PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 October 1; 64(Pt 10): m1282–m1283.
Published online 2008 September 20. doi:  10.1107/S1600536808029164
PMCID: PMC2959293

Poly[diaqua(μ2-oxalato-κ4 O 1,O 2:O 1′,O 2′)(μ2-pyrazine-2-carboxyl­ato-κ3 N 1,O:O′)cerium(III)]

Abstract

In the hydro­thermally synthesized title compound, [Ce(C5H3N2O2)(C2O4)(H2O)2]n, the CeIII ion is coordinated by four O atoms from two different oxalate ligands, three O atoms from two symmetry-related pyrazine-2-carboxyl­ate ligands, two O atoms from two water melecules and one N atom from a pyrazine-2-carboxyl­ate ligand in a distorted bicapped square-anti­prismatic coordination geometry. The oxalate and pyrazine-2-carboxyl­ate ligands bridge the CeIII ions, forming a two-dimensional structure. In addition, inter­molecular O—H(...)O and O—H(...)N hydrogen bonds connect the two-dimensional structure into a three-dimensional network.

Related literature

For background information, see: Eliseeva et al. (2004 [triangle]); Wang et al. (2007 [triangle]); Zou et al. (1999 [triangle]); Zheng et al. (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1282-scheme1.jpg

Experimental

Crystal data

  • [Ce(C5H3N2O2)(C2O4)(H2O)2]
  • M r = 387.27
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1282-efi1.jpg
  • a = 8.0298 (7) Å
  • b = 8.7161 (9) Å
  • c = 8.8201 (9) Å
  • α = 115.514 (2)°
  • β = 101.747 (1)°
  • γ = 95.999 (1)°
  • V = 532.38 (9) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 4.31 mm−1
  • T = 298 (2) K
  • 0.24 × 0.15 × 0.10 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.424, T max = 0.672
  • 2790 measured reflections
  • 1858 independent reflections
  • 1760 reflections with I > 2σ(I)
  • R int = 0.013

Refinement

  • R[F 2 > 2σ(F 2)] = 0.019
  • wR(F 2) = 0.049
  • S = 1.09
  • 1858 reflections
  • 163 parameters
  • H-atom parameters constrained
  • Δρmax = 0.68 e Å−3
  • Δρmin = −0.94 e Å−3

Data collection: SMART (Bruker, 1996 [triangle]); cell refinement: SAINT (Bruker, 1996 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808029164/lh2687sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808029164/lh2687Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors gratefully acknowledge the financial support of the Research Fund of Beijing University of Civil Engineering and Architecture (grant No. 100700502) and the Funding Project for Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of Beijing Municipality (grant No. BJE10016200611).

supplementary crystallographic information

Comment

Rare metal coordination polymers of one-, two- and three-dimensional extended frameworks are an attractive research area because of the diverse structures available (Zheng, 2002; Eliseeva et al., 2004). Pyrazine-2,3-dicaboxylic acid is a good ligand with a versatitle coordination mode, which is widely used in self-assembled polymeric coordination synthesis (Zou et al., 1999; Wang et al., 2007). The title compound, [Ce(C5H3N2O2)(C2O4)(H2O)2]n, was obtained unintentionally as the harvested product of the hydrothermal reaction of pyrazine-2,3-dicaboxylic acid and Ce2(C2O4)3.10H2O. We report here the crystal structure of the title compound, a 2-D polymeric structure consisting of pyrazine-2-dicaboxylate and oxalate ligands.

The coordination environment of the CeIII ion can be described as a distorted bicapped square-antiprism, in which the CeIII ion is ten-coordinated by four oxygen atoms from two different oxalate ligands, three oxygen atoms from two different pyrazine -2-carboxylic acid ligands, two oxygen atoms from two water molecules, and one nitrogen atom from a pyrazine-2-carboxylate ligand, as shown in the Fig. 1. The oxalate ligands and pyrazine-2-carboxylate ligands bridge CeIII ions to form a two-dimensional structure. The Ce—O bond lengths range from 2.506 (2) to 2.897 (3) Å. In the crystal structure, intermolecular O—H···O and O—H···N hydrogen bonds connect the two-dimensional structure into a three dimensional network.

Experimental

Colorless block-shaped crystals of the title compound were obtained by a hydrothermal reaction of Ce2(C2O4)3.10H2O (0.10 mmol, 0.0710 g), pyrazine-2,3-dicarboxylic acid (0.10 mmol, 0.0168 g) and deionized water (15 ml) in a 23 ml teflon-lined reaction vesset at 423 K for 120 h followed by slow cooling to room temperature (yield 77% based on initial input of pyrazine-2,3-dicarboxylic acid).

Refinement

H atoms were included in calculated positions and refined in a riding-model approximation with O—H = 0.85 Å, C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C,O).

Figures

Fig. 1.
The asymmetric unit of the title compound with symmetry related atoms included to show the coordination environment of Ce1. Displacement ellipsoids are drawn at the 40% probability level [Symmetry codes: (A) -x + 1, -y + 2, -z + 3, (B) -x+1, -y+2, -z+3, ...
Fig. 2.
Part of the crystal structure showing hydrogen bonds as dashed lines.

Crystal data

[Ce(C5H3N2O2)(C2O4)(H2O)2]Z = 2
Mr = 387.27F(000) = 370
Triclinic, P1Dx = 2.416 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.0298 (7) ÅCell parameters from 2791 reflections
b = 8.7161 (9) Åθ = 2.7–28.5°
c = 8.8201 (9) ŵ = 4.31 mm1
α = 115.514 (2)°T = 298 K
β = 101.747 (1)°Block, colourless
γ = 95.999 (1)°0.24 × 0.15 × 0.10 mm
V = 532.38 (9) Å3

Data collection

Bruker SMART CCD area-detector diffractometer1858 independent reflections
Radiation source: fine-focus sealed tube1760 reflections with I > 2σ(I)
graphiteRint = 0.013
[var phi] and ω scansθmax = 25.0°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −6→9
Tmin = 0.424, Tmax = 0.672k = −10→10
2790 measured reflectionsl = −10→8

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.049H-atom parameters constrained
S = 1.09w = 1/[σ2(Fo2) + (0.0274P)2 + 0.3347P] where P = (Fo2 + 2Fc2)/3
1858 reflections(Δ/σ)max = 0.002
163 parametersΔρmax = 0.68 e Å3
0 restraintsΔρmin = −0.95 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ce10.33921 (2)0.58558 (2)1.32325 (2)0.01398 (8)
N10.1921 (4)0.7628 (4)1.5966 (4)0.0211 (6)
N20.1556 (4)1.0173 (4)1.9097 (4)0.0265 (7)
O10.3927 (3)0.5389 (3)1.5971 (3)0.0193 (5)
O20.4946 (3)0.6763 (4)1.8853 (3)0.0287 (6)
O30.5575 (3)0.8498 (3)1.5730 (3)0.0214 (5)
O40.6890 (3)1.1263 (3)1.6700 (3)0.0224 (5)
O50.2132 (3)0.4771 (4)0.9986 (3)0.0257 (6)
O6−0.0157 (3)0.4293 (4)0.7792 (3)0.0257 (6)
O70.5757 (3)0.6984 (3)1.2121 (3)0.0251 (6)
H7A0.65350.64011.18780.030*
H7B0.52550.70401.12050.030*
O80.2021 (3)0.2812 (3)1.2493 (3)0.0228 (5)
H8A0.17360.20011.14470.027*
H8B0.25660.24141.31260.027*
C10.3960 (4)0.6567 (4)1.7474 (5)0.0186 (7)
C20.2763 (4)0.7791 (4)1.7518 (5)0.0194 (7)
C30.2585 (5)0.9048 (5)1.9071 (5)0.0258 (8)
H30.31920.91142.01220.031*
C40.0669 (5)0.9965 (5)1.7544 (5)0.0273 (8)
H4−0.00921.06891.75020.033*
C50.0845 (5)0.8704 (5)1.5992 (5)0.0264 (8)
H50.01970.86031.49390.032*
C60.5713 (4)0.9932 (4)1.5705 (4)0.0159 (7)
C70.0567 (4)0.4734 (4)0.9350 (4)0.0187 (7)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ce10.01536 (12)0.01406 (12)0.01362 (12)0.00340 (8)0.00329 (8)0.00769 (9)
N10.0232 (16)0.0251 (16)0.0198 (16)0.0104 (13)0.0082 (12)0.0127 (13)
N20.0270 (17)0.0240 (16)0.0273 (18)0.0080 (13)0.0117 (14)0.0084 (14)
O10.0259 (13)0.0191 (12)0.0190 (13)0.0111 (10)0.0106 (10)0.0108 (10)
O20.0305 (15)0.0407 (16)0.0213 (14)0.0144 (12)0.0069 (11)0.0185 (12)
O30.0258 (13)0.0179 (12)0.0206 (13)0.0034 (10)0.0015 (10)0.0115 (10)
O40.0215 (13)0.0180 (12)0.0264 (14)0.0034 (10)0.0006 (11)0.0120 (11)
O50.0162 (13)0.0410 (16)0.0198 (13)0.0090 (11)0.0044 (10)0.0138 (12)
O60.0200 (13)0.0389 (15)0.0165 (13)0.0077 (11)0.0033 (10)0.0118 (12)
O70.0266 (14)0.0329 (15)0.0230 (14)0.0106 (11)0.0128 (11)0.0157 (12)
O80.0283 (14)0.0169 (12)0.0202 (13)0.0021 (10)0.0042 (11)0.0077 (11)
C10.0210 (18)0.0223 (18)0.0204 (19)0.0057 (14)0.0096 (14)0.0151 (15)
C20.0201 (18)0.0201 (17)0.0225 (18)0.0069 (14)0.0087 (14)0.0120 (15)
C30.026 (2)0.028 (2)0.0213 (19)0.0070 (16)0.0066 (15)0.0098 (16)
C40.030 (2)0.027 (2)0.032 (2)0.0126 (16)0.0133 (17)0.0166 (17)
C50.030 (2)0.032 (2)0.026 (2)0.0148 (17)0.0102 (16)0.0180 (17)
C60.0176 (17)0.0146 (17)0.0178 (17)0.0049 (13)0.0068 (14)0.0085 (14)
C70.0201 (18)0.0203 (18)0.0183 (18)0.0038 (14)0.0060 (15)0.0109 (15)

Geometric parameters (Å, °)

Ce1—O82.506 (2)O3—C61.254 (4)
Ce1—O4i2.521 (2)O4—C61.251 (4)
Ce1—O52.530 (2)O4—Ce1i2.521 (2)
Ce1—O32.538 (2)O5—C71.259 (4)
Ce1—O6ii2.540 (2)O6—C71.244 (4)
Ce1—O12.578 (2)O6—Ce1ii2.540 (2)
Ce1—O72.595 (3)O7—H7A0.8500
Ce1—O1iii2.614 (2)O7—H7B0.8500
Ce1—N12.815 (3)O8—H8A0.8500
Ce1—O2iii2.897 (3)O8—H8B0.8500
N1—C51.337 (5)C1—C21.502 (5)
N1—C21.337 (5)C2—C31.384 (5)
N2—C41.333 (5)C3—H30.9300
N2—C31.343 (5)C4—C51.385 (5)
O1—C11.273 (4)C4—H40.9300
O1—Ce1iii2.614 (2)C5—H50.9300
O2—C11.240 (4)C6—C6i1.564 (6)
O2—Ce1iii2.897 (3)C7—C7ii1.554 (7)
O8—Ce1—O4i149.92 (8)O7—Ce1—O2iii64.80 (8)
O8—Ce1—O582.87 (9)O1iii—Ce1—O2iii46.97 (7)
O4i—Ce1—O581.64 (8)N1—Ce1—O2iii157.52 (8)
O8—Ce1—O3139.44 (8)C5—N1—C2116.2 (3)
O4i—Ce1—O364.55 (7)C5—N1—Ce1126.2 (2)
O5—Ce1—O3136.12 (8)C2—N1—Ce1114.7 (2)
O8—Ce1—O6ii76.91 (9)C4—N2—C3116.2 (3)
O4i—Ce1—O6ii73.14 (8)C1—O1—Ce1122.9 (2)
O5—Ce1—O6ii63.80 (8)C1—O1—Ce1iii100.9 (2)
O3—Ce1—O6ii124.88 (8)Ce1—O1—Ce1iii119.65 (9)
O8—Ce1—O168.68 (8)C1—O2—Ce1iii88.3 (2)
O4i—Ce1—O1123.57 (8)C6—O3—Ce1119.4 (2)
O5—Ce1—O1151.55 (9)C6—O4—Ce1i120.1 (2)
O3—Ce1—O171.80 (8)C7—O5—Ce1121.5 (2)
O6ii—Ce1—O1107.92 (8)C7—O6—Ce1ii121.0 (2)
O8—Ce1—O7130.61 (8)Ce1—O7—H7A117.4
O4i—Ce1—O767.79 (8)Ce1—O7—H7B108.6
O5—Ce1—O772.58 (8)H7A—O7—H7B107.4
O3—Ce1—O769.25 (8)Ce1—O8—H8A120.9
O6ii—Ce1—O7124.39 (8)Ce1—O8—H8B114.4
O1—Ce1—O7126.31 (8)H8A—O8—H8B106.6
O8—Ce1—O1iii77.10 (8)O2—C1—O1123.3 (3)
O4i—Ce1—O1iii132.90 (8)O2—C1—C2120.1 (3)
O5—Ce1—O1iii114.25 (8)O1—C1—C2116.6 (3)
O3—Ce1—O1iii75.86 (7)N1—C2—C3122.0 (3)
O6ii—Ce1—O1iii153.96 (9)N1—C2—C1115.8 (3)
O1—Ce1—O1iii60.35 (9)C3—C2—C1122.2 (3)
O7—Ce1—O1iii75.23 (8)N2—C3—C2121.6 (4)
O8—Ce1—N197.71 (9)N2—C3—H3119.2
O4i—Ce1—N172.66 (9)C2—C3—H3119.2
O5—Ce1—N1128.42 (8)N2—C4—C5122.1 (3)
O3—Ce1—N168.56 (9)N2—C4—H4119.0
O6ii—Ce1—N166.20 (8)C5—C4—H4119.0
O1—Ce1—N158.85 (8)N1—C5—C4121.8 (3)
O7—Ce1—N1131.17 (9)N1—C5—H5119.1
O1iii—Ce1—N1116.07 (8)C4—C5—H5119.1
O8—Ce1—O2iii66.33 (8)O4—C6—O3126.0 (3)
O4i—Ce1—O2iii129.05 (8)O4—C6—C6i117.0 (3)
O5—Ce1—O2iii67.54 (8)O3—C6—C6i117.0 (4)
O3—Ce1—O2iii112.59 (8)O6—C7—O5126.5 (3)
O6ii—Ce1—O2iii121.33 (8)O6—C7—C7ii117.4 (4)
O1—Ce1—O2iii99.44 (7)O5—C7—C7ii116.1 (4)
O8—Ce1—N1—C5−117.5 (3)O1iii—Ce1—O3—C6142.2 (3)
O4i—Ce1—N1—C533.2 (3)N1—Ce1—O3—C6−91.9 (2)
O5—Ce1—N1—C5−30.5 (4)O2iii—Ce1—O3—C6112.3 (2)
O3—Ce1—N1—C5102.1 (3)O8—Ce1—O5—C782.8 (3)
O6ii—Ce1—N1—C5−45.6 (3)O4i—Ce1—O5—C7−71.3 (3)
O1—Ce1—N1—C5−176.8 (3)O3—Ce1—O5—C7−110.1 (3)
O7—Ce1—N1—C570.2 (3)O6ii—Ce1—O5—C73.9 (3)
O1iii—Ce1—N1—C5163.1 (3)O1—Ce1—O5—C783.1 (3)
O2iii—Ce1—N1—C5−160.4 (3)O7—Ce1—O5—C7−140.6 (3)
O8—Ce1—N1—C282.8 (3)O1iii—Ce1—O5—C7155.2 (3)
O4i—Ce1—N1—C2−126.4 (3)N1—Ce1—O5—C7−11.4 (3)
O5—Ce1—N1—C2169.8 (2)O2iii—Ce1—O5—C7150.1 (3)
O3—Ce1—N1—C2−57.6 (2)Ce1iii—O2—C1—O16.9 (3)
O6ii—Ce1—N1—C2154.8 (3)Ce1iii—O2—C1—C2−171.1 (3)
O1—Ce1—N1—C223.5 (2)Ce1—O1—C1—O2−144.3 (3)
O7—Ce1—N1—C2−89.5 (3)Ce1iii—O1—C1—O2−7.8 (4)
O1iii—Ce1—N1—C23.4 (3)Ce1—O1—C1—C233.8 (4)
O2iii—Ce1—N1—C239.9 (4)Ce1iii—O1—C1—C2170.3 (3)
O8—Ce1—O1—C1−144.1 (3)C5—N1—C2—C3−2.5 (5)
O4i—Ce1—O1—C14.7 (3)Ce1—N1—C2—C3159.3 (3)
O5—Ce1—O1—C1−144.4 (2)C5—N1—C2—C1179.6 (3)
O3—Ce1—O1—C145.2 (2)Ce1—N1—C2—C1−18.6 (4)
O6ii—Ce1—O1—C1−76.6 (3)O2—C1—C2—N1171.3 (3)
O7—Ce1—O1—C190.4 (3)O1—C1—C2—N1−6.8 (5)
O1iii—Ce1—O1—C1129.0 (3)O2—C1—C2—C3−6.6 (5)
N1—Ce1—O1—C1−30.3 (2)O1—C1—C2—C3175.3 (3)
O2iii—Ce1—O1—C1156.0 (3)C4—N2—C3—C22.5 (6)
O8—Ce1—O1—Ce1iii86.94 (11)N1—C2—C3—N2−0.1 (6)
O4i—Ce1—O1—Ce1iii−124.21 (10)C1—C2—C3—N2177.7 (3)
O5—Ce1—O1—Ce1iii86.64 (18)C3—N2—C4—C5−2.4 (6)
O3—Ce1—O1—Ce1iii−83.76 (11)C2—N1—C5—C42.6 (6)
O6ii—Ce1—O1—Ce1iii154.49 (10)Ce1—N1—C5—C4−156.8 (3)
O7—Ce1—O1—Ce1iii−38.53 (14)N2—C4—C5—N1−0.2 (6)
O1iii—Ce1—O1—Ce1iii0.0Ce1i—O4—C6—O3−168.9 (3)
N1—Ce1—O1—Ce1iii−159.23 (14)Ce1i—O4—C6—C6i11.3 (5)
O2iii—Ce1—O1—Ce1iii27.05 (11)Ce1—O3—C6—O4−169.0 (3)
O8—Ce1—O3—C6−168.2 (2)Ce1—O3—C6—C6i10.8 (5)
O4i—Ce1—O3—C6−11.6 (2)Ce1ii—O6—C7—O5176.2 (3)
O5—Ce1—O3—C631.8 (3)Ce1ii—O6—C7—C7ii−2.7 (5)
O6ii—Ce1—O3—C6−55.2 (3)Ce1—O5—C7—O6176.9 (3)
O1—Ce1—O3—C6−154.8 (3)Ce1—O5—C7—C7ii−4.2 (5)
O7—Ce1—O3—C662.9 (2)

Symmetry codes: (i) −x+1, −y+2, −z+3; (ii) −x, −y+1, −z+2; (iii) −x+1, −y+1, −z+3.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O7—H7A···O5iv0.852.102.836 (4)145.
O7—H7B···O2v0.851.942.738 (4)156.
O8—H8A···N2vi0.851.962.799 (4)169.
O8—H8B···O3iii0.852.052.873 (3)163.

Symmetry codes: (iv) −x+1, −y+1, −z+2; (v) x, y, z−1; (vi) x, y−1, z−1; (iii) −x+1, −y+1, −z+3.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2687).

References

  • Bruker. (1996). SMART and SAINT Bruker AXS inc., Madison, Wisconsin, USA.
  • Eliseeva, S. V., Mirzov, O. V., Troyanov, S. I., Vitukhnovsky, A. G. & Kuzmina, N. P. (2004). J. Alloys Compd, 374, 293–297.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, X. F., Lv, Y., Okamura, T., Kawaguchi, H., Wu, G. Y. & Ueyama, N. (2007). Cryst. Growth Des.7, 1125–1133.
  • Zheng, X. J., Jin, L. P. & Lu, S. Z. (2002). Eur. J. Inorg. Chem. pp. 3356–3363.
  • Zou, J. Z., Xu, Z., Chen, W., Lo, K. M. & You, X. Z. (1999). Polyhedron, 18, 1507–1512.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography