PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 October 1; 64(Pt 10): o2025.
Published online 2008 September 27. doi:  10.1107/S1600536808030687
PMCID: PMC2959313

4-Cyano­anilinium perchlorate

Abstract

The title compound, C7H7N2 +·ClO4 , comprises discrete ions which are inter­connected by N—H(...)O hydrogen bonds, leading to a neutral one-dimensional network along the [100] direction.

Related literature

For the chemistry of nitrile derivatives, see: Xiong et al. (2002 [triangle]); Jin et al. (1994 [triangle]); Brewis et al. (2003 [triangle]); Fu et al. (2008 [triangle]); Duncia et al. (1991 [triangle]); Fu & Zhao (2007 [triangle]); Dai & Fu (2008 [triangle]); Smith et al. (2000 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2025-scheme1.jpg

Experimental

Crystal data

  • C7H7N2 +·ClO4
  • M r = 218.60
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2025-efi1.jpg
  • a = 4.9905 (10) Å
  • b = 6.9465 (14) Å
  • c = 13.998 (3) Å
  • α = 94.87 (3)°
  • β = 95.68 (3)°
  • γ = 103.99 (3)°
  • V = 465.57 (17) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.40 mm−1
  • T = 298 (2) K
  • 0.25 × 0.15 × 0.15 mm

Data collection

  • Rigaku Mercury2 diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 [triangle]) T min = 0.941, T max = 1.000 (expected range = 0.886–0.942)
  • 4861 measured reflections
  • 2126 independent reflections
  • 1851 reflections with I > 2σ(I)
  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.097
  • S = 1.05
  • 2126 reflections
  • 128 parameters
  • H-atom parameters constrained
  • Δρmax = 0.25 e Å−3
  • Δρmin = −0.34 e Å−3

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]) and PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808030687/bx2181sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808030687/bx2181Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by a Start-up Grant from Southeast University to Professor Ren-Gen Xiong.

supplementary crystallographic information

Comment

Nitrile derivatives have found wide range of applications in industry and coordination chemistry as ligands. For example, phthalonitriles have been used as starting materials for phthalocyanines (Jin et al., 1994), which are important components for dyes, pigments, gas sensors, optical limiters and liquid crystals, and which are also used in medicine, as singlet oxygen photosensitisers for photodynamic therapy (Brewis et al., 2003). And nitrile compounds are the precursor of tetrazole complexes (Duncia et al., 1991; Xiong et al., 2002; Fu et al., 2008). Recently, a series of benzonitrile compounds have been reported (Fu & Zhao, 2007; Dai & Fu, 2008; Smith et al., 2000). As an extension of these work on the structural characterization, we report here the crystal structure of the title compound p-cyanoanilinium perchloride. The crystal data show that in the title compound, the N1 atom of the amine group is protonated. The nitrile group and the benzene ring are essentially coplanar. The C1[equivalent]N2 bond length of 1.135 (3) Å is within the normal range (Fig. 1).The crystal packing is stablized by cation–anion N—H···O hydrogen bonds, building an infinite one-dimensional chain parallel to the a axis. (Table 1, Fig. 2).

Experimental

p-cyanoaniline (3 mmol, 354 mg) was dissolved in the solution of distilled water (10 ml) and perchloride acid (0.5 ml), and evaporated in the air affording colorless block crystals of this compound suitable for X-ray analysis were obtained.

Refinement

All H atoms attached to C and N atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic) and N—H = 0.89 Å with Uiso(H) = 1.2Ueq(C or N).

Figures

Fig. 1.
A view of the title compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.
Fig. 2.
The crystal packing of the title compound viewed along the b axis and all hydrogen atoms not involved in hydrogen bonding (dashed lines) were omitted for clarity.

Crystal data

C7H7N2+·ClO4Z = 2
Mr = 218.60F(000) = 224
Triclinic, P1Dx = 1.559 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.9905 (10) ÅCell parameters from 1806 reflections
b = 6.9465 (14) Åθ = 3.0–27.5°
c = 13.998 (3) ŵ = 0.40 mm1
α = 94.87 (3)°T = 298 K
β = 95.68 (3)°Block, colourless
γ = 103.99 (3)°0.25 × 0.15 × 0.15 mm
V = 465.57 (17) Å3

Data collection

Rigaku Mercury2 diffractometer2126 independent reflections
Radiation source: fine-focus sealed tube1851 reflections with I > 2σ(I)
graphiteRint = 0.023
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.0°
ω scansh = −6→6
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)k = −8→8
Tmin = 0.941, Tmax = 1.000l = −18→18
4861 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + (0.0483P)2 + 0.1253P] where P = (Fo2 + 2Fc2)/3
2126 reflections(Δ/σ)max < 0.001
128 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = −0.34 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.6157 (3)0.2508 (2)0.12597 (11)0.0399 (4)
H1A0.47710.24050.07910.048*
H1B0.68760.14600.11800.048*
H1C0.74680.36230.12380.048*
N20.0727 (7)0.2647 (4)0.5503 (2)0.1058 (10)
C10.1672 (6)0.2642 (4)0.47983 (19)0.0743 (8)
C20.2877 (5)0.2620 (3)0.38998 (16)0.0549 (5)
C30.2722 (5)0.4100 (3)0.33016 (17)0.0557 (5)
H30.18600.51010.34780.067*
C40.3859 (4)0.4064 (3)0.24466 (15)0.0458 (4)
H40.37890.50490.20410.055*
C50.5097 (3)0.2566 (3)0.21961 (13)0.0362 (4)
C60.5293 (4)0.1094 (3)0.27829 (14)0.0464 (5)
H60.61690.01040.26040.056*
C70.4158 (5)0.1127 (4)0.36408 (16)0.0574 (6)
H70.42520.01450.40460.069*
Cl1−0.00044 (8)0.22266 (6)0.91125 (3)0.03315 (14)
O1−0.2849 (3)0.1812 (2)0.92711 (11)0.0552 (4)
O20.1712 (3)0.3237 (2)0.99794 (12)0.0598 (4)
O30.0665 (3)0.0398 (2)0.88369 (13)0.0593 (4)
O40.0420 (4)0.3478 (2)0.83610 (12)0.0668 (5)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0442 (8)0.0392 (8)0.0403 (9)0.0162 (7)0.0100 (6)0.0048 (6)
N20.141 (3)0.0996 (19)0.0746 (17)0.0122 (17)0.0625 (17)−0.0038 (14)
C10.0839 (18)0.0741 (17)0.0597 (16)0.0059 (14)0.0296 (13)−0.0047 (13)
C20.0545 (12)0.0599 (13)0.0450 (12)0.0039 (10)0.0167 (9)−0.0053 (10)
C30.0560 (13)0.0514 (12)0.0617 (14)0.0159 (10)0.0210 (10)−0.0056 (10)
C40.0485 (11)0.0424 (10)0.0506 (12)0.0168 (8)0.0126 (9)0.0046 (8)
C50.0328 (8)0.0375 (9)0.0366 (9)0.0068 (7)0.0046 (7)0.0004 (7)
C60.0547 (11)0.0455 (10)0.0441 (11)0.0205 (9)0.0097 (9)0.0072 (8)
C70.0714 (15)0.0609 (13)0.0425 (12)0.0163 (11)0.0126 (10)0.0140 (10)
Cl10.0306 (2)0.0284 (2)0.0426 (3)0.00948 (15)0.00733 (15)0.00697 (15)
O10.0333 (7)0.0667 (9)0.0627 (10)0.0079 (6)0.0146 (6)−0.0046 (7)
O20.0531 (9)0.0534 (9)0.0661 (10)0.0147 (7)−0.0150 (7)−0.0090 (7)
O30.0595 (9)0.0396 (7)0.0839 (12)0.0271 (7)0.0058 (8)−0.0036 (7)
O40.0880 (12)0.0539 (9)0.0623 (11)0.0127 (8)0.0217 (9)0.0293 (8)

Geometric parameters (Å, °)

N1—C51.462 (2)C4—C51.371 (3)
N1—H1A0.8900C4—H40.9300
N1—H1B0.8900C5—C61.380 (3)
N1—H1C0.8900C6—C71.378 (3)
N2—C11.135 (3)C6—H60.9300
C1—C21.447 (3)C7—H70.9300
C2—C71.385 (3)Cl1—O41.4202 (15)
C2—C31.392 (3)Cl1—O31.4215 (14)
C3—C41.375 (3)Cl1—O11.4222 (14)
C3—H30.9300Cl1—O21.4346 (16)
C5—N1—H1A109.5C4—C5—C6122.22 (18)
C5—N1—H1B109.5C4—C5—N1118.25 (16)
H1A—N1—H1B109.5C6—C5—N1119.50 (16)
C5—N1—H1C109.5C7—C6—C5118.39 (19)
H1A—N1—H1C109.5C7—C6—H6120.8
H1B—N1—H1C109.5C5—C6—H6120.8
N2—C1—C2179.6 (3)C6—C7—C2120.1 (2)
C7—C2—C3120.66 (19)C6—C7—H7120.0
C7—C2—C1119.9 (2)C2—C7—H7120.0
C3—C2—C1119.4 (2)O4—Cl1—O3109.51 (11)
C4—C3—C2119.1 (2)O4—Cl1—O1109.25 (11)
C4—C3—H3120.4O3—Cl1—O1108.89 (10)
C2—C3—H3120.4O4—Cl1—O2109.01 (11)
C5—C4—C3119.54 (19)O3—Cl1—O2110.69 (10)
C5—C4—H4120.2O1—Cl1—O2109.47 (10)
C3—C4—H4120.2
C7—C2—C3—C40.0 (3)C4—C5—C6—C71.1 (3)
C1—C2—C3—C4−179.7 (2)N1—C5—C6—C7−176.89 (19)
C2—C3—C4—C50.6 (3)C5—C6—C7—C2−0.4 (3)
C3—C4—C5—C6−1.2 (3)C3—C2—C7—C6−0.1 (4)
C3—C4—C5—N1176.83 (18)C1—C2—C7—C6179.6 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.892.042.881 (2)158.
N1—H1B···O3ii0.891.982.855 (2)166.
N1—H1C···O4iii0.892.042.871 (2)156.

Symmetry codes: (i) x, y, z−1; (ii) −x+1, −y, −z+1; (iii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2181).

References

  • Brewis, M., Helliwell, M. & McKeown, N. B. (2003). Tetrahedron, 59, 3863–3872.
  • Dai, W. & Fu, D.-W. (2008). Acta Cryst. E64, o1444. [PMC free article] [PubMed]
  • Duncia, J. V., Pierce, M. E. & Santella, J. B. (1991). J. Org. Chem.56, 2395–2400.
  • Fu, D.-W., Zhang, W. & Xiong, R.-G. (2008). Cryst. Growth Des.8, 3461–3464.
  • Fu, D.-W. & Zhao, H. (2007). Acta Cryst. E63, o3206.
  • Jin, Z., Nolan, K., McArthur, C. R., Lever, A. B. P. & Leznoff, C. C. (1994). J. Organomet. Chem.468, 205–212.
  • Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Smith, G., Bott, R. C. & Lynch, D. E. (2000). Acta Cryst. C56, 1155–1156. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Xiong, R.-G., Xue, X., Zhao, H., You, X.-Z., Abrahams, B. F. & Xue, Z.-L. (2002). Angew. Chem. Int. Ed.41, 3800–3803. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography