PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 October 1; 64(Pt 10): o2041.
Published online 2008 September 30. doi:  10.1107/S1600536808030985
PMCID: PMC2959297

1-Chloro­acetyl-3,3-dimethyl-2,6-di­phenyl­piperidin-4-one

Abstract

In the mol­ecule of the title compound, C21H22ClNO2, the piperidine ring adopts a distorted boat conformation. The two phenyl rings are nearly orthogonal to each other with a dihedral angle of 87.1 (1)°. In the crystal structure, the mol­ecules are linked into a three-dimensional network by C—H(...)O and C—H(...)π inter­actions.

Related literature

For general background, see: Dimmock et al. (2001 [triangle]); Perumal et al. (2001 [triangle]). For ring conformational analysis, see: Cremer & Pople (1975 [triangle]); Nardelli (1983 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2041-scheme1.jpg

Experimental

Crystal data

  • C21H22ClNO2
  • M r = 355.85
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2041-efi1.jpg
  • a = 13.7005 (3) Å
  • b = 9.8735 (2) Å
  • c = 14.8960 (3) Å
  • β = 112.762 (1)°
  • V = 1858.08 (7) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.22 mm−1
  • T = 293 (2) K
  • 0.32 × 0.26 × 0.20 mm

Data collection

  • Bruker Kappa APEXII area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001 [triangle]) T min = 0.854, T max = 0.958
  • 22063 measured reflections
  • 4674 independent reflections
  • 3424 reflections with I > 2σ(I)
  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050
  • wR(F 2) = 0.154
  • S = 1.01
  • 4674 reflections
  • 226 parameters
  • H-atom parameters constrained
  • Δρmax = 0.68 e Å−3
  • Δρmin = −0.66 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808030985/ci2675sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808030985/ci2675Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

TK thanks Dr Babu Varghese, SAIF, IIT-Madras, Chennai, India, for his help with the data collection. SP thanks UGC, India, for financial support.

supplementary crystallographic information

Comment

Piperidones are the important group of heterocyclic compounds in the field of medicinal chemistry due to their biological activities, including cytotoxic properties (Dimmock et al., 2001). They were also reported to possess analgesic, anti-inflammatory, central nervous system (CNS), local anaesthetic, anticancer and antimicrobial activities (Perumal et al., 2001).

The sum of bond angles around N1 atom (359.4°) indicates sp2 hybridization. The N1—C7 [1.360 (2) Å] and C7—O2 [1.220 (2) Å] distances indicate electron delocalization. The piperidine ring adopts a distorted boat conformation, confirmed by puckering parameters q2 = 0.612 (2) Å, q3 = -0.122 (2) Å and [var phi]2 = 258.0 (2)° (Cremer & Pople, 1975) and the asymmetry parameter Δs(C2) = Δs(C5) = 19.2 (2)° (Nardelli, 1983). The two phenyl rings are nearly orthogonal to each other with a dihedral angle of 87.1 (1)°. The methyl substituents are oriented equatorially [N1—C2—C3—C16 = 175.3 (2)°] and axially [N1—C2—C3—C15 = 55.1 (2)°] at C3 position.

The crystal structure is stabilized by C—H···O and C—H···π intermolecular interactions. The glide-related molecules are linked into a chain along the b axis by C6—H6···O2i and C8—H8B···O2i hydrogen bonds, and the chains are cross-linked via C21—H21···O1ii hydrogen bonds; symmetry codes are given in Table 1. In addition, C—H···π interactions involving the C17–C22 ring (centroid Cg1) are observed.

Experimental

A mixture of 3,3-dimethyl-cis-2,6-diphenylpiperidin-4-one (1.4 g, 5 mmol), chloro acetylchloride (0.8 ml, 5 mmol) and triethylamine (2 ml, 14.4 mmol) in anhydrous benzene (20 ml) was stirred at room temperature for 7 h. The benzene solution was dried over anhydrous Na2SO4 and concentrated to obtain a pasty mass. It was purified by crystallization from benzene–petroleum ether (95:5, 60–80°C).

Refinement

H atoms were positioned geometrically (C—H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms.

Figures

Fig. 1.
The molecular structure of the title compound, showing 20% probability displacement ellipsoids.
Fig. 2.
The crystal packing of the title compound, viewed along the b axis. Dashed lines indicate hydrogen bonds. H atoms not involed in hydrogen bonding have been omitted.

Crystal data

C21H22ClNO2F(000) = 752
Mr = 355.85Dx = 1.272 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4674 reflections
a = 13.7005 (3) Åθ = 2.5–28.5°
b = 9.8735 (2) ŵ = 0.22 mm1
c = 14.8960 (3) ÅT = 293 K
β = 112.762 (1)°Block, colourless
V = 1858.08 (7) Å30.32 × 0.26 × 0.20 mm
Z = 4

Data collection

Bruker Kappa APEXII area-detector diffractometer4674 independent reflections
Radiation source: fine-focus sealed tube3424 reflections with I > 2σ(I)
graphiteRint = 0.025
ω and [var phi] scansθmax = 28.5°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Sheldrick, 2001)h = −18→18
Tmin = 0.854, Tmax = 0.958k = −11→13
22063 measured reflectionsl = −18→19

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H-atom parameters constrained
S = 1.01w = 1/[σ2(Fo2) + (0.0741P)2 + 0.7704P] where P = (Fo2 + 2Fc2)/3
4674 reflections(Δ/σ)max = 0.001
226 parametersΔρmax = 0.68 e Å3
0 restraintsΔρmin = −0.66 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C20.20338 (13)0.74492 (17)0.41291 (11)0.0364 (3)
H20.22630.82530.38780.044*
C30.30126 (14)0.6958 (2)0.50015 (13)0.0457 (4)
C40.27691 (14)0.56295 (19)0.53752 (13)0.0460 (4)
C50.19260 (15)0.47683 (18)0.46543 (13)0.0450 (4)
H5A0.12750.49120.47550.054*
H5B0.21250.38280.48080.054*
C60.16822 (13)0.49786 (17)0.35689 (12)0.0374 (3)
H60.22160.44860.34110.045*
C70.16925 (13)0.68513 (18)0.24518 (12)0.0392 (4)
C80.15274 (18)0.5752 (2)0.16986 (14)0.0536 (5)
H8A0.08340.53500.15370.064*
H8B0.20530.50480.19720.064*
C90.10539 (13)0.78759 (16)0.43001 (11)0.0372 (3)
C100.08432 (16)0.75494 (19)0.51136 (13)0.0462 (4)
H100.13390.70620.56200.055*
C11−0.00972 (18)0.7942 (2)0.51791 (15)0.0547 (5)
H11−0.02250.77170.57300.066*
C12−0.08371 (17)0.8654 (2)0.44463 (16)0.0569 (5)
H12−0.14700.89060.44930.068*
C13−0.06398 (16)0.8999 (2)0.36330 (15)0.0558 (5)
H13−0.11390.94900.31320.067*
C140.02930 (15)0.86157 (19)0.35629 (13)0.0451 (4)
H140.04180.88550.30130.054*
C150.39135 (16)0.6647 (3)0.46568 (19)0.0695 (7)
H15A0.41030.74590.44090.104*
H15B0.36810.59750.41520.104*
H15C0.45170.63130.51940.104*
C160.33953 (19)0.8035 (2)0.58046 (15)0.0635 (6)
H16A0.35420.88620.55410.095*
H16B0.40280.77240.63210.095*
H16C0.28560.81940.60540.095*
C170.06144 (13)0.43346 (18)0.30018 (12)0.0402 (4)
C18−0.03188 (15)0.4922 (2)0.29576 (15)0.0514 (5)
H18−0.03080.57720.32300.062*
C19−0.12687 (16)0.4244 (3)0.25075 (18)0.0653 (6)
H19−0.18960.46430.24770.078*
C20−0.12916 (18)0.2988 (3)0.21055 (17)0.0672 (6)
H20−0.19320.25340.18100.081*
C21−0.0373 (2)0.2404 (2)0.21401 (17)0.0645 (6)
H21−0.03890.15560.18620.077*
C220.05803 (17)0.3072 (2)0.25877 (14)0.0517 (5)
H220.12030.26690.26110.062*
Cl10.16240 (6)0.63835 (7)0.06314 (4)0.0778 (2)
N10.17457 (10)0.64277 (14)0.33383 (9)0.0350 (3)
O10.32116 (13)0.52655 (16)0.62105 (10)0.0706 (5)
O20.17704 (12)0.80385 (14)0.22634 (10)0.0518 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C20.0408 (8)0.0334 (8)0.0325 (8)−0.0040 (6)0.0113 (6)0.0006 (6)
C30.0407 (8)0.0456 (10)0.0409 (9)−0.0039 (7)0.0049 (7)0.0007 (7)
C40.0477 (9)0.0416 (10)0.0396 (9)0.0071 (8)0.0070 (7)0.0041 (7)
C50.0533 (10)0.0358 (9)0.0399 (9)−0.0014 (7)0.0114 (8)0.0063 (7)
C60.0398 (8)0.0331 (8)0.0384 (8)−0.0020 (6)0.0143 (7)0.0000 (6)
C70.0394 (8)0.0433 (10)0.0375 (8)−0.0005 (7)0.0177 (7)0.0022 (7)
C80.0761 (13)0.0507 (11)0.0404 (9)0.0006 (10)0.0295 (9)0.0007 (8)
C90.0452 (8)0.0321 (8)0.0328 (8)−0.0034 (7)0.0136 (6)−0.0017 (6)
C100.0599 (10)0.0423 (10)0.0382 (9)−0.0002 (8)0.0210 (8)0.0036 (7)
C110.0692 (12)0.0547 (12)0.0506 (11)−0.0083 (10)0.0346 (10)−0.0026 (9)
C120.0509 (10)0.0616 (13)0.0633 (13)−0.0042 (9)0.0278 (10)−0.0119 (10)
C130.0501 (10)0.0628 (13)0.0487 (11)0.0097 (9)0.0127 (8)−0.0009 (9)
C140.0521 (10)0.0471 (10)0.0356 (8)0.0046 (8)0.0164 (7)0.0025 (7)
C150.0394 (10)0.0911 (18)0.0705 (15)0.0000 (10)0.0129 (10)0.0047 (13)
C160.0668 (13)0.0553 (12)0.0468 (11)−0.0150 (10)−0.0016 (9)−0.0027 (9)
C170.0453 (9)0.0390 (9)0.0351 (8)−0.0074 (7)0.0144 (7)0.0031 (7)
C180.0458 (9)0.0456 (10)0.0566 (11)−0.0039 (8)0.0129 (8)0.0041 (9)
C190.0424 (10)0.0691 (15)0.0728 (15)−0.0048 (10)0.0096 (10)0.0161 (12)
C200.0586 (12)0.0710 (15)0.0568 (12)−0.0287 (11)0.0057 (10)0.0037 (11)
C210.0760 (15)0.0581 (13)0.0567 (12)−0.0258 (11)0.0225 (11)−0.0140 (10)
C220.0605 (11)0.0497 (11)0.0489 (10)−0.0143 (9)0.0256 (9)−0.0101 (8)
Cl10.1234 (6)0.0747 (4)0.0530 (3)−0.0077 (4)0.0534 (4)−0.0031 (3)
N10.0387 (7)0.0337 (7)0.0327 (7)−0.0025 (5)0.0139 (5)0.0002 (5)
O10.0861 (11)0.0565 (9)0.0427 (8)0.0064 (8)−0.0041 (7)0.0112 (7)
O20.0714 (9)0.0441 (7)0.0471 (7)−0.0043 (6)0.0308 (7)0.0057 (6)

Geometric parameters (Å, °)

C2—N11.483 (2)C11—C121.363 (3)
C2—C91.520 (2)C11—H110.93
C2—C31.541 (2)C12—C131.382 (3)
C2—H20.98C12—H120.93
C3—C41.512 (3)C13—C141.375 (3)
C3—C161.534 (3)C13—H130.93
C3—C151.540 (3)C14—H140.93
C4—O11.209 (2)C15—H15A0.96
C4—C51.500 (3)C15—H15B0.96
C5—C61.533 (2)C15—H15C0.96
C5—H5A0.97C16—H16A0.96
C5—H5B0.97C16—H16B0.96
C6—N11.482 (2)C16—H16C0.96
C6—C171.517 (2)C17—C181.382 (3)
C6—H60.98C17—C221.384 (3)
C7—O21.220 (2)C18—C191.384 (3)
C7—N11.360 (2)C18—H180.93
C7—C81.514 (3)C19—C201.372 (4)
C8—Cl11.7595 (19)C19—H190.93
C8—H8A0.97C20—C211.367 (4)
C8—H8B0.97C20—H200.93
C9—C101.388 (2)C21—C221.382 (3)
C9—C141.393 (2)C21—H210.93
C10—C111.385 (3)C22—H220.93
C10—H100.93
N1—C2—C9109.92 (12)C10—C11—H11119.6
N1—C2—C3109.45 (14)C11—C12—C13119.48 (19)
C9—C2—C3118.87 (14)C11—C12—H12120.3
N1—C2—H2105.9C13—C12—H12120.3
C9—C2—H2105.9C14—C13—C12120.11 (19)
C3—C2—H2105.9C14—C13—H13119.9
C4—C3—C16111.85 (16)C12—C13—H13119.9
C4—C3—C15105.63 (18)C13—C14—C9121.22 (18)
C16—C3—C15108.79 (18)C13—C14—H14119.4
C4—C3—C2109.86 (14)C9—C14—H14119.4
C16—C3—C2111.27 (16)C3—C15—H15A109.5
C15—C3—C2109.26 (16)C3—C15—H15B109.5
O1—C4—C5120.59 (18)H15A—C15—H15B109.5
O1—C4—C3122.87 (17)C3—C15—H15C109.5
C5—C4—C3116.54 (15)H15A—C15—H15C109.5
C4—C5—C6118.12 (15)H15B—C15—H15C109.5
C4—C5—H5A107.8C3—C16—H16A109.5
C6—C5—H5A107.8C3—C16—H16B109.5
C4—C5—H5B107.8H16A—C16—H16B109.5
C6—C5—H5B107.8C3—C16—H16C109.5
H5A—C5—H5B107.1H16A—C16—H16C109.5
N1—C6—C17113.96 (13)H16B—C16—H16C109.5
N1—C6—C5111.52 (14)C18—C17—C22119.07 (17)
C17—C6—C5107.46 (13)C18—C17—C6121.70 (16)
N1—C6—H6107.9C22—C17—C6119.00 (16)
C17—C6—H6107.9C17—C18—C19119.9 (2)
C5—C6—H6107.9C17—C18—H18120.0
O2—C7—N1122.85 (16)C19—C18—H18120.0
O2—C7—C8121.32 (16)C20—C19—C18120.4 (2)
N1—C7—C8115.83 (15)C20—C19—H19119.8
C7—C8—Cl1111.96 (14)C18—C19—H19119.8
C7—C8—H8A109.2C21—C20—C19120.0 (2)
Cl1—C8—H8A109.2C21—C20—H20120.0
C7—C8—H8B109.2C19—C20—H20120.0
Cl1—C8—H8B109.2C20—C21—C22120.1 (2)
H8A—C8—H8B107.9C20—C21—H21120.0
C10—C9—C14117.72 (16)C22—C21—H21120.0
C10—C9—C2125.29 (15)C21—C22—C17120.5 (2)
C14—C9—C2116.96 (15)C21—C22—H22119.8
C11—C10—C9120.67 (18)C17—C22—H22119.8
C11—C10—H10119.7C7—N1—C6122.42 (14)
C9—C10—H10119.7C7—N1—C2117.37 (13)
C12—C11—C10120.80 (18)C6—N1—C2119.59 (13)
C12—C11—H11119.6
N1—C2—C3—C4−60.29 (18)C12—C13—C14—C90.2 (3)
C9—C2—C3—C467.1 (2)C10—C9—C14—C13−0.6 (3)
N1—C2—C3—C16175.29 (15)C2—C9—C14—C13177.27 (17)
C9—C2—C3—C16−57.3 (2)N1—C6—C17—C18−50.6 (2)
N1—C2—C3—C1555.1 (2)C5—C6—C17—C1873.5 (2)
C9—C2—C3—C15−177.45 (17)N1—C6—C17—C22134.95 (16)
C16—C3—C4—O1−28.9 (3)C5—C6—C17—C22−100.95 (19)
C15—C3—C4—O189.3 (2)C22—C17—C18—C190.3 (3)
C2—C3—C4—O1−153.0 (2)C6—C17—C18—C19−174.15 (18)
C16—C3—C4—C5150.31 (18)C17—C18—C19—C200.2 (3)
C15—C3—C4—C5−91.50 (19)C18—C19—C20—C21−0.6 (4)
C2—C3—C4—C526.2 (2)C19—C20—C21—C220.6 (4)
O1—C4—C5—C6−157.96 (19)C20—C21—C22—C17−0.2 (3)
C3—C4—C5—C622.8 (2)C18—C17—C22—C21−0.3 (3)
C4—C5—C6—N1−37.4 (2)C6—C17—C22—C21174.29 (18)
C4—C5—C6—C17−162.92 (16)O2—C7—N1—C6−178.13 (16)
O2—C7—C8—Cl17.0 (2)C8—C7—N1—C61.9 (2)
N1—C7—C8—Cl1−173.12 (13)O2—C7—N1—C2−7.2 (2)
N1—C2—C9—C10109.58 (18)C8—C7—N1—C2172.90 (15)
C3—C2—C9—C10−17.6 (2)C17—C6—N1—C7−66.5 (2)
N1—C2—C9—C14−68.14 (18)C5—C6—N1—C7171.59 (15)
C3—C2—C9—C14164.68 (16)C17—C6—N1—C2122.72 (15)
C14—C9—C10—C110.5 (3)C5—C6—N1—C20.8 (2)
C2—C9—C10—C11−177.24 (17)C9—C2—N1—C7104.00 (16)
C9—C10—C11—C120.2 (3)C3—C2—N1—C7−123.72 (15)
C10—C11—C12—C13−0.6 (3)C9—C2—N1—C6−84.78 (17)
C11—C12—C13—C140.5 (3)C3—C2—N1—C647.50 (18)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C6—H6···O2i0.982.463.426 (2)168
C8—H8B···O2i0.972.533.495 (3)172
C21—H21···O1ii0.932.533.248 (3)134
C11—H11···Cg1iii0.932.733.568 (2)150

Symmetry codes: (i) −x+1/2, y−1/2, −z+1/2; (ii) x−1/2, −y+1/2, z−1/2; (iii) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2675).

References

  • Bruker (2004). SAINT and APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Dimmock, J. R., Padmanilayam, M. P., Puthucode, R. N., Nazarali, A. J., Motaganahalli, N. L., Zello, G. A., Quail, J. W., Oloo, E. O., Kraatz, H. B., Prisciak, J. S., Allen, T. M., Santos, C. L., Balsarini, J., Clercq, E. D. & Manavathu, E. K. (2001). J. Med. Chem.44, 586–593. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Nardelli, M. (1983). Acta Cryst. C39, 1141–1142.
  • Perumal, R. V., Agiraj, M. & Shanmugapandiyan, P. (2001). Indian Drugs, 38, 156–159.
  • Sheldrick, G. M. (2001). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography