PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 October 1; 64(Pt 10): o1877.
Published online 2008 September 6. doi:  10.1107/S1600536808027785
PMCID: PMC2959302

10,11,12,13-Tetrahydro-4,5,9,14-tetra­azadibenz[a,c]anthracene–benzene-1,4-dicarboxylic acid (2/1)

Abstract

In the title adduct, 2C18H14N4·C8H6O4, the centrosymmetric 1,4-benzene­dicarboxylic acid mol­ecule makes two O—H(...)·N hydrogen bonds to adjacent 10,11,12,13-tetra­hydro-4,5,9,14-tetra­azadibenzo[a,c]anthracene (TTBT) mol­ecules. Aromatic π–π stacking inter­actions occur between TTBT rings [centroid–centroid distance = 3.570 (3) Å], leading to a two-dimensional supra­molecular structure in the crystal.

Related literature

For related literature, see: Che et al. (2006 [triangle], 2008 [triangle]); Stephenson & Hardie (2006 [triangle]); Xu et al. (2008 [triangle]); Yao et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1877-scheme1.jpg

Experimental

Crystal data

  • 2C18H14N4·C8H6O4
  • M r = 738.80
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1877-efi1.jpg
  • a = 7.266 (4) Å
  • b = 9.917 (5) Å
  • c = 13.564 (9) Å
  • α = 101.469 (9)°
  • β = 97.429 (9)°
  • γ = 109.697 (6)°
  • V = 881.2 (9) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 292 (2) K
  • 0.32 × 0.21 × 0.08 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2002 [triangle]) T min = 0.978, T max = 0.992
  • 7636 measured reflections
  • 3444 independent reflections
  • 1394 reflections with I > 2σ(I)
  • R int = 0.047

Refinement

  • R[F 2 > 2σ(F 2)] = 0.058
  • wR(F 2) = 0.180
  • S = 0.93
  • 3444 reflections
  • 253 parameters
  • H-atom parameters constrained
  • Δρmax = 0.34 e Å−3
  • Δρmin = −0.18 e Å−3

Data collection: SMART (Bruker, 2002 [triangle]); cell refinement: SAINT (Bruker, 2002 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808027785/hb2788sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808027785/hb2788Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Doctoral Foundation of Jilin Normal University (Nos. 2006006 and 2007009), the Subject and Base Construction Foundation of Jilin Normal University (No. 2006041) and the Masters’ Innovation Foundation of Jilin Normal University (No. 2006064).

supplementary crystallographic information

Comment

Current crystal engineering on the basis of the supramolecular architectures assembled from various noncovalent interactions, such as hydrogen bonds and π-π stacking interactions have been extensively studied owing to their novel topologies and potential applications as functional materials (Stephenson & Hardie, 2006; Yao et al.,2008). 1,10-Phenanthroline (phen) and its derivatives have been widely used to build novel supramolecular architectures (Xu, Li et al., 2008; Che, Liu et al., 2008). As a continuation of our studies in this area, we have prepared the title compound, (I), using the phen derivative 10,11,12,13-tetrahydro-4,5,9,14-tetraazadibenz[a,c]anthracene (TTBA).

The asymmetric unit of (I) consists of one TTBA molecule and half of a centrosymmetric 1,4-benzenedicarboxylic acid molecule (Fig. 1). The two components of (I) interact by way of O—H···N hydrogen bonds (Table 1). Furthermore, there are π-π aromatic stacking interactions involving TTBA ligands of adjacent units [centroid-centroid distance = 3.570 (3)Å], forming an intriguing two-dimensional supramolecular motif (Fig. 2).

Experimental

The TTBA was synthesized according to the literature method (Che, Li et al., 2006). TTBA (1.0 mmol) and 1,4-benzenedicarboxylic acid (0.5 mmol) were dissolved in aqueous solution and the mixture was sealed in a Teflon-lined autoclave and heated to 433 K for 4 d. Upon cooling and opening the bomb, colorless blocks of (I) were obtained.

Refinement

The hydrogen atoms were positioned geometrically (C—H = 0.93 Å, O—H = 0.82Å) and refined as riding, with Uiso(H)= 1.2Ueq(carrier).

Figures

Fig. 1.
View of the molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level (arbitrary spheres for the H atoms). [Symmetry code: (i) 1 - x, -y, 3 - z.]
Fig. 2.
Packing diagram of the two-dimensional supramolecular structure of (I) formed viaπ–π interactions and hydrogen bonds. H atoms have been omitted.

Crystal data

2C18H14N4·C8H6O4Z = 1
Mr = 738.80F(000) = 386
Triclinic, P1Dx = 1.392 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.266 (4) ÅCell parameters from 2386 reflections
b = 9.917 (5) Åθ = 2.3–26.0°
c = 13.564 (9) ŵ = 0.09 mm1
α = 101.469 (9)°T = 292 K
β = 97.429 (9)°Block, colorless
γ = 109.697 (6)°0.32 × 0.21 × 0.08 mm
V = 881.2 (9) Å3

Data collection

Bruker SMART CCD diffractometer3444 independent reflections
Radiation source: fine-focus sealed tube1394 reflections with I > 2σ(I)
graphiteRint = 0.047
ω scansθmax = 26.1°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2002)h = −8→8
Tmin = 0.978, Tmax = 0.992k = −12→12
7636 measured reflectionsl = −16→16

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.180H-atom parameters constrained
S = 0.93w = 1/[σ2(Fo2) + (0.0762P)2] where P = (Fo2 + 2Fc2)/3
3444 reflections(Δ/σ)max < 0.001
253 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = −0.18 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.7589 (5)0.5815 (4)1.2595 (3)0.0603 (10)
H10.75940.60001.32950.072*
C20.7631 (5)0.6947 (4)1.2121 (3)0.0593 (9)
H20.76920.78611.24950.071*
C30.7581 (4)0.6668 (4)1.1082 (3)0.0534 (9)
H30.75890.73941.07390.064*
C40.7517 (4)0.5297 (3)1.0542 (2)0.0411 (8)
C50.7492 (4)0.4942 (3)0.9448 (2)0.0418 (8)
C60.7476 (4)0.5624 (4)0.7934 (3)0.0473 (8)
C70.7508 (5)0.6785 (4)0.7365 (2)0.0607 (10)
H7A0.88100.75850.75900.073*
H7B0.65180.71930.75430.073*
C80.7086 (6)0.6201 (4)0.6202 (3)0.0773 (12)
H8A0.56540.56940.59430.093*
H8B0.75340.70300.58980.093*
C90.8103 (6)0.5164 (4)0.5882 (3)0.0779 (12)
H9A0.95370.56780.61250.093*
H9B0.78260.48450.51370.093*
C100.7414 (6)0.3822 (4)0.6306 (2)0.0669 (10)
H10A0.60630.31860.59400.080*
H10B0.82710.32650.61870.080*
C110.7453 (4)0.4230 (4)0.7430 (2)0.0485 (8)
C120.7473 (4)0.3561 (3)0.8947 (2)0.0433 (8)
C130.7493 (4)0.2468 (3)0.9524 (2)0.0439 (8)
C140.7547 (4)0.1100 (4)0.9065 (3)0.0535 (9)
H140.75450.08470.83670.064*
C150.7602 (5)0.0130 (4)0.9645 (3)0.0578 (9)
H150.7664−0.07820.93550.069*
C160.7563 (5)0.0539 (4)1.0681 (3)0.0622 (10)
H160.7582−0.01311.10710.075*
C170.7489 (4)0.2799 (3)1.0574 (2)0.0431 (8)
C180.7504 (4)0.4245 (3)1.1102 (2)0.0429 (8)
C190.7010 (6)0.0878 (4)1.3406 (3)0.0611 (10)
C200.5949 (5)0.0433 (3)1.4226 (2)0.0527 (9)
C210.4077 (6)0.0460 (4)1.4252 (3)0.0597 (10)
H210.34390.07611.37470.072*
C220.6860 (5)−0.0042 (4)1.4971 (3)0.0611 (10)
H220.8116−0.00821.49500.073*
N10.7543 (4)0.4499 (3)1.2122 (2)0.0533 (7)
N20.7502 (4)0.1824 (3)1.1147 (2)0.0513 (7)
N30.7496 (4)0.5981 (3)0.89318 (19)0.0472 (7)
N40.7442 (4)0.3203 (3)0.79299 (19)0.0491 (7)
O10.8422 (4)0.0570 (3)1.3217 (2)0.0853 (9)
O20.6271 (4)0.1674 (3)1.29255 (18)0.0766 (8)
H2A0.61120.13551.23020.115*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.067 (2)0.068 (3)0.049 (2)0.028 (2)0.0207 (18)0.014 (2)
C20.070 (2)0.053 (2)0.057 (3)0.0253 (19)0.0208 (19)0.0101 (19)
C30.054 (2)0.053 (2)0.058 (2)0.0230 (18)0.0178 (18)0.0190 (19)
C40.0385 (18)0.0422 (19)0.043 (2)0.0169 (15)0.0081 (15)0.0082 (16)
C50.0338 (18)0.046 (2)0.045 (2)0.0133 (15)0.0059 (15)0.0148 (17)
C60.0439 (19)0.050 (2)0.049 (2)0.0188 (17)0.0066 (16)0.0151 (18)
C70.069 (2)0.065 (2)0.051 (2)0.0243 (19)0.0119 (19)0.0243 (19)
C80.106 (3)0.082 (3)0.053 (3)0.043 (3)0.015 (2)0.026 (2)
C90.100 (3)0.093 (3)0.057 (2)0.047 (3)0.025 (2)0.029 (2)
C100.084 (3)0.070 (3)0.043 (2)0.027 (2)0.0104 (19)0.0135 (19)
C110.049 (2)0.052 (2)0.041 (2)0.0161 (17)0.0074 (16)0.0106 (18)
C120.0388 (18)0.047 (2)0.042 (2)0.0156 (15)0.0067 (15)0.0103 (17)
C130.0391 (18)0.044 (2)0.048 (2)0.0137 (15)0.0108 (15)0.0134 (17)
C140.058 (2)0.050 (2)0.052 (2)0.0230 (18)0.0093 (17)0.0091 (19)
C150.070 (2)0.043 (2)0.064 (2)0.0256 (19)0.0160 (19)0.0128 (19)
C160.072 (2)0.049 (2)0.067 (3)0.0211 (19)0.015 (2)0.023 (2)
C170.0412 (18)0.0398 (19)0.049 (2)0.0132 (15)0.0120 (15)0.0146 (17)
C180.0401 (18)0.048 (2)0.043 (2)0.0173 (16)0.0116 (15)0.0135 (17)
C190.079 (3)0.053 (2)0.057 (2)0.025 (2)0.024 (2)0.0211 (19)
C200.067 (2)0.043 (2)0.050 (2)0.0207 (18)0.0185 (18)0.0124 (17)
C210.074 (3)0.059 (2)0.054 (2)0.030 (2)0.0161 (19)0.0227 (19)
C220.069 (2)0.060 (2)0.066 (2)0.0287 (19)0.023 (2)0.025 (2)
N10.0634 (18)0.0523 (19)0.0464 (18)0.0224 (15)0.0166 (14)0.0131 (15)
N20.0600 (18)0.0427 (17)0.0547 (18)0.0202 (14)0.0139 (14)0.0171 (15)
N30.0502 (16)0.0494 (17)0.0433 (17)0.0193 (13)0.0087 (13)0.0143 (14)
N40.0541 (17)0.0485 (17)0.0435 (18)0.0194 (14)0.0095 (13)0.0098 (14)
O10.099 (2)0.097 (2)0.101 (2)0.0578 (18)0.0578 (18)0.0550 (17)
O20.101 (2)0.0836 (19)0.0687 (17)0.0465 (16)0.0330 (15)0.0399 (15)

Geometric parameters (Å, °)

C1—N11.323 (4)C10—H10B0.9700
C1—C21.393 (4)C11—N41.329 (4)
C1—H10.9300C12—N41.349 (4)
C2—C31.375 (4)C12—C131.461 (4)
C2—H20.9300C13—C141.392 (4)
C3—C41.393 (4)C13—C171.397 (4)
C3—H30.9300C14—C151.366 (4)
C4—C181.405 (4)C14—H140.9300
C4—C51.452 (4)C15—C161.389 (4)
C5—N31.355 (3)C15—H150.9300
C5—C121.398 (4)C16—N21.322 (4)
C6—N31.327 (4)C16—H160.9300
C6—C111.408 (4)C17—N21.357 (4)
C6—C71.504 (4)C17—C181.466 (4)
C7—C81.520 (4)C18—N11.351 (4)
C7—H7A0.9700C19—O11.208 (4)
C7—H7B0.9700C19—O21.317 (4)
C8—C91.486 (5)C19—C201.488 (5)
C8—H8A0.9700C20—C211.375 (4)
C8—H8B0.9700C20—C221.381 (4)
C9—C101.511 (4)C21—C22i1.384 (4)
C9—H9A0.9700C21—H210.9300
C9—H9B0.9700C22—C21i1.384 (4)
C10—C111.491 (4)C22—H220.9300
C10—H10A0.9700O2—H2A0.8200
N1—C1—C2124.8 (3)N4—C11—C6121.7 (3)
N1—C1—H1117.6N4—C11—C10116.5 (3)
C2—C1—H1117.6C6—C11—C10121.8 (3)
C3—C2—C1117.8 (3)N4—C12—C5121.5 (3)
C3—C2—H2121.1N4—C12—C13118.5 (3)
C1—C2—H2121.1C5—C12—C13120.1 (3)
C2—C3—C4119.9 (3)C14—C13—C17118.3 (3)
C2—C3—H3120.1C14—C13—C12122.0 (3)
C4—C3—H3120.1C17—C13—C12119.7 (3)
C3—C4—C18117.4 (3)C15—C14—C13119.6 (3)
C3—C4—C5122.5 (3)C15—C14—H14120.2
C18—C4—C5120.1 (3)C13—C14—H14120.2
N3—C5—C12121.2 (3)C14—C15—C16118.3 (3)
N3—C5—C4118.5 (3)C14—C15—H15120.8
C12—C5—C4120.3 (3)C16—C15—H15120.8
N3—C6—C11121.7 (3)N2—C16—C15124.0 (3)
N3—C6—C7116.9 (3)N2—C16—H16118.0
C11—C6—C7121.4 (3)C15—C16—H16118.0
C6—C7—C8113.5 (3)N2—C17—C13122.2 (3)
C6—C7—H7A108.9N2—C17—C18117.4 (3)
C8—C7—H7A108.9C13—C17—C18120.4 (3)
C6—C7—H7B108.9N1—C18—C4123.4 (3)
C8—C7—H7B108.9N1—C18—C17117.1 (3)
H7A—C7—H7B107.7C4—C18—C17119.4 (3)
C9—C8—C7112.1 (3)O1—C19—O2123.7 (4)
C9—C8—H8A109.2O1—C19—C20123.6 (4)
C7—C8—H8A109.2O2—C19—C20112.6 (4)
C9—C8—H8B109.2C21—C20—C22119.2 (3)
C7—C8—H8B109.2C21—C20—C19121.8 (3)
H8A—C8—H8B107.9C22—C20—C19119.0 (4)
C8—C9—C10111.6 (3)C20—C21—C22i120.1 (3)
C8—C9—H9A109.3C20—C21—H21119.9
C10—C9—H9A109.3C22i—C21—H21119.9
C8—C9—H9B109.3C20—C22—C21i120.6 (3)
C10—C9—H9B109.3C20—C22—H22119.7
H9A—C9—H9B108.0C21i—C22—H22119.7
C11—C10—C9112.4 (3)C1—N1—C18116.7 (3)
C11—C10—H10A109.1C16—N2—C17117.6 (3)
C9—C10—H10A109.1C6—N3—C5117.0 (3)
C11—C10—H10B109.1C11—N4—C12116.9 (3)
C9—C10—H10B109.1C19—O2—H2A109.5
H10A—C10—H10B107.9

Symmetry codes: (i) −x+1, −y, −z+3.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H2A···N20.822.022.694 (4)139

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2788).

References

  • Bruker (2002). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Che, G.-B., Li, W.-L., Kong, Z.-G., Su, Z.-S., Chu, B., Li, B., Zhang, Z.-Q., Hu, Z.-Z. & Chi, H.-J. (2006). Synth. Commun.36, 2519–2524.
  • Che, G.-B., Liu, C.-B., Liu, B., Wang, Q.-W. & Xu, Z.-L. (2008). CrystEngComm, 10, 184–191.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Stephenson, M. D. & Hardie, M. J. (2006). Cryst. Growth Des.6, 423–432.
  • Xu, Z.-L., Li, X.-Y., Che, G.-B., Liu, C.-B. & Wang, Q.-W. (2008). Chin. J. Struct. Chem.27, 593–597.
  • Yao, J.-C., Qin, J.-H., Sun, Q.-B., Qu, L. & Li, Y.-G. (2008). Z. Kristallogr. New Cryst. Struct.223, 11–12.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography