PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 October 1; 64(Pt 10): o2016.
Published online 2008 September 27. doi:  10.1107/S160053680803047X
PMCID: PMC2959292

(2-Amino­phen­yl)methyl­diphenyl­phospho­nium iodide

Abstract

The asymmetric unit of the title compound, C19H19NP+·I, contains two tetra­alkyl­phospho­nium cations and two I anions. The P atoms are four-coordinated in distorted tetra­hedral configurations by three phenyl and one methyl C atoms. There are weak intra- and inter­molecular N—H(...)I contacts.

Related literature

For general background, see: Speiser et al. (2005 [triangle]); Cooper & Downes (1981 [triangle]); Organ et al. (1984 [triangle]); Wang & Jin (2005 [triangle]). For related structures, see: Cooper et al. (1992 [triangle]); Li et al. (2007 [triangle]); Zhang et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2016-scheme1.jpg

Experimental

Crystal data

  • C19H19NP+·I
  • M r = 419.22
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2016-efi1.jpg
  • a = 13.215 (4) Å
  • b = 17.854 (4) Å
  • c = 15.325 (6) Å
  • β = 93.385 (14)°
  • V = 3610 (2) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 1.86 mm−1
  • T = 298 (2) K
  • 0.50 × 0.40 × 0.40 mm

Data collection

  • Rigaku Weissenberg IP diffractometer
  • Absorption correction: multi-scan (TEXSAN; Molecular Structure Corporation, 1998 [triangle]) T min = 0.420, T max = 0.475
  • 32748 measured reflections
  • 8154 independent reflections
  • 6307 reflections with I > 2σ(I)
  • R int = 0.042

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030
  • wR(F 2) = 0.071
  • S = 1.03
  • 8154 reflections
  • 399 parameters
  • H-atom parameters constrained
  • Δρmax = 0.70 e Å−3
  • Δρmin = −0.66 e Å−3

Data collection: TEXSAN (Molecular Structure Corporation, 1998 [triangle]); cell refinement: TEXSAN; data reduction: TEXSAN; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]) and PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680803047X/hk2515sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680803047X/hk2515Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are grateful for financial support from the Ministry of Education of China (grant No. 208066), the Natural Science Foundation of Fujian Province of China (grant Nos. 2007 J0216, U0750004), the Education Department of Fujian Province of China (grant No. JA07029) and the State Key Laboratory of Structural Chemistry (grant No. 20080053).

supplementary crystallographic information

Comment

The hybrid bidentate phosphine 2-aminophenyldiphenylphosphine was shown to be both a versatile ligand (Cooper et al., 1992; Li et al., 2007; Speiser et al., 2005), forming amino and amido (deprotonated amino) complexes with the later transition metals (Cooper & Downes, 1981; Organ et al., 1984; Wang & Jin, 2005; Zhang et al., 2007), and a useful precursor to novel polydenate and macrocyclic ligands (Cooper et al., 1992). During the reaction between 2-aminophenyldiphenylphosphine and 2-benzoyl-N-methylimidazole to prepare imine complexes, the title compound was obtained unexpectedly, and we report herein its crystal structure.

The asymmetric unit of the title compound (Fig. 1) contains two tetraalkylphosphonium cations and two I- anions. The P atoms are four-coordinated in distorted tetrahedral configurations (Table 1) by three phenyl and one methyl C atoms. There is a weak intramolecular N—H···I contact (Table 2).

In the crystal structure, the weak intermolecular N—H···I contacts (Table 2 and Fig. 2) may be effective in the stabilization of the structure.

Experimental

The title compound was obtained unexpectedly by the following procedure: 2-aminophenyltriphenylphosphium (8.9 mmol) and 2-benzoyl-N-methylimidazole (8.9 mmol) were dissolved in dry methanol (30 ml) contained in a two necked round bottom flask (50 ml), an oil bubber connected to a nitrogen source, and a magnetic stir bar. A few drops of acetic acid was added. After refluxing for 8 h, solvent removal left a viscous oil. The oil was dissolved in ethanol. The resulting yellow single crystals suitable for X-ray analysis were collected by filtration.

Refinement

H atoms were positioned geometrically, with N—H = 0.86Å (for NH2) and C—H = 0.93 and 0.96Å for aromatic and methyl H atoms, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Figures

Fig. 1.
The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
A partial packing diagram of the title compound.

Crystal data

C19H19NP+·IF(000) = 1664
Mr = 419.22Dx = 1.543 Mg m3Dm = no Mg m3Dm measured by not measured
Monoclinic, P21/nMelting point: no K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 13.215 (4) ÅCell parameters from 8154 reflections
b = 17.854 (4) Åθ = 3.0–27.5°
c = 15.325 (6) ŵ = 1.86 mm1
β = 93.385 (14)°T = 298 K
V = 3610 (2) Å3Block, yellow
Z = 80.50 × 0.40 × 0.40 mm

Data collection

Rigaku Weissenberg IP diffractometer8154 independent reflections
Radiation source: fine-focus sealed tube6307 reflections with I > 2σ(I)
graphiteRint = 0.042
Detector resolution: no pixels mm-1θmax = 27.5°, θmin = 3.0°
scintillation counter scansh = −17→17
Absorption correction: multi-scan (TEXSAN; Molecular Structure Corporation, 1998)k = −22→23
Tmin = 0.420, Tmax = 0.475l = −19→19
32748 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071H-atom parameters constrained
S = 1.03w = 1/[σ2(Fo2) + (0.031P)2] where P = (Fo2 + 2Fc2)/3
8154 reflections(Δ/σ)max = 0.001
399 parametersΔρmax = 0.70 e Å3
0 restraintsΔρmin = −0.66 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
I10.275253 (16)−0.173440 (9)0.146444 (14)0.06249 (7)
I20.246225 (14)0.039910 (9)0.389305 (12)0.05489 (6)
P10.21547 (4)−0.23074 (3)0.46752 (4)0.03795 (13)
P20.34957 (4)−0.41826 (3)0.81596 (4)0.04135 (14)
N10.2607 (2)−0.33502 (12)0.30937 (18)0.0668 (7)
H1A0.2768−0.36200.26580.080*
H1B0.2769−0.28840.31150.080*
N20.30679 (19)−0.30209 (13)0.96039 (17)0.0629 (6)
H2B0.2868−0.34790.96140.076*
H2C0.2939−0.27231.00240.076*
C10.16106 (17)−0.20039 (12)0.56607 (16)0.0413 (5)
C20.0564 (2)−0.19164 (16)0.5673 (2)0.0602 (8)
H2A0.0159−0.19860.51630.072*
C30.0128 (2)−0.17288 (16)0.6432 (2)0.0692 (9)
H3A−0.0571−0.16710.64350.083*
C40.0720 (3)−0.16268 (16)0.7185 (2)0.0676 (8)
H4A0.0422−0.15070.77010.081*
C50.1752 (3)−0.17011 (15)0.7179 (2)0.0611 (7)
H5A0.2153−0.16270.76910.073*
C60.2199 (2)−0.18849 (12)0.64174 (18)0.0471 (6)
H6A0.2900−0.19290.64160.056*
C70.34992 (17)−0.22050 (12)0.48204 (16)0.0417 (5)
C80.3946 (2)−0.15029 (15)0.4743 (2)0.0574 (7)
H8A0.3558−0.10970.45410.069*
C90.4958 (2)−0.14136 (17)0.4966 (2)0.0677 (8)
H9A0.5257−0.09450.49240.081*
C100.5530 (2)−0.20159 (19)0.5252 (2)0.0661 (8)
H10A0.6216−0.19510.54060.079*
C110.5107 (2)−0.27100 (17)0.5314 (2)0.0667 (8)
H11A0.5506−0.31150.55010.080*
C120.40877 (19)−0.28112 (14)0.5101 (2)0.0555 (7)
H12A0.3797−0.32830.51440.067*
C130.18399 (17)−0.32710 (11)0.45066 (16)0.0399 (5)
C140.13475 (19)−0.36486 (13)0.51540 (18)0.0474 (6)
H14A0.1178−0.33910.56520.057*
C150.1108 (2)−0.43940 (14)0.5070 (2)0.0559 (7)
H15A0.0775−0.46390.55060.067*
C160.1366 (2)−0.47742 (14)0.4334 (2)0.0570 (7)
H16A0.1208−0.52800.42770.068*
C170.18451 (19)−0.44243 (13)0.3692 (2)0.0515 (6)
H17A0.2011−0.46960.32030.062*
C180.20976 (18)−0.36601 (13)0.37475 (17)0.0456 (6)
C190.38306 (17)−0.32116 (12)0.82121 (17)0.0429 (5)
C200.43743 (19)−0.28979 (15)0.75442 (18)0.0503 (6)
H20A0.4531−0.31910.70690.060*
C210.4678 (2)−0.21594 (16)0.7585 (2)0.0596 (7)
H21A0.5032−0.19530.71370.071*
C220.4457 (2)−0.17343 (16)0.8287 (2)0.0629 (8)
H22A0.4676−0.12400.83180.076*
C230.3919 (2)−0.20197 (15)0.8946 (2)0.0587 (7)
H23A0.3772−0.17140.94130.070*
C240.35822 (18)−0.27696 (13)0.89301 (18)0.0484 (6)
C250.39532 (19)−0.46171 (13)0.72040 (17)0.0470 (6)
C260.4990 (2)−0.47327 (17)0.7155 (2)0.0623 (7)
H26A0.5445−0.45410.75850.075*
C270.5336 (3)−0.5131 (2)0.6468 (3)0.0788 (10)
H27A0.6028−0.52030.64270.095*
C280.4667 (3)−0.54243 (18)0.5843 (2)0.0809 (10)
H28A0.4910−0.57060.53890.097*
C290.3650 (3)−0.53088 (19)0.5878 (2)0.0769 (9)
H29A0.3202−0.55070.54470.092*
C300.3288 (2)−0.48961 (16)0.65574 (19)0.0590 (7)
H30A0.2596−0.48070.65780.071*
C310.21474 (18)−0.42786 (12)0.81176 (16)0.0421 (5)
C320.1681 (2)−0.49125 (14)0.8414 (2)0.0582 (7)
H32A0.2064−0.52840.87030.070*
C330.0645 (2)−0.49951 (17)0.8283 (2)0.0694 (8)
H33A0.0333−0.54270.84750.083*
C340.0070 (2)−0.44431 (18)0.7870 (2)0.0650 (8)
H34A−0.0627−0.45030.77820.078*
C350.0522 (2)−0.38083 (17)0.7588 (2)0.0637 (8)
H35A0.0131−0.34350.73130.076*
C360.15576 (19)−0.37169 (15)0.7709 (2)0.0543 (7)
H36A0.1862−0.32820.75190.065*
C370.1658 (2)−0.17182 (13)0.38091 (19)0.0541 (7)
H37A0.1934−0.18670.32700.081*
H37B0.1839−0.12070.39350.081*
H37C0.0933−0.17630.37570.081*
C380.4077 (2)−0.46872 (15)0.90723 (18)0.0568 (7)
H38A0.3858−0.44780.96070.085*
H38B0.4801−0.46480.90640.085*
H38C0.3881−0.52050.90330.085*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
I10.06953 (13)0.05555 (10)0.06229 (14)−0.01435 (9)0.00288 (9)−0.00578 (8)
I20.06649 (12)0.04646 (9)0.05246 (12)0.00345 (8)0.00974 (8)−0.00069 (7)
P10.0329 (3)0.0367 (3)0.0434 (4)−0.0001 (2)−0.0050 (2)−0.0038 (2)
P20.0374 (3)0.0479 (3)0.0388 (4)0.0053 (3)0.0025 (2)0.0052 (2)
N10.0872 (18)0.0564 (12)0.0591 (17)−0.0070 (12)0.0244 (13)−0.0138 (11)
N20.0675 (15)0.0593 (12)0.0638 (17)−0.0099 (12)0.0195 (12)−0.0092 (11)
C10.0361 (11)0.0373 (10)0.0499 (15)−0.0006 (10)−0.0013 (10)−0.0056 (9)
C20.0374 (13)0.0737 (17)0.069 (2)0.0038 (13)−0.0052 (13)−0.0219 (14)
C30.0462 (15)0.0749 (18)0.088 (3)0.0090 (14)0.0137 (16)−0.0209 (16)
C40.078 (2)0.0615 (16)0.065 (2)0.0071 (16)0.0250 (17)−0.0126 (14)
C50.076 (2)0.0607 (15)0.0457 (17)0.0054 (14)−0.0034 (14)−0.0122 (12)
C60.0444 (13)0.0442 (12)0.0517 (17)0.0042 (11)−0.0056 (11)−0.0036 (10)
C70.0346 (11)0.0467 (11)0.0435 (14)−0.0018 (10)0.0008 (10)−0.0023 (9)
C80.0474 (14)0.0558 (14)0.068 (2)−0.0087 (13)−0.0006 (13)0.0111 (13)
C90.0540 (16)0.0747 (19)0.075 (2)−0.0247 (16)0.0072 (15)0.0050 (15)
C100.0337 (12)0.094 (2)0.070 (2)−0.0050 (15)0.0034 (13)−0.0072 (17)
C110.0416 (14)0.0733 (18)0.084 (2)0.0136 (14)−0.0080 (14)−0.0139 (15)
C120.0400 (13)0.0503 (13)0.075 (2)0.0041 (11)−0.0053 (13)−0.0077 (12)
C130.0356 (11)0.0383 (10)0.0453 (14)−0.0005 (9)−0.0036 (10)−0.0058 (9)
C140.0469 (13)0.0463 (12)0.0490 (16)−0.0050 (11)0.0035 (11)−0.0042 (10)
C150.0534 (15)0.0488 (13)0.066 (2)−0.0086 (12)0.0069 (13)0.0023 (12)
C160.0489 (14)0.0421 (12)0.080 (2)−0.0055 (12)0.0009 (14)−0.0082 (12)
C170.0431 (13)0.0463 (12)0.0649 (19)0.0016 (11)0.0016 (12)−0.0159 (11)
C180.0394 (12)0.0482 (12)0.0491 (16)0.0002 (10)0.0021 (11)−0.0070 (10)
C190.0329 (11)0.0505 (12)0.0445 (15)−0.0007 (10)−0.0035 (10)0.0040 (10)
C200.0449 (13)0.0605 (14)0.0449 (16)0.0013 (12)−0.0026 (11)0.0120 (11)
C210.0510 (15)0.0682 (16)0.0584 (19)−0.0098 (14)−0.0054 (13)0.0220 (14)
C220.0557 (16)0.0597 (15)0.071 (2)−0.0132 (13)−0.0152 (15)0.0127 (14)
C230.0549 (15)0.0541 (14)0.065 (2)−0.0018 (13)−0.0098 (14)−0.0042 (13)
C240.0390 (12)0.0532 (13)0.0522 (17)−0.0007 (11)−0.0032 (11)0.0012 (11)
C250.0475 (13)0.0523 (12)0.0418 (15)0.0085 (11)0.0080 (11)0.0064 (10)
C260.0478 (15)0.0783 (18)0.062 (2)0.0108 (14)0.0118 (13)0.0048 (14)
C270.069 (2)0.094 (2)0.076 (3)0.0229 (19)0.0317 (19)0.0120 (19)
C280.112 (3)0.076 (2)0.059 (2)0.024 (2)0.037 (2)0.0026 (16)
C290.099 (3)0.088 (2)0.0444 (19)0.006 (2)0.0065 (17)−0.0067 (15)
C300.0576 (16)0.0761 (17)0.0433 (17)0.0080 (14)0.0033 (13)0.0010 (13)
C310.0402 (12)0.0436 (11)0.0432 (15)0.0006 (10)0.0093 (10)−0.0015 (9)
C320.0593 (16)0.0474 (13)0.069 (2)−0.0003 (13)0.0111 (14)0.0024 (12)
C330.0682 (19)0.0611 (16)0.081 (2)−0.0247 (16)0.0187 (17)−0.0029 (15)
C340.0441 (14)0.086 (2)0.066 (2)−0.0122 (15)0.0065 (14)−0.0136 (15)
C350.0416 (14)0.0784 (18)0.070 (2)0.0025 (14)−0.0012 (13)0.0112 (15)
C360.0400 (13)0.0558 (14)0.0669 (19)−0.0021 (11)0.0005 (12)0.0163 (12)
C370.0595 (16)0.0490 (13)0.0519 (17)0.0025 (12)−0.0116 (13)0.0024 (11)
C380.0585 (16)0.0671 (15)0.0443 (16)0.0171 (13)−0.0013 (12)0.0104 (12)

Geometric parameters (Å, °)

P1—C131.785 (2)C16—C171.355 (4)
P1—C71.787 (2)C16—H16A0.9300
P1—C371.788 (3)C17—C181.406 (3)
P1—C11.794 (3)C17—H17A0.9300
P2—C311.787 (2)C19—C201.402 (4)
P2—C191.790 (2)C19—C241.409 (4)
P2—C251.793 (3)C20—C211.379 (4)
P2—C381.797 (3)C20—H20A0.9300
N1—C181.358 (4)C21—C221.362 (5)
N1—H1A0.8600C21—H21A0.9300
N1—H1B0.8600C22—C231.368 (5)
N2—C241.346 (4)C22—H22A0.9300
N2—H2B0.8600C23—C241.411 (4)
N2—H2C0.8600C23—H23A0.9300
C1—C61.374 (3)C25—C301.378 (4)
C1—C21.393 (3)C25—C261.392 (4)
C2—C31.369 (5)C26—C271.371 (5)
C2—H2A0.9300C26—H26A0.9300
C3—C41.367 (5)C27—C281.368 (5)
C3—H3A0.9300C27—H27A0.9300
C4—C51.371 (4)C28—C291.364 (5)
C4—H4A0.9300C28—H28A0.9300
C5—C61.378 (4)C29—C301.384 (4)
C5—H5A0.9300C29—H29A0.9300
C6—H6A0.9300C30—H30A0.9300
C7—C121.386 (3)C31—C321.379 (3)
C7—C81.393 (3)C31—C361.395 (3)
C8—C91.370 (4)C32—C331.380 (4)
C8—H8A0.9300C32—H32A0.9300
C9—C101.372 (4)C33—C341.376 (4)
C9—H9A0.9300C33—H33A0.9300
C10—C111.365 (4)C34—C351.363 (4)
C10—H10A0.9300C34—H34A0.9300
C11—C121.379 (4)C35—C361.379 (4)
C11—H11A0.9300C35—H35A0.9300
C12—H12A0.9300C36—H36A0.9300
C13—C141.392 (4)C37—H37A0.9600
C13—C181.414 (3)C37—H37B0.9600
C14—C151.372 (3)C37—H37C0.9600
C14—H14A0.9300C38—H38A0.9600
C15—C161.377 (4)C38—H38B0.9600
C15—H15A0.9300C38—H38C0.9600
C13—P1—C7109.76 (10)N1—C18—C17118.5 (2)
C13—P1—C37112.79 (11)N1—C18—C13124.1 (2)
C7—P1—C37110.56 (13)C17—C18—C13117.3 (2)
C13—P1—C1108.14 (12)C20—C19—C24120.0 (2)
C7—P1—C1108.01 (11)C20—C19—P2119.4 (2)
C37—P1—C1107.41 (13)C24—C19—P2120.6 (2)
C31—P2—C19109.75 (10)C21—C20—C19120.6 (3)
C31—P2—C25108.21 (12)C21—C20—H20A119.7
C19—P2—C25111.18 (12)C19—C20—H20A119.7
C31—P2—C38111.04 (13)C22—C21—C20119.6 (3)
C19—P2—C38110.94 (12)C22—C21—H21A120.2
C25—P2—C38105.63 (13)C20—C21—H21A120.2
C18—N1—H1A120.0C21—C22—C23121.4 (3)
C18—N1—H1B120.0C21—C22—H22A119.3
H1A—N1—H1B120.0C23—C22—H22A119.3
C24—N2—H2B120.0C22—C23—C24121.2 (3)
C24—N2—H2C120.0C22—C23—H23A119.4
H2B—N2—H2C120.0C24—C23—H23A119.4
C6—C1—C2118.9 (2)N2—C24—C19124.3 (2)
C6—C1—P1121.49 (19)N2—C24—C23118.4 (3)
C2—C1—P1119.55 (19)C19—C24—C23117.2 (3)
C3—C2—C1120.5 (3)C30—C25—C26119.7 (3)
C3—C2—H2A119.8C30—C25—P2120.8 (2)
C1—C2—H2A119.8C26—C25—P2119.2 (2)
C4—C3—C2120.1 (3)C27—C26—C25119.4 (3)
C4—C3—H3A120.0C27—C26—H26A120.3
C2—C3—H3A120.0C25—C26—H26A120.3
C3—C4—C5120.1 (3)C28—C27—C26120.4 (3)
C3—C4—H4A120.0C28—C27—H27A119.8
C5—C4—H4A120.0C26—C27—H27A119.8
C4—C5—C6120.3 (3)C29—C28—C27120.8 (3)
C4—C5—H5A119.9C29—C28—H28A119.6
C6—C5—H5A119.9C27—C28—H28A119.6
C1—C6—C5120.2 (3)C28—C29—C30119.7 (3)
C1—C6—H6A119.9C28—C29—H29A120.2
C5—C6—H6A119.9C30—C29—H29A120.2
C12—C7—C8119.7 (2)C25—C30—C29120.0 (3)
C12—C7—P1119.62 (18)C25—C30—H30A120.0
C8—C7—P1120.29 (18)C29—C30—H30A120.0
C9—C8—C7119.7 (3)C32—C31—C36119.3 (2)
C9—C8—H8A120.2C32—C31—P2122.06 (19)
C7—C8—H8A120.2C36—C31—P2118.45 (18)
C8—C9—C10120.0 (3)C31—C32—C33119.9 (3)
C8—C9—H9A120.0C31—C32—H32A120.1
C10—C9—H9A120.0C33—C32—H32A120.1
C11—C10—C9120.9 (2)C34—C33—C32120.5 (3)
C11—C10—H10A119.6C34—C33—H33A119.8
C9—C10—H10A119.6C32—C33—H33A119.8
C10—C11—C12120.1 (3)C35—C34—C33120.1 (3)
C10—C11—H11A120.0C35—C34—H34A120.0
C12—C11—H11A120.0C33—C34—H34A120.0
C11—C12—C7119.6 (2)C34—C35—C36120.4 (3)
C11—C12—H12A120.2C34—C35—H35A119.8
C7—C12—H12A120.2C36—C35—H35A119.8
C14—C13—C18119.6 (2)C35—C36—C31119.9 (2)
C14—C13—P1118.57 (18)C35—C36—H36A120.1
C18—C13—P1121.82 (19)C31—C36—H36A120.1
C15—C14—C13121.2 (2)P1—C37—H37A109.5
C15—C14—H14A119.4P1—C37—H37B109.5
C13—C14—H14A119.4H37A—C37—H37B109.5
C14—C15—C16119.2 (3)P1—C37—H37C109.5
C14—C15—H15A120.4H37A—C37—H37C109.5
C16—C15—H15A120.4H37B—C37—H37C109.5
C17—C16—C15121.2 (2)P2—C38—H38A109.5
C17—C16—H16A119.4P2—C38—H38B109.5
C15—C16—H16A119.4H38A—C38—H38B109.5
C16—C17—C18121.5 (3)P2—C38—H38C109.5
C16—C17—H17A119.2H38A—C38—H38C109.5
C18—C17—H17A119.2H38B—C38—H38C109.5
C13—P1—C1—C6106.0 (2)C31—P2—C19—C20−119.13 (19)
C7—P1—C1—C6−12.7 (2)C25—P2—C19—C200.6 (2)
C37—P1—C1—C6−132.0 (2)C38—P2—C19—C20117.8 (2)
C13—P1—C1—C2−71.2 (2)C31—P2—C19—C2463.0 (2)
C7—P1—C1—C2170.1 (2)C25—P2—C19—C24−177.35 (18)
C37—P1—C1—C250.8 (2)C38—P2—C19—C24−60.1 (2)
C6—C1—C2—C3−1.2 (4)C24—C19—C20—C210.6 (3)
P1—C1—C2—C3176.1 (2)P2—C19—C20—C21−177.34 (19)
C1—C2—C3—C4−0.1 (5)C19—C20—C21—C220.7 (4)
C2—C3—C4—C51.0 (5)C20—C21—C22—C23−1.4 (4)
C3—C4—C5—C6−0.6 (4)C21—C22—C23—C240.8 (4)
C2—C1—C6—C51.6 (4)C20—C19—C24—N2−179.7 (2)
P1—C1—C6—C5−175.60 (19)P2—C19—C24—N2−1.8 (3)
C4—C5—C6—C1−0.8 (4)C20—C19—C24—C23−1.2 (3)
C13—P1—C7—C12−23.0 (3)P2—C19—C24—C23176.74 (18)
C37—P1—C7—C12−148.0 (2)C22—C23—C24—N2179.1 (2)
C1—P1—C7—C1294.7 (2)C22—C23—C24—C190.5 (4)
C13—P1—C7—C8163.8 (2)C31—P2—C25—C305.3 (2)
C37—P1—C7—C838.7 (3)C19—P2—C25—C30−115.3 (2)
C1—P1—C7—C8−78.5 (2)C38—P2—C25—C30124.2 (2)
C12—C7—C8—C9−1.7 (4)C31—P2—C25—C26−168.9 (2)
P1—C7—C8—C9171.5 (3)C19—P2—C25—C2670.5 (2)
C7—C8—C9—C100.9 (5)C38—P2—C25—C26−50.0 (2)
C8—C9—C10—C110.4 (5)C30—C25—C26—C27−0.8 (4)
C9—C10—C11—C12−0.9 (5)P2—C25—C26—C27173.4 (2)
C10—C11—C12—C70.2 (5)C25—C26—C27—C28−1.1 (5)
C8—C7—C12—C111.1 (4)C26—C27—C28—C291.8 (5)
P1—C7—C12—C11−172.1 (2)C27—C28—C29—C30−0.6 (5)
C7—P1—C13—C14111.5 (2)C26—C25—C30—C292.0 (4)
C37—P1—C13—C14−124.8 (2)P2—C25—C30—C29−172.2 (2)
C1—P1—C13—C14−6.2 (2)C28—C29—C30—C25−1.3 (5)
C7—P1—C13—C18−67.1 (2)C19—P2—C31—C32−153.7 (2)
C37—P1—C13—C1856.7 (2)C25—P2—C31—C3284.8 (2)
C1—P1—C13—C18175.32 (18)C38—P2—C31—C32−30.7 (3)
C18—C13—C14—C150.1 (4)C19—P2—C31—C3631.3 (3)
P1—C13—C14—C15−178.4 (2)C25—P2—C31—C36−90.1 (2)
C13—C14—C15—C160.4 (4)C38—P2—C31—C36154.4 (2)
C14—C15—C16—C17−0.4 (4)C36—C31—C32—C331.9 (4)
C15—C16—C17—C18−0.1 (4)P2—C31—C32—C33−173.0 (2)
C16—C17—C18—N1177.9 (3)C31—C32—C33—C34−1.1 (5)
C16—C17—C18—C130.6 (4)C32—C33—C34—C35−0.1 (5)
C14—C13—C18—N1−177.7 (2)C33—C34—C35—C360.5 (5)
P1—C13—C18—N10.8 (3)C34—C35—C36—C310.3 (5)
C14—C13—C18—C17−0.6 (3)C32—C31—C36—C35−1.5 (4)
P1—C13—C18—C17177.91 (17)P2—C31—C36—C35173.6 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···I2i0.862.953.773 (3)160.
N2—H2C···I10.862.853.704 (3)174.

Symmetry codes: (i) x−1/2, −y−1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2515).

References

  • Cooper, M. K. & Downes, J. M. (1981). J. Chem. Soc. Chem. Commun. pp. 381–382.
  • Cooper, M. K., Downes, J. M., Duckworth, P. A. & Tiekink, E. R. T. (1992). Aust. J. Chem.45, 595–609.
  • Li, A., Chen, J., Li, Z., Zhang, W. & Zhu, M. (2007). Acta Cryst. E63, o4020.
  • Molecular Structure Corporation (1998). TEXSAN MSC, The Woodlands, Texas, USA.
  • Organ, G. J., Cooper, M. K., Henrick, K. & McPartlin, M. (1984). J. Chem. Soc. Dalton Trans. pp. 2377–2382.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Speiser, F., Braustein, P. & Saussine, L. (2005). Acc. Chem. Res.38, 784–793. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Wang, H. Y. & Jin, G. X. (2005). Eur. J. Inorg. Chem. pp. 1665–1670.
  • Zhang, W.-J., Chen, J.-X., Li, Z.-S., Li, A.-K. & Lin, X.-R. (2007). Acta Cryst. E63, o4016.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography