PMCCPMCCPMCC

Conseils de recherche
Les critères de recherche 

Avancée

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 October 1; 64(Pt 10): m1267–m1268.
Published online 2008 September 13. doi:  10.1107/S160053680802881X
PMCID: PMC2959317

Bis(2,4,6-trimethyl­pyridinium) hexa­chloridoplatinate(IV)

Abstract

The asymmetric unit of the title compound, (C8H12N)2[PtCl6], contains one independent protonated 2,4,6-trimethyl­pyridinium cation and one half of a centrosymmetric [PtCl6]2− anion. The Pt ion has an almost ideal octa­hedral coordination. In the crystal structure, intra­molecular N—H(...)Cl and inter­molecular C—H(...)Cl hydrogen bonds result in the formation of a supra­molecular structure.

Related literature

For general background, see: Rafizadeh et al. (2006 [triangle]); Yousefi, Amani & Khavasi (2007 [triangle]); Abedi et al. (2008 [triangle]); Hojjat Kashani et al. (2008 [triangle]). For related literature, see: Biradha & Zaworotko (1998 [triangle]); Hallfeldt & Urland (2002 [triangle]); Foces-Foces et al. (1999 [triangle]); Zordan & Brammer (2004 [triangle]); Hasan et al. (2001 [triangle]); Juan et al. (1998 [triangle]); Li & Liu (2003 [triangle]); Hu et al. (2003 [triangle]); Terzis & Mentzafos (1983 [triangle]); Zordan et al. (2005 [triangle]); Yousefi, Ahmadi et al. (2007 [triangle]); Yousefi et al. (2007a [triangle],b [triangle]); Amani et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1267-scheme1.jpg

Experimental

Crystal data

  • (C8H12N)2[PtCl6]
  • M r = 652.15
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1267-efi1.jpg
  • a = 7.6302 (8) Å
  • b = 9.1328 (9) Å
  • c = 9.4599 (10) Å
  • α = 99.201 (8)°
  • β = 109.683 (8)°
  • γ = 108.471 (8)°
  • V = 561.87 (12) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 6.96 mm−1
  • T = 298 (2) K
  • 0.32 × 0.30 × 0.25 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1998 [triangle]) T min = 0.121, T max = 0.176
  • 6510 measured reflections
  • 2962 independent reflections
  • 2952 reflections with I > 2σ(I)
  • R int = 0.099

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.088
  • S = 1.18
  • 2962 reflections
  • 116 parameters
  • H-atom parameters constrained
  • Δρmax = 1.20 e Å−3
  • Δρmin = −1.44 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1998 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680802881X/hk2526sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680802881X/hk2526Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are grateful to the Islamic Azad University, Shahr-e-Rey Branch, for financial support.

supplementary crystallographic information

Comment

In recent years, there has been considerable interest in proton transfer systems and their structures (Rafizadeh et al., 2006; Yousefi, Amani & Khavasi, 2007; Abedi et al., 2008; Hojjat Kashani et al., 2008). Several proton transfer systems using 2,4,6-trimethylpyridine, with proton donor molecules, such as [2,4,6-tmpy.H]2[H2BTEC], (II), (Biradha & Zaworotko, 1998), {[2,4,6-tmpy.H]10[Er(H2O)Cl5]2[ErCl6]3Cl}, (III), (Hallfeldt & Urland, 2002), [2,4,6-tmpy.H][2-NBA], (IV) and [2,4,6-tmpy.H][3,5-NBA], (V), (Foces-Foces et al., 1999) [where 2,4,6-tmpy.H is 2,4,6-trimethylpyridinium, H2BTEC is dihydrogen-1,2,4,5-benzenetetracarboxylate, 2-NBA is 2-nitrobenzoate and 3,5-NBA is 3,5- nitrobenzoate] have been synthesized and characterized by single-crystal X-ray diffraction methods.

There are also several proton transfer systems using H2[PtCl6] with proton acceptor molecules, such as [HpyBr-3]2[PtCl6].2H2O, (VI), and [HpyI-3]2[PtCl6].2H2O, (VII),(Zordan & Brammer, 2004), [BMIM]2[PtCl6], (VIII), and [EMIM]2[PtCl6], (IX), (Hasan et al., 2001), {(DABCO)H2[PtCl6]}, (X), (Juan et al., 1998), {p-C6H4(CH2ImMe)2[PtCl6]}, (XI), (Li & Liu, 2003), [het][PtCl6].2H2O, (XII), (Hu et al., 2003), [9-MeGuaH]2[PtCl6].2H2O, (XIII), (Terzis & Mentzafos, 1983), [HpyCl-3]3[PtCl6]Cl, (XIV), (Zordan et al., 2005), [2,9-dmphen.H]2[PtCl6], (XV), (Yousefi, Ahmadi et al., 2007), [H2DA18C6][PtCl6].2H2O, (XVI), (Yousefi et al., 2007a), [2,6-dmpy.H]2[PtCl6], (XVII), (Amani et al., 2008) and [TBA]3[PtCl6]Cl, (XVIII), (Yousefi et al., 2007b) [where hpy is halo-pyridinium, BMIM+ is 1-n-butyl-3-methylimidazolium, EMIM+ is 1-ethyl-3-methyl- imidazolium, DABCO is 1,4-diazabicyclooctane, Im is imidazolium, het is 2-(α-hydroxyethyl)thiamine, 9-MeGuaH is 9-methylguaninium, 2,9-dmphen.H is 2,9-dimethyl-1,10-phenanthrolinium, H2DA18C6 is 1,10-Diazonia-18-crown-6, 2,6-dmpy.H is 2,6-dimethylpyridinium and TBA is tribenzylammonium] have been synthesized and characterized by single-crystal X-ray diffraction methods. We report herein the synthesis and crystal structure of the title compound, (I).

The asymmetric unit of (I), (Fig. 1) contains one independent protonated 2,4,6-trimethylpyridinium cation and one half of a centrosymmetric [PtCl6]2- anion. The Pt ion has an octahedral coordination. In cation, the bond lengths and angles are in good agreement with the corresponding values in (II) and (IV). In [PtCl6]2- anion, the Pt—Cl bond lengths and Cl—Pt—Cl bond angles (Table 1) are also within normal ranges, as in (XVI), (XVII) and (XVIII).

In the crystal structure (Fig. 2), intramolecular N—H···Cl and intermolecular C—H···Cl hydrogen bonds (Table 2) result in the formation of a supramolecular structure, in which they may be effective in the stabilization of the structure.

Experimental

For the preparation of the title compound, (I), a solution of 2,4,6-trimethylpyridine (0.18 g, 1.48 mmol) in methanol (15 ml) was added to a solution of H2PtCl6.6H2O, (0.38 g, 0.74 mmol) in acetonitrile (25 ml) and the resulting yellow solution was stirred for 10 min at 313 K. Then, it was left to evaporate slowly at room temperature. After one week, orange prismatic crystals of (I) were isolated (yield; 0.35 g; 72.5%).

Refinement

H atoms were positioned geometrically, with N—H = 0.86 Å (for NH) and C—H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C,N).

Figures

Fig. 1.
The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level [symmetry code: (a) x, y + 1, z].
Fig. 2.
A packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

Crystal data

(C8H12N)2[PtCl6]Z = 1
Mr = 652.15F(000) = 314
Triclinic, P1Dx = 1.927 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.6302 (8) ÅCell parameters from 1715 reflections
b = 9.1328 (9) Åθ = 3.0–29.1°
c = 9.4599 (10) ŵ = 6.96 mm1
α = 99.201 (8)°T = 298 K
β = 109.683 (8)°Prism, orange
γ = 108.471 (8)°0.32 × 0.30 × 0.25 mm
V = 561.87 (12) Å3

Data collection

Bruker SMART CCD area-detector diffractometer2962 independent reflections
Radiation source: fine-focus sealed tube2952 reflections with I > 2σ(I)
graphiteRint = 0.099
[var phi] and ω scansθmax = 29.1°, θmin = 3.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 1998)h = −10→10
Tmin = 0.121, Tmax = 0.176k = −12→12
6510 measured reflectionsl = −12→12

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.088w = 1/[σ2(Fo2) + (0.0557P)2] where P = (Fo2 + 2Fc2)/3
S = 1.18(Δ/σ)max = 0.010
2962 reflectionsΔρmax = 1.20 e Å3
116 parametersΔρmin = −1.44 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 1998), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.115 (6)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Pt10.00000.50000.00000.03163 (12)
Cl10.1751 (2)0.65180 (16)0.26337 (11)0.0496 (3)
Cl2−0.2671 (2)0.5772 (2)−0.01978 (15)0.0522 (3)
Cl3−0.1501 (2)0.27660 (16)0.07023 (13)0.0486 (3)
N1−0.2844 (7)0.7163 (6)0.3174 (5)0.0473 (9)
H1D−0.29180.67520.22610.057*
C1−0.2767 (12)0.4641 (8)0.3642 (6)0.0567 (14)
H1A−0.16450.47370.33640.068*
H1B−0.40170.39930.27380.068*
H1C−0.26700.41370.44650.068*
C2−0.2721 (8)0.6278 (7)0.4197 (5)0.0448 (10)
C3−0.2540 (10)0.6948 (7)0.5686 (6)0.0496 (11)
H3−0.24480.63660.64100.059*
C4−0.2496 (10)0.8492 (8)0.6091 (6)0.0533 (12)
C5−0.2300 (17)0.9231 (11)0.7709 (8)0.077 (2)
H5A−0.34640.94690.76200.092*
H5B−0.10941.02110.82270.092*
H5C−0.22150.84830.83100.092*
C6−0.2651 (10)0.9340 (7)0.4965 (7)0.0540 (12)
H6−0.26111.03800.52210.065*
C7−0.2858 (9)0.8639 (7)0.3499 (6)0.0493 (11)
C8−0.3106 (14)0.9436 (10)0.2211 (9)0.0687 (18)
H8A−0.43700.87750.13250.082*
H8B−0.20070.95620.18980.082*
H8C−0.31001.04780.25890.082*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Pt10.03766 (15)0.03245 (15)0.02614 (14)0.01452 (9)0.01484 (8)0.00745 (7)
Cl10.0642 (7)0.0451 (6)0.0288 (4)0.0166 (5)0.0150 (4)0.0042 (3)
Cl20.0546 (6)0.0726 (8)0.0457 (5)0.0397 (6)0.0252 (5)0.0200 (5)
Cl30.0621 (7)0.0406 (6)0.0440 (5)0.0148 (5)0.0274 (5)0.0148 (4)
N10.049 (2)0.052 (2)0.0380 (16)0.0178 (18)0.0172 (15)0.0113 (15)
C10.076 (4)0.061 (3)0.045 (2)0.039 (3)0.028 (2)0.016 (2)
C20.052 (2)0.047 (2)0.0385 (18)0.024 (2)0.0190 (17)0.0110 (16)
C30.062 (3)0.052 (3)0.041 (2)0.028 (2)0.0239 (19)0.0121 (18)
C40.062 (3)0.054 (3)0.044 (2)0.026 (2)0.023 (2)0.0060 (19)
C50.116 (7)0.067 (5)0.052 (3)0.044 (5)0.039 (4)0.005 (3)
C60.059 (3)0.042 (3)0.057 (3)0.018 (2)0.023 (2)0.012 (2)
C70.046 (2)0.047 (3)0.049 (2)0.0134 (19)0.0164 (18)0.0172 (19)
C80.074 (4)0.063 (4)0.067 (3)0.025 (3)0.024 (3)0.033 (3)

Geometric parameters (Å, °)

Pt1—Cl12.3225 (11)C3—H30.9300
Pt1—Cl1i2.3225 (11)C4—C61.409 (9)
Pt1—Cl22.3199 (12)C4—C51.507 (8)
Pt1—Cl2i2.3199 (12)C5—H5A0.9600
Pt1—Cl3i2.3197 (13)C5—H5B0.9600
Pt1—Cl32.3197 (13)C5—H5C0.9600
N1—H1D0.8600C6—C71.365 (9)
C1—C21.488 (8)C6—H60.9300
C1—H1A0.9600C7—N11.338 (8)
C1—H1B0.9600C7—C81.505 (8)
C1—H1C0.9600C8—H8A0.9600
C2—N11.355 (7)C8—H8B0.9600
C2—C31.385 (6)C8—H8C0.9600
C3—C41.388 (8)
Cl1—Pt1—Cl1i180.0C2—C3—C4119.7 (5)
Cl2—Pt1—Cl1i89.35 (5)C2—C3—H3120.2
Cl2i—Pt1—Cl1i90.65 (5)C4—C3—H3120.2
Cl2—Pt1—Cl190.65 (5)C3—C4—C6118.9 (5)
Cl2—Pt1—Cl2i180.0C3—C4—C5120.0 (6)
Cl3—Pt1—Cl190.10 (5)C6—C4—C5121.1 (6)
Cl3i—Pt1—Cl1i90.10 (5)C4—C5—H5A109.5
Cl3—Pt1—Cl1i89.90 (5)C4—C5—H5B109.5
Cl3—Pt1—Cl290.45 (6)H5A—C5—H5B109.5
Cl3i—Pt1—Cl2i90.45 (6)C4—C5—H5C109.5
Cl3—Pt1—Cl2i89.55 (6)H5A—C5—H5C109.5
Cl3i—Pt1—Cl3180.0H5B—C5—H5C109.5
C2—N1—H1D118.0C7—C6—C4120.1 (5)
C7—N1—C2123.9 (5)C7—C6—H6119.9
C7—N1—H1D118.0C4—C6—H6119.9
C2—C1—H1A109.5N1—C7—C6118.9 (5)
C2—C1—H1B109.5N1—C7—C8117.6 (6)
H1A—C1—H1B109.5C6—C7—C8123.5 (6)
C2—C1—H1C109.5C7—C8—H8A109.5
H1A—C1—H1C109.5C7—C8—H8B109.5
H1B—C1—H1C109.5H8A—C8—H8B109.5
N1—C2—C3118.5 (5)C7—C8—H8C109.5
N1—C2—C1117.3 (4)H8A—C8—H8C109.5
C3—C2—C1124.2 (5)H8B—C8—H8C109.5
C1—C2—N1—C7178.8 (6)C3—C4—C6—C70.6 (10)
C3—C2—N1—C7−1.9 (9)C5—C4—C6—C7−179.0 (7)
N1—C2—C3—C40.2 (9)C4—C6—C7—N1−2.2 (10)
C1—C2—C3—C4179.5 (6)C4—C6—C7—C8177.8 (7)
C2—C3—C4—C60.4 (10)C6—C7—N1—C22.9 (9)
C2—C3—C4—C5180.0 (7)C8—C7—N1—C2−177.0 (6)

Symmetry codes: (i) −x, −y+1, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1D···Cl20.862.453.301 (5)173.
C1—H1C···Cl1ii0.962.813.743 (6)165.
C8—H8A···Cl3iii0.962.803.731 (10)163.

Symmetry codes: (ii) −x, −y+1, −z+1; (iii) −x−1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2526).

References

  • Abedi, A., Bahrami Shabestari, A. & Amani, V. (2008). Acta Cryst. E64, o990. [PMC free article] [PubMed]
  • Amani, V., Rahimi, R. & Khavasi, H. R. (2008). Acta Cryst. E64, m1143–m1144. [PMC free article] [PubMed]
  • Biradha, K. & Zaworotko, M. J. (1998). Cryst. Eng.1, 67–78.
  • Bruker (1998). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Foces-Foces, C., Llamas-Saiz, A. L., Lorente, P., Golubev, N. S. & Limbach, H.-H. (1999). Acta Cryst. C55, 377–381.
  • Hallfeldt, J. & Urland, W. (2002). Z. Anorg. Allg. Chem.628, 2661–2664.
  • Hasan, M., Kozhevnikov, I. V., Siddiqui, M. R. H., Femoni, C., Steiner, A. & Winterton, N. (2001). Inorg. Chem.40, 795–800. [PubMed]
  • Hojjat Kashani, L., Yousefi, M., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m840–m841. [PMC free article] [PubMed]
  • Hu, N. H., Norifusa, T. & Aoki, K. (2003). Dalton Trans. pp. 335–341.
  • Juan, C., Mareque, R. & Lee, B. (1998). Inorg. Chem.37, 4756–4757. [PubMed]
  • Li, D. & Liu, D. (2003). Anal. Sci.19, 1089–1090. [PubMed]
  • Rafizadeh, M., Aghayan, H. & Amani, V. (2006). Acta Cryst. E62, o5034–o5035.
  • Sheldrick, G. M. (1998). SADABS Bruker AXS, Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Terzis, A. & Mentzafos, D. (1983). Inorg. Chem.22, 1140–1143.
  • Yousefi, M., Ahmadi, R., Amani, V. & Khavasi, H. R. (2007). Acta Cryst. E63, m3114–m3115.
  • Yousefi, M., Amani, V. & Khavasi, H. R. (2007). Acta Cryst. E63, o3782.
  • Yousefi, M., Teimouri, S., Amani, V. & Khavasi, H. R. (2007a). Acta Cryst. E63, m2460–m2461.
  • Yousefi, M., Teimouri, S., Amani, V. & Khavasi, H. R. (2007b). Acta Cryst. E63, m2748–m2749.
  • Zordan, F. & Brammer, L. (2004). Acta Cryst. B60, 512–519. [PubMed]
  • Zordan, F., Purver, S. L., Adams, H. & Brammer, L. (2005). CrystEngComm, 7, 350–354.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography