PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 October 1; 64(Pt 10): m1229.
Published online 2008 September 6. doi:  10.1107/S1600536808025439
PMCID: PMC2959291

catena-Poly[[[triaqua­copper(II)]-μ-pyridine-2,3-dicarboxyl­ato-κ3 N,O 2:O 3] monohydrate]

Abstract

In the title compound, {[Cu(C7H3NO4)(H2O)3]·H2O}n, the CuII ion is bonded to three water mol­ecules, one N,O-bidentate pyridine-2,3-dicarboxyl­ate dianion and one O-bonded symmetry-generated dianion, resulting in a distorted CuNO5 octa­hedral geometry. The bridging ligand results in an infinite chain. A network of O—H(...)O hydrogen bonds helps to establish the crystal structure.

Related literature

For background, see: Serre et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1229-scheme1.jpg

Experimental

Crystal data

  • [Cu(C7H3NO4)(H2O)3]·H2O
  • M r = 300.71
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1229-efi3.jpg
  • a = 8.513 (3) Å
  • b = 17.983 (3) Å
  • c = 7.493 (3) Å
  • β = 114.486 (10)°
  • V = 1043.9 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 2.13 mm−1
  • T = 296 (2) K
  • 0.40 × 0.28 × 0.22 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2004 [triangle]) T min = 0.484, T max = 0.652
  • 2686 measured reflections
  • 1322 independent reflections
  • 1310 reflections with I > 2σ(I)
  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030
  • wR(F 2) = 0.089
  • S = 1.00
  • 1322 reflections
  • 180 parameters
  • 14 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.61 e Å−3
  • Δρmin = −0.60 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 290 Friedel pairs
  • Flack parameter: 0.05 (3)

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT-Plus (Bruker, 2004 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808025439/hb2747sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808025439/hb2747Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work is supported by the Natural Science Foundation of Shandong Province (grant Nos. Y2007D39).

supplementary crystallographic information

Comment

In recent years, carboxylic acids have been widely used as polydentate ligands, which can coordinate to transition or rare earth ions yielding complexes with interesting properties in biological systems (e.g. Serre et al., 2005). Herein, we report the synthesis and structure of the title compound, (I).

As shown in Fig. 1, the CuII ion in (I) is hexacoordinated with five oxygen atoms and one nitrogen atom, exhibiting a slightly distorted octahedral geometry (Table 1). The pyridine-2,3-dicarboxyalto ligand affords the pyridine N and one carboxylato oxygen atom in chelating coordination mode and a symmetry-generated ligand bonds from its carboxylate O-atom. The bridging ligand links neighboring copper(II) ions into a chain (Fig. 2). Extensive hydrogen bonding (Table 2) via hydrogen bonds between carboxylate oxygen atoms of pyridine-2,3-dicarboxyalte and the uncoordinated water molecules or coordinated aqua ligands, giving rise to a three-dimensional network.

Experimental

A mixture of copper(II) chloride (0.5 mmol), pyridine-2,3-dicarboxylic acid (1 mmol), sodium hydroxide (1 mmol), H2O (8 ml), and ethanol (8 ml) in a 25 ml Teflon-lined stainless steel autoclave was kept at 423 K for three days. Blue blocks of (I) were obtained after cooling to room temperature with a yield of 16%. Anal calc. for C7H11CuNO8: C 27.93, H 2.99, N 4.66%; found: C 27.89, H 2.92, N 4.63%.

Refinement

The O-bound H atoms were located in a difference map and their positions were freely refined with a fixed Uiso value. This has led to some extremely short intermolecular H···H contacts and the location of the water H atoms should be regarded as less certain. All the C-bound H atoms were placed in calculated positions with C—H = 0.93Å and refined as riding with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of (I), drawn with 30% probability displacement ellipsoids for the non-hydrogen atoms. Atoms labeled with i are at the symmetry position (x - 1/2,-y + 1/2,z - 1/2).
Fig. 2.
Part of a polymeric chain in (I).

Crystal data

[Cu(C7H3NO4)(H2O)3]·H2OF(000) = 612
Mr = 300.71Dx = 1.913 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 2692 reflections
a = 8.513 (3) Åθ = 2.9–28.1°
b = 17.983 (3) ŵ = 2.13 mm1
c = 7.493 (3) ÅT = 296 K
β = 114.486 (10)°Block, blue
V = 1043.9 (6) Å30.40 × 0.28 × 0.22 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer1322 independent reflections
Radiation source: fine-focus sealed tube1310 reflections with I > 2σ(I)
graphiteRint = 0.028
ω scansθmax = 26.0°, θmin = 2.9°
Absorption correction: multi-scan (SADABS; Bruker, 2004)h = −10→10
Tmin = 0.484, Tmax = 0.652k = −22→22
2686 measured reflectionsl = −4→9

Refinement

Refinement on F2Hydrogen site location: difmap and geom
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.030w = 1/[σ2(Fo2) + (0.079P)2 + 0.0702P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.089(Δ/σ)max < 0.001
S = 1.00Δρmax = 0.61 e Å3
1322 reflectionsΔρmin = −0.60 e Å3
180 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
14 restraintsExtinction coefficient: 0.018 (2)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 290 Friedel pairs
Secondary atom site location: difference Fourier mapFlack parameter: 0.05 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.00453 (5)0.118674 (19)0.25189 (5)0.0226 (2)
C1−0.1893 (6)0.1125 (2)−0.2173 (8)0.0257 (10)
C20.0162 (7)0.2776 (2)0.2417 (8)0.0261 (9)
C30.1909 (5)0.2542 (2)0.2398 (6)0.0220 (8)
C40.3188 (5)0.3044 (2)0.2468 (6)0.0224 (8)
C50.4612 (5)0.2816 (2)0.2256 (6)0.0222 (9)
H50.54430.31540.22660.027*
C60.4781 (6)0.2094 (3)0.2034 (7)0.0325 (10)
H60.57470.19220.18780.039*
C70.3554 (7)0.1592 (3)0.2028 (8)0.0350 (10)
H70.37190.10880.18900.042*
N10.2118 (5)0.18178 (19)0.2218 (6)0.0262 (7)
O1−0.1400 (5)0.0911 (2)−0.0470 (5)0.0356 (8)
O2−0.2392 (5)0.07157 (19)−0.3667 (5)0.0363 (7)
O3−0.0834 (4)0.22671 (17)0.2399 (6)0.0323 (7)
O4−0.0130 (6)0.34452 (16)0.2387 (9)0.0401 (8)
O50.1420 (5)0.12328 (17)0.5699 (7)0.0311 (9)
O60.1266 (5)0.01799 (18)0.2664 (7)0.0427 (9)
O7−0.2021 (4)0.07356 (18)0.2898 (5)0.0309 (7)
O80.4601 (7)−0.0181 (3)0.4257 (10)0.0777 (18)
H1W0.553 (6)−0.004 (6)0.515 (11)0.093*
H2W0.377 (7)−0.006 (6)0.451 (14)0.093*
H4W0.105 (10)0.080 (2)0.551 (16)0.093*
H5W0.092 (12)−0.008 (5)0.167 (10)0.093*
H6W0.229 (5)0.011 (5)0.340 (12)0.093*
H7W−0.214 (15)0.067 (5)0.393 (9)0.093*
H8W−0.195 (16)0.034 (3)0.238 (13)0.093*
H3W0.248 (3)0.126 (4)0.620 (19)0.093*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0221 (3)0.0153 (3)0.0307 (3)−0.0014 (2)0.0111 (2)0.0008 (2)
C10.024 (2)0.021 (2)0.033 (3)0.0026 (14)0.013 (2)0.0011 (15)
C20.0229 (19)0.0210 (17)0.0315 (18)0.0045 (18)0.0084 (15)−0.0004 (19)
C30.0223 (19)0.0198 (18)0.0229 (18)0.0031 (15)0.0083 (15)0.0014 (14)
C40.0208 (18)0.0218 (19)0.0220 (17)0.0000 (14)0.0064 (15)0.0016 (15)
C50.026 (2)0.0141 (17)0.032 (2)0.0009 (13)0.017 (2)0.0013 (15)
C60.034 (3)0.027 (2)0.042 (3)0.0042 (18)0.022 (2)0.0008 (16)
C70.045 (3)0.0219 (18)0.044 (2)0.0067 (19)0.025 (2)0.0011 (18)
N10.0284 (18)0.0215 (16)0.0293 (17)0.0018 (14)0.0125 (15)−0.0001 (14)
O10.0475 (19)0.0275 (18)0.0292 (16)−0.0008 (15)0.0133 (15)0.0000 (14)
O20.055 (2)0.0236 (14)0.0343 (16)−0.0049 (14)0.0230 (16)−0.0069 (13)
O30.0226 (17)0.0253 (16)0.0519 (19)0.0004 (12)0.0185 (14)0.0011 (14)
O40.0274 (17)0.0214 (15)0.073 (2)0.0041 (14)0.0220 (17)−0.0029 (19)
O50.0266 (16)0.0281 (19)0.033 (2)−0.0011 (11)0.0062 (16)−0.0014 (12)
O60.0362 (17)0.0247 (16)0.056 (2)0.0078 (15)0.0077 (15)−0.0088 (16)
O70.0313 (16)0.0262 (15)0.0355 (16)−0.0074 (13)0.0142 (14)−0.0040 (14)
O80.035 (2)0.054 (3)0.108 (4)0.0047 (18)−0.006 (3)−0.023 (3)

Geometric parameters (Å, °)

Cu1—O72.061 (3)C4—C1ii1.525 (5)
Cu1—O62.068 (3)C5—C61.325 (6)
Cu1—O32.071 (3)C5—H50.9300
Cu1—O12.119 (4)C6—C71.379 (7)
Cu1—O52.178 (5)C6—H60.9300
Cu1—N12.187 (4)C7—N11.350 (6)
C1—O11.228 (7)C7—H70.9300
C1—O21.258 (6)O5—H4W0.82 (2)
C1—C4i1.525 (5)O5—H3W0.82 (9)
C2—O41.227 (5)O6—H5W0.82 (7)
C2—O31.244 (6)O6—H6W0.83 (7)
C2—C31.552 (6)O7—H7W0.83 (8)
C3—N11.328 (5)O7—H8W0.83 (8)
C3—C41.399 (6)O8—H1W0.84 (8)
C4—C51.349 (6)O8—H2W0.83 (8)
O7—Cu1—O695.00 (16)C3—C4—C1ii123.2 (4)
O7—Cu1—O393.52 (13)C6—C5—C4117.5 (4)
O6—Cu1—O3171.34 (14)C6—C5—H5121.2
O7—Cu1—O184.19 (14)C4—C5—H5121.2
O6—Cu1—O184.83 (16)C5—C6—C7121.3 (5)
O3—Cu1—O197.60 (15)C5—C6—H6119.3
O7—Cu1—O588.09 (15)C7—C6—H6119.3
O6—Cu1—O586.87 (16)N1—C7—C6121.4 (4)
O3—Cu1—O591.87 (14)N1—C7—H7119.3
O1—Cu1—O5168.12 (14)C6—C7—H7119.3
O7—Cu1—N1171.80 (13)C3—N1—C7118.0 (4)
O6—Cu1—N192.89 (17)C3—N1—Cu1110.5 (3)
O3—Cu1—N178.54 (13)C7—N1—Cu1131.3 (3)
O1—Cu1—N198.75 (15)C1—O1—Cu1145.4 (3)
O5—Cu1—N190.13 (15)C2—O3—Cu1117.2 (3)
O1—C1—O2125.8 (4)Cu1—O5—H4W77 (8)
O1—C1—C4i118.0 (4)Cu1—O5—H3W119 (10)
O2—C1—C4i116.1 (4)H4W—O5—H3W114 (4)
O4—C2—O3126.1 (5)Cu1—O6—H5W118 (7)
O4—C2—C3117.0 (5)Cu1—O6—H6W122 (7)
O3—C2—C3116.8 (4)H5W—O6—H6W114 (9)
N1—C3—C4120.1 (4)Cu1—O7—H7W129 (8)
N1—C3—C2115.9 (4)Cu1—O7—H8W92 (8)
C4—C3—C2123.9 (4)H7W—O7—H8W112 (9)
C5—C4—C3121.5 (4)H1W—O8—H2W111 (4)
C5—C4—C1ii115.3 (4)

Symmetry codes: (i) x−1/2, −y+1/2, z−1/2; (ii) x+1/2, −y+1/2, z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O5—H3W···O4ii0.82 (9)1.93 (8)2.735 (6)167 (8)
O5—H4W···O6iii0.82 (2)2.35 (8)2.966 (5)132 (10)
O6—H5W···O5iv0.82 (7)2.29 (7)2.966 (5)140 (9)
O7—H7W···O2v0.83 (8)1.90 (9)2.720 (5)169 (8)
O7—H8W···O2iii0.83 (8)2.03 (4)2.825 (5)162 (11)

Symmetry codes: (ii) x+1/2, −y+1/2, z+1/2; (iii) x, −y, z+1/2; (iv) x, −y, z−1/2; (v) x, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2747).

References

  • Bruker (2004). APEX2, SAINT-Plus and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Serre, C., Marrot, J. & Ferey, G. (2005). Inorg. Chem.44, 654–658. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography