridinedicarboxylic acids (Rafizadeh et al., 2004, 2006, 2007a,b; Rafizadeh & Amani, 2006).

In the title compound (Fig. 1), the FeIII atom has a distorted octahedral geometry. The bond angles (Table 1) and the torsion angles O6—Fe1—O1—C1 [100.80 (13)°], O1—Fe1—O6—C8 [103.59 (13)°], O8—Fe1—O3—C7 [104.38 (13)°] and O3—Fe1—O8—C14 [106.46 (14)°] indicate that two dianionic hypydc ligands are almost perpendicular to each other. In this work we used FeII ions as starting material. Most probably during the synthesis process, FeII was oxidized into FeIII. There are a large number of O—H···O, N—H···O and C—H···O hydrogen bonds between the cations, anions and water molecules (Table 2). Considerable π–π interaction [centroid–centroid distance = 3.323 (11) Å] between the cation and anion, and C—O···π interaction [O–centroid distance = 3.150 (15) Å] between two anions are observed (Fig. 2). Hydrogen bonds, π–π and C—O···π interactions result in the formation of a supramolecular structure (Fig. 3).

Experimental

The reaction of FeSO4.7H2O (0.139 g, 0.5 mmol) in water (20 ml) with (pydaH)(hypydcH) (0.264 g, 1.0 mmol) in water (20 ml) gave colorless crystal of the title compound. Crystals suitable for X-ray diffraction were obtained by slow evaporation of the solvent at room temperature.

Refinement

H atoms attached to O and N atoms and water molecules are located from difference Fourier maps and refined isotropically with their coordinates fixed. H atoms on C atoms were positioned geometrically and refined in riding model, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
π–π Stacking interaction (Cg5···Cg7i) and and C—O···π interaction (C1—O2···Cg5ii) in the title compound. [Cg5: N1/C2–C6, Cg7: ...
Fig. 3.
Crystal packing of the title compound. Hydrogen bonds are shown by dashed lines.

Crystal data

(C5H8N3)[Fe(C7H3NO5)2]·2H2OF(000) = 1156
Mr = 564.23Dx = 1.736 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4719 reflections
a = 6.9389 (4) Åθ = 2.4–31.9°
b = 20.8845 (12) ŵ = 0.78 mm1
c = 14.9908 (8) ÅT = 100 K
β = 96.371 (1)°Prism, colourless
V = 2159.0 (2) Å30.40 × 0.40 × 0.20 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer8157 independent reflections
Radiation source: fine-focus sealed tube5648 reflections with I > 2σ(I)
graphiteRint = 0.073
[var phi] and ω scansθmax = 33.1°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Bruker, 2001)h = −10→10
Tmin = 0.746, Tmax = 0.860k = −31→32
33555 measured reflectionsl = −22→22

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: mixed
wR(F2) = 0.110H-atom parameters constrained
S = 1.02w = 1/[σ2(Fo2) + (0.0425P)2 + 0.6357P] where P = (Fo2 + 2Fc2)/3
8157 reflections(Δ/σ)max = 0.001
342 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = −0.61 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Fe10.03345 (4)0.098201 (12)0.291874 (16)0.01147 (7)
O10.18095 (19)0.01628 (6)0.33338 (8)0.0138 (3)
O20.31460 (19)−0.04217 (6)0.44867 (9)0.0154 (3)
O3−0.08559 (19)0.18304 (6)0.31759 (8)0.0147 (3)
O4−0.1601 (2)0.25261 (6)0.42183 (9)0.0164 (3)
O50.1267 (2)0.11113 (7)0.70162 (8)0.0179 (3)
H50.09290.14860.71560.041 (8)*
N10.0599 (2)0.10213 (7)0.42918 (9)0.0104 (3)
C10.2245 (3)0.00489 (8)0.41778 (12)0.0119 (3)
C20.1537 (3)0.05567 (8)0.47787 (11)0.0105 (3)
C30.1796 (3)0.05772 (8)0.56992 (11)0.0120 (3)
H3A0.24700.02460.60370.014*
C40.1027 (3)0.11076 (8)0.61299 (12)0.0120 (3)
C50.0084 (3)0.15997 (8)0.56065 (12)0.0119 (3)
H5A−0.04220.19650.58790.014*
C6−0.0080 (3)0.15336 (8)0.46877 (11)0.0110 (3)
C7−0.0940 (3)0.20139 (9)0.39982 (12)0.0128 (3)
O60.28312 (19)0.14151 (6)0.26334 (8)0.0149 (3)
O70.4605 (2)0.17585 (7)0.15648 (9)0.0187 (3)
O8−0.2194 (2)0.05293 (6)0.25578 (8)0.0158 (3)
O9−0.4188 (2)0.01213 (7)0.14115 (9)0.0205 (3)
O10−0.0042 (2)0.09000 (7)−0.11598 (9)0.0201 (3)
H10−0.11920.0795−0.13610.039 (8)*
N20.0277 (2)0.09017 (7)0.15604 (10)0.0117 (3)
C80.3215 (3)0.14715 (9)0.18084 (12)0.0133 (3)
C90.1707 (3)0.11574 (8)0.11447 (12)0.0120 (3)
C100.1645 (3)0.11537 (9)0.02270 (12)0.0142 (3)
H10A0.26770.1328−0.00630.017*
C110.0007 (3)0.08840 (9)−0.02725 (12)0.0146 (4)
C12−0.1484 (3)0.06195 (9)0.01761 (12)0.0140 (3)
H12A−0.25960.0432−0.01480.017*
C13−0.1279 (3)0.06408 (9)0.11011 (12)0.0129 (3)
C14−0.2708 (3)0.04000 (9)0.17213 (12)0.0144 (3)
N30.0302 (2)0.33319 (7)0.07019 (10)0.0133 (3)
H3N0.09210.37140.08440.028 (7)*
N40.0433 (3)0.30671 (8)0.22110 (11)0.0195 (3)
H4NA0.09140.34650.23800.045 (8)*
H4NB−0.00550.28360.26580.051 (9)*
N50.0395 (2)0.36729 (8)−0.07645 (10)0.0154 (3)
H5NA0.09370.4051−0.05430.029 (7)*
H5NB−0.01260.3660−0.13560.050 (9)*
C15−0.0200 (3)0.29254 (9)0.13517 (12)0.0140 (3)
C16−0.1329 (3)0.23951 (9)0.10904 (13)0.0160 (4)
H16A−0.17340.21090.15260.019*
C17−0.1855 (3)0.22903 (9)0.01850 (13)0.0164 (4)
H17A−0.26380.19290.00060.020*
C18−0.1282 (3)0.26914 (9)−0.04682 (13)0.0151 (4)
H18A−0.16150.2601−0.10870.018*
C19−0.01989 (16)0.32341 (5)−0.01954 (7)0.0129 (3)
O1W0.05579 (16)0.21932 (5)0.77225 (7)0.0176 (3)
H1WA0.03590.25250.73960.042 (8)*
H1WB0.14580.22090.81550.057 (10)*
O2W−0.3280 (2)0.06443 (7)−0.21595 (9)0.0173 (3)
H2WA−0.29770.0393−0.25670.045 (8)*
H2WB−0.42030.0440−0.19610.066 (11)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Fe10.01484 (13)0.01232 (12)0.00737 (11)−0.00036 (10)0.00172 (9)0.00067 (9)
O10.0191 (7)0.0131 (6)0.0095 (6)0.0017 (5)0.0023 (5)−0.0006 (5)
O20.0174 (7)0.0130 (6)0.0155 (6)0.0031 (5)0.0001 (5)0.0004 (5)
O30.0197 (7)0.0144 (6)0.0101 (6)0.0022 (5)0.0022 (5)0.0020 (5)
O40.0204 (7)0.0131 (6)0.0153 (6)0.0033 (5)0.0006 (5)−0.0005 (5)
O50.0292 (8)0.0171 (7)0.0073 (6)0.0023 (6)0.0018 (5)−0.0009 (5)
N10.0120 (7)0.0103 (7)0.0089 (6)−0.0010 (5)0.0013 (5)−0.0004 (5)
C10.0124 (8)0.0108 (8)0.0129 (8)−0.0026 (6)0.0026 (6)−0.0005 (6)
C20.0115 (8)0.0097 (8)0.0103 (8)−0.0015 (6)0.0016 (6)0.0010 (6)
C30.0135 (8)0.0110 (8)0.0113 (8)−0.0023 (6)0.0010 (6)0.0026 (6)
C40.0130 (8)0.0130 (8)0.0099 (7)−0.0021 (6)0.0006 (6)−0.0007 (6)
C50.0137 (8)0.0106 (8)0.0119 (8)−0.0021 (6)0.0032 (6)−0.0004 (6)
C60.0111 (8)0.0113 (8)0.0107 (8)−0.0006 (6)0.0016 (6)0.0010 (6)
C70.0131 (8)0.0130 (8)0.0124 (8)−0.0009 (7)0.0023 (6)0.0000 (6)
O60.0163 (7)0.0183 (7)0.0099 (6)−0.0033 (5)0.0011 (5)0.0001 (5)
O70.0185 (7)0.0222 (7)0.0157 (6)−0.0068 (6)0.0034 (5)0.0009 (5)
O80.0178 (7)0.0201 (7)0.0099 (6)−0.0022 (5)0.0024 (5)0.0018 (5)
O90.0177 (7)0.0250 (8)0.0184 (7)−0.0080 (6)0.0001 (5)0.0000 (6)
O100.0235 (8)0.0282 (8)0.0083 (6)−0.0037 (6)0.0009 (5)−0.0014 (5)
N20.0138 (7)0.0113 (7)0.0101 (7)−0.0003 (6)0.0013 (5)0.0008 (5)
C80.0163 (9)0.0120 (8)0.0114 (8)−0.0002 (7)0.0006 (6)0.0005 (6)
C90.0140 (8)0.0109 (8)0.0116 (8)−0.0003 (6)0.0035 (6)0.0005 (6)
C100.0181 (9)0.0140 (8)0.0110 (8)−0.0009 (7)0.0041 (7)0.0008 (6)
C110.0208 (9)0.0130 (8)0.0102 (8)0.0013 (7)0.0024 (7)−0.0011 (6)
C120.0172 (9)0.0127 (8)0.0117 (8)−0.0010 (7)−0.0011 (7)−0.0008 (6)
C130.0158 (9)0.0107 (8)0.0124 (8)−0.0005 (7)0.0022 (7)−0.0001 (6)
C140.0156 (9)0.0138 (8)0.0137 (8)0.0003 (7)0.0010 (7)0.0020 (6)
N30.0132 (7)0.0133 (7)0.0132 (7)0.0000 (6)0.0012 (6)0.0014 (6)
N40.0245 (9)0.0203 (9)0.0135 (8)−0.0020 (7)0.0012 (6)0.0044 (6)
N50.0178 (8)0.0167 (8)0.0114 (7)−0.0017 (6)0.0010 (6)−0.0002 (6)
C150.0133 (9)0.0142 (8)0.0147 (8)0.0019 (7)0.0025 (7)0.0027 (7)
C160.0158 (9)0.0126 (8)0.0201 (9)0.0023 (7)0.0034 (7)0.0036 (7)
C170.0144 (9)0.0114 (8)0.0234 (10)0.0019 (7)0.0020 (7)−0.0021 (7)
C180.0153 (9)0.0146 (9)0.0155 (8)0.0020 (7)0.0023 (7)−0.0023 (7)
C190.0108 (8)0.0153 (8)0.0128 (8)0.0037 (7)0.0021 (6)−0.0002 (6)
O1W0.0221 (7)0.0167 (7)0.0134 (6)0.0014 (6)−0.0011 (5)−0.0008 (5)
O2W0.0201 (7)0.0194 (7)0.0129 (6)−0.0013 (6)0.0041 (5)−0.0039 (5)

Geometric parameters (Å, °)

Fe1—O32.0101 (13)N2—C91.340 (2)
Fe1—O82.0135 (14)C8—C91.511 (3)
Fe1—N22.0392 (15)C9—C101.372 (2)
Fe1—O62.0413 (13)C10—C111.407 (3)
Fe1—N12.0478 (14)C10—H10A0.9500
Fe1—O12.0544 (13)C11—C121.408 (3)
O1—C11.290 (2)C12—C131.379 (2)
O2—C11.227 (2)C12—H12A0.9500
O3—C71.298 (2)C13—C141.518 (3)
O4—C71.224 (2)N3—C151.366 (2)
O5—C41.321 (2)N3—C191.3668 (18)
O5—H50.8501N3—H3N0.9200
N1—C61.335 (2)N4—C151.347 (2)
N1—C21.339 (2)N4—H4NA0.9200
C1—C21.509 (2)N4—H4NB0.9200
C2—C31.372 (2)N5—C191.3475 (19)
C3—C41.416 (2)N5—H5NA0.9200
C3—H3A0.9500N5—H5NB0.9199
C4—C51.409 (2)C15—C161.388 (3)
C5—C61.376 (2)C16—C171.383 (3)
C5—H5A0.9500C16—H16A0.9500
C6—C71.514 (2)C17—C181.380 (3)
O6—C81.299 (2)C17—H17A0.9500
O7—C81.225 (2)C18—C191.396 (2)
O8—C141.294 (2)C18—H18A0.9500
O9—C141.226 (2)O1W—H1WA0.8499
O10—C111.327 (2)O1W—H1WB0.8500
O10—H100.8500O2W—H2WA0.8500
N2—C131.331 (2)O2W—H2WB0.8499
O3—Fe1—O895.80 (6)O7—C8—O6125.40 (17)
O3—Fe1—N2107.52 (6)O7—C8—C9121.77 (16)
O8—Fe1—N276.88 (6)O6—C8—C9112.80 (15)
O3—Fe1—O691.49 (5)N2—C9—C10121.45 (17)
O8—Fe1—O6152.40 (5)N2—C9—C8111.18 (15)
N2—Fe1—O675.54 (6)C10—C9—C8127.24 (16)
O3—Fe1—N176.40 (5)C9—C10—C11117.99 (17)
O8—Fe1—N1105.50 (6)C9—C10—H10A121.0
N2—Fe1—N1175.34 (6)C11—C10—H10A121.0
O6—Fe1—N1102.08 (5)O10—C11—C10116.88 (17)
O3—Fe1—O1151.34 (5)O10—C11—C12123.40 (17)
O8—Fe1—O194.61 (5)C10—C11—C12119.72 (16)
N2—Fe1—O1100.83 (5)C13—C12—C11117.96 (17)
O6—Fe1—O191.53 (5)C13—C12—H12A121.0
N1—Fe1—O175.10 (5)C11—C12—H12A121.0
C1—O1—Fe1120.35 (11)N2—C13—C12121.36 (17)
C7—O3—Fe1120.33 (11)N2—C13—C14111.48 (15)
C4—O5—H5104.2C12—C13—C14127.15 (17)
C6—N1—C2120.86 (15)O9—C14—O8126.56 (17)
C6—N1—Fe1118.84 (12)O9—C14—C13120.12 (16)
C2—N1—Fe1120.19 (12)O8—C14—C13113.32 (16)
O2—C1—O1124.88 (16)C15—N3—C19123.48 (15)
O2—C1—C2121.58 (16)C15—N3—H3N121.5
O1—C1—C2113.54 (15)C19—N3—H3N114.8
N1—C2—C3121.80 (16)C15—N4—H4NA122.1
N1—C2—C1110.79 (14)C15—N4—H4NB118.2
C3—C2—C1127.40 (16)H4NA—N4—H4NB115.2
C2—C3—C4117.97 (16)C19—N5—H5NA119.7
C2—C3—H3A121.0C19—N5—H5NB118.4
C4—C3—H3A121.0H5NA—N5—H5NB118.3
O5—C4—C5123.70 (16)N4—C15—N3117.61 (17)
O5—C4—C3116.84 (16)N4—C15—C16124.00 (17)
C5—C4—C3119.46 (16)N3—C15—C16118.39 (17)
C6—C5—C4117.76 (16)C17—C16—C15118.84 (17)
C6—C5—H5A121.1C17—C16—H16A120.6
C4—C5—H5A121.1C15—C16—H16A120.6
N1—C6—C5122.10 (16)C18—C17—C16122.33 (18)
N1—C6—C7111.05 (14)C18—C17—H17A118.8
C5—C6—C7126.81 (16)C16—C17—H17A118.8
O4—C7—O3124.87 (17)C17—C18—C19118.23 (16)
O4—C7—C6121.74 (16)C17—C18—H18A120.9
O3—C7—C6113.38 (15)C19—C18—H18A120.9
C8—O6—Fe1120.52 (12)N5—C19—N3117.33 (12)
C14—O8—Fe1119.79 (12)N5—C19—C18124.01 (13)
C11—O10—H10105.5N3—C19—C18118.66 (13)
C13—N2—C9121.52 (15)H1WA—O1W—H1WB117.8
C13—N2—Fe1118.37 (12)H2WA—O2W—H2WB101.4
C9—N2—Fe1119.87 (12)
O3—Fe1—O1—C14.9 (2)O3—Fe1—O8—C14106.46 (14)
O8—Fe1—O1—C1−106.13 (13)N2—Fe1—O8—C14−0.21 (13)
N2—Fe1—O1—C1176.37 (13)O6—Fe1—O8—C141.9 (2)
O6—Fe1—O1—C1100.80 (13)N1—Fe1—O8—C14−176.08 (13)
N1—Fe1—O1—C1−1.29 (13)O1—Fe1—O8—C14−100.28 (14)
O8—Fe1—O3—C7104.38 (13)O3—Fe1—N2—C13−89.32 (14)
N2—Fe1—O3—C7−177.58 (13)O8—Fe1—N2—C132.70 (13)
O6—Fe1—O3—C7−102.28 (13)O6—Fe1—N2—C13−176.26 (14)
N1—Fe1—O3—C7−0.21 (13)O1—Fe1—N2—C1394.96 (14)
O1—Fe1—O3—C7−6.4 (2)O3—Fe1—N2—C985.10 (14)
O3—Fe1—N1—C60.52 (13)O8—Fe1—N2—C9177.12 (15)
O8—Fe1—N1—C6−91.82 (14)O6—Fe1—N2—C9−1.85 (13)
O6—Fe1—N1—C689.12 (14)O1—Fe1—N2—C9−90.63 (14)
O1—Fe1—N1—C6177.47 (14)Fe1—O6—C8—O7175.02 (15)
O3—Fe1—N1—C2−175.72 (14)Fe1—O6—C8—C9−3.1 (2)
O8—Fe1—N1—C291.94 (14)C13—N2—C9—C10−0.9 (3)
O6—Fe1—N1—C2−87.13 (14)Fe1—N2—C9—C10−175.18 (13)
O1—Fe1—N1—C21.22 (13)C13—N2—C9—C8175.08 (16)
Fe1—O1—C1—O2−178.87 (14)Fe1—N2—C9—C80.8 (2)
Fe1—O1—C1—C21.16 (19)O7—C8—C9—N2−176.81 (17)
C6—N1—C2—C31.7 (3)O6—C8—C9—N21.4 (2)
Fe1—N1—C2—C3177.91 (13)O7—C8—C9—C10−1.1 (3)
C6—N1—C2—C1−177.17 (15)O6—C8—C9—C10177.16 (17)
Fe1—N1—C2—C1−1.00 (19)N2—C9—C10—C111.3 (3)
O2—C1—C2—N1179.93 (16)C8—C9—C10—C11−174.01 (17)
O1—C1—C2—N1−0.1 (2)C9—C10—C11—C12−1.1 (3)
O2—C1—C2—C31.1 (3)O10—C11—C12—C13−178.96 (17)
O1—C1—C2—C3−178.93 (17)C10—C11—C12—C130.5 (3)
N1—C2—C3—C40.3 (3)C9—N2—C13—C120.3 (3)
C1—C2—C3—C4179.06 (17)Fe1—N2—C13—C12174.63 (13)
C2—C3—C4—O5178.92 (16)C9—N2—C13—C14−178.61 (16)
C2—C3—C4—C5−1.8 (3)Fe1—N2—C13—C14−4.3 (2)
O5—C4—C5—C6−179.53 (17)C11—C12—C13—N2−0.1 (3)
C3—C4—C5—C61.3 (3)C11—C12—C13—C14178.62 (17)
C2—N1—C6—C5−2.4 (3)Fe1—O8—C14—O9179.03 (15)
Fe1—N1—C6—C5−178.57 (13)Fe1—O8—C14—C13−1.9 (2)
C2—N1—C6—C7175.52 (15)N2—C13—C14—O9−176.93 (17)
Fe1—N1—C6—C7−0.69 (19)C12—C13—C14—O94.2 (3)
C4—C5—C6—N10.8 (3)N2—C13—C14—O83.9 (2)
C4—C5—C6—C7−176.72 (17)C12—C13—C14—O8−174.90 (18)
Fe1—O3—C7—O4178.48 (14)C19—N3—C15—N4178.12 (15)
Fe1—O3—C7—C6−0.1 (2)C19—N3—C15—C16−2.1 (3)
N1—C6—C7—O4−178.12 (17)N4—C15—C16—C17−178.46 (18)
C5—C6—C7—O4−0.4 (3)N3—C15—C16—C171.7 (3)
N1—C6—C7—O30.5 (2)C15—C16—C17—C180.6 (3)
C5—C6—C7—O3178.25 (17)C16—C17—C18—C19−2.6 (3)
O3—Fe1—O6—C8−104.91 (13)C15—N3—C19—N5−179.87 (16)
O8—Fe1—O6—C80.6 (2)C15—N3—C19—C180.0 (2)
N2—Fe1—O6—C82.80 (13)C17—C18—C19—N5−177.84 (16)
N1—Fe1—O6—C8178.68 (13)C17—C18—C19—N32.3 (2)
O1—Fe1—O6—C8103.59 (13)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N3—H3N···O2i0.922.002.8431 (19)152
N4—H4NA···O2Wii0.922.042.957 (2)173
N4—H4NB···O30.922.333.139 (2)147
O5—H5···O1W0.851.742.566 (2)164
O10—H10···O2W0.851.802.614 (2)159
N5—H5NA···O2i0.921.982.800 (2)148
N5—H5NB···O6iii0.921.962.832 (2)157
O1W—H1WA···O7iv0.851.982.826 (2)173
O1W—H1WB···O4ii0.852.052.877 (2)166
O2W—H2WA···O1v0.851.882.716 (2)168
O2W—H2WB···O9vi0.851.872.709 (2)168
C16—H16A···O30.952.553.323 (2)139

Symmetry codes: (i) −x+1/2, y+1/2, −z+1/2; (ii) x+1/2, −y+1/2, z+1/2; (iii) x−1/2, −y+1/2, z−1/2; (iv) x−1/2, −y+1/2, z+1/2; (v) −x, −y, −z; (vi) −x−1, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2152).

References

  • Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Rafizadeh, M. & Amani, V. (2006). Acta Cryst. E62, m90–m91.
  • Rafizadeh, M., Amani, V., Dehghan, L., Azadbakht, F. & Sahlolbei, E. (2007a). Acta Cryst. E63, m1841–m1842.
  • Rafizadeh, M., Amani, V. & Zahiri, S. (2007b). Acta Cryst. E63, m1938–m1939.
  • Rafizadeh, M., Mehrabi, B. & Amani, V. (2006). Acta Cryst. E62, m1332–m1334.
  • Rafizadeh, M., Ranjbar, M. & Amani, V. (2004). Acta Cryst. E60, m479–m481.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography