PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 October 1; 64(Pt 10): m1278–m1279.
Published online 2008 September 20. doi:  10.1107/S1600536808029206
PMCID: PMC2959290

Poly[[diaqua(μ2-4,4′-dipyridyl sulfide-κ2 N:N′)(4,4′-dipyridyl sulfide-κN)(2-hydroxy-5-sulfonatobenzoato-κO 1)nickel(II)] dihydrate]

Abstract

The asymmetric unit of the title helical coordination polymer, {[Ni(C7H4O6S)(C10H8N2S)2(H2O)2]·2H2O}n, is comprised of an NiII ion, one 5-sulfosalicylic acid dianion (HSSA), two 4,4′-dipyridylsulfide (4,4′-dps) ligands, and two coordinated and two uncoordinated water mol­ecules. The NiII ion is coordinated by two water mol­ecules, one carboxyl­ate O atom of the HSSA dianion and three N atoms from three 4,4′-dps ligands in a distorted octa­hedral environment. Half of the 4,4′-dps ligands are μ2-bridging ligands which link adjacent NiII centers, forming a one-dimensional helical structure along the b axis. This helical structure is further stabilized by O—H(...)O intra- and inter­molecular hydrogen bonds.

Related literature

For related structures, see: Fujita et al. (1994 [triangle]); Hao & Zhang (2007 [triangle]); Hou et al. (2001 [triangle]); Jung et al. (1999 [triangle], 2000 [triangle]); Niu et al. (2006 [triangle]); Vaganova et al. (2004 [triangle]); Wen et al. (2004 [triangle]); Zeng et al. (2006 [triangle]); Zheng & Vittal (2001 [triangle]); Zheng et al. (1999 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1278-scheme1.jpg

Experimental

Crystal data

  • [Ni(C7H4O6S)(C10H8N2S)2(H2O)2]·2H2O
  • M r = 723.42
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1278-efi7.jpg
  • a = 11.4649 (10) Å
  • b = 13.9441 (12) Å
  • c = 20.7051 (18) Å
  • β = 96.5520 (10)°
  • V = 3288.5 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.84 mm−1
  • T = 291 (2) K
  • 0.44 × 0.26 × 0.18 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.709, T max = 0.866
  • 23823 measured reflections
  • 6054 independent reflections
  • 4328 reflections with I > 2σ(I)
  • R int = 0.037

Refinement

  • R[F 2 > 2σ(F 2)] = 0.058
  • wR(F 2) = 0.178
  • S = 1.02
  • 6054 reflections
  • 426 parameters
  • 219 restraints
  • H-atom parameters constrained
  • Δρmax = 0.96 e Å−3
  • Δρmin = −0.58 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2004 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808029206/at2628sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808029206/at2628Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 20471026) and the Natural Science Foundation of Henan Province (No. 0311021200).

supplementary crystallographic information

Comment

Recently, the use of bipyridyl based bridging ligands and transition metal centers in the preparation of various coordination compounds have attracted considerable interests not only because of their structural novelty but also for their potential properties in magnetism (Zheng et al., 1999), nonlinear optics (Hou et al., 2001), catalysts (Fujita et al., 1994) and so on. 4,4'-dps possesses a magic angle (the angle of C—S—C almost equals to 100°) and conformational nonrigidity so it has some flexibility in contrast to linear rigid ligands such as simple 4,4'-bipyridine analogues. A number of metal complexes derived from 4,4'-dps have been reported previously. Among them, the 4,4'-dps has three kind of coordination modes and they are non-coordinate (Zeng et al., 2006; Wen et al., 2004; Vaganova et al., 2004),µ2-bridging (Zheng & Vittal, 2001; Jung et al., 2000; Hao & Zhang, 2007; Niu et al., 2006), µ2 and µ3 together (Jung et al., 1999). In this paper, we describe another new compound in which the 4,4'-dps is monodentate and µ2-bridging together, (I), (Fig. 1).

Complex (I) is composed of [Ni(C10H8N2S)2)(C7H4O6S)(H2O)2].2H2O units, in which the NiII ion is six-coordinated in a distorted octahedral geometry (Table 1) formed by two coordinate water molecules, one carboxylate O atom of HSSA dianion, one N atoms from monodentate 4,4'-dps ligand and another two N atoms from another two µ2-bridging 4,4'-dps ligands. Half of the 4,4'-dps are monodentate and the other half are µ2-bridging. It is just through the µ2-bridging function that the adjacent NiII centers are joined to form a one-dimensional helix structure (Fig. 2, 3 & 4) along b axis in the monoclinic unit cell, with the Ni···Ni(1/2 - x, 1/2 + y, 3/2 - z) distance of 10.6096 (10) Å. The phenolic hydroxyl and carboxyl of HSSA dianion are involved in intramolecular hydrogen bonding (Table 2). Together with the other O—H···O intermolecular hydrogen bonds with participation of water molecules, the helix structure are further stabilized.

Experimental

The ligand 4,4'-dps (0.5 mmol, 0.14 g), 5-sulfosalicylic acid (0.5 mmol, 0.13 g) and NaOH (1.0 mmol, 0.04 g) were dissolved in water and methanol mixed solvent (30 ml, v/v 1:1). To this solution, Ni(CH3COO)2.4H2O (0.5 mmol, 0.13 g) was added and the resulting mixture was stirred and refluxed at 353 K for 2.5 h, then cooled to room temperature. After filtration and evaporation in air for 3 days, green block-shaped crystals were obtained in a yield of 32%. Analysis, found (%): C, 44.83; H 3.84, N 7.79, S13.22. C27H28N4NiO10S3 requires (%): C 44.78, H 3.87, N 7.74, S 13.27. [CCDC number 656224].

Refinement

H atoms bonded to C atoms were positioned geometrically with C—H distance of 0.93 Å, and treated as riding atoms, with Uiso(H) = 1.2Ueq. H atoms bonded to O atoms were located in a difference Fourier map and refined isotropically.

Figures

Fig. 1.
The coordination environment of NiII ion in (I), with displacement ellipsoids shown at the 30% probability level. Uncoordinate water molecules and H atoms have been omitted [Symmetry codes: (A) 1/2 - x, 1/2 + y, 3/2 - z; (B) 1/2 - x, -1/2 + y, 3/2 - z]. ...
Fig. 2.
The helix structure for (I) along b axis. Uncoordinate water molecules and H atoms on C atoms have been omitted.
Fig. 3.
The helix structure for (I) along b axis with a helix axis. Uncoordinate water molecules and H atoms have been omitted.
Fig. 4.
The space filled diagram of the helix structure for (I) along b axis. Uncoordinate water molecules and H atoms have been omitted.

Crystal data

[Ni(C7H4O6S)(C10H8N2S)2(H2O)2]·2H2OF(000) = 1496
Mr = 723.42Dx = 1.461 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4865 reflections
a = 11.4649 (10) Åθ = 2.3–21.6°
b = 13.9441 (12) ŵ = 0.84 mm1
c = 20.7051 (18) ÅT = 291 K
β = 96.552 (1)°Block, green
V = 3288.5 (5) Å30.44 × 0.26 × 0.18 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer6054 independent reflections
Radiation source: fine-focus sealed tube4328 reflections with I > 2σ(I)
graphiteRint = 0.037
[var phi] and ω scansθmax = 25.5°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −13→13
Tmin = 0.709, Tmax = 0.866k = −16→16
23823 measured reflectionsl = −25→25

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.178H-atom parameters constrained
S = 1.03w = 1/[σ2(Fo2) + (0.0999P)2 + 2.6202P] where P = (Fo2 + 2Fc2)/3
6054 reflections(Δ/σ)max = 0.001
426 parametersΔρmax = 0.96 e Å3
219 restraintsΔρmin = −0.58 e Å3

Special details

Experimental. The sulfonic group of HSSA dianion is in disorder and has been refined but not satisfactory.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
S31.11886 (11)−0.14488 (10)0.89754 (7)0.0681 (4)0.622 (5)
O61.0657 (6)−0.0994 (5)0.9516 (3)0.0971 (16)0.622 (5)
O71.0712 (6)−0.2372 (4)0.8826 (3)0.0973 (17)0.622 (5)
O81.2456 (4)−0.1450 (6)0.9124 (4)0.1026 (19)0.622 (5)
S3'1.11886 (11)−0.14488 (10)0.89754 (7)0.0681 (4)0.378 (5)
O6'1.0085 (7)−0.1624 (8)0.9241 (5)0.0971 (16)0.378 (5)
O7'1.1545 (9)−0.2352 (6)0.8675 (5)0.0973 (17)0.378 (5)
O8'1.2068 (8)−0.1005 (8)0.9383 (6)0.1026 (19)0.378 (5)
Ni10.59573 (4)0.10463 (4)0.80537 (3)0.04492 (19)
S10.86708 (13)0.45268 (11)0.97477 (9)0.0867 (5)
S20.42135 (12)−0.26440 (11)0.61663 (7)0.0762 (4)
O10.2056 (7)0.1245 (5)0.6004 (4)0.081 (2)0.50
H1W0.14510.11760.62020.122*0.50
H2W0.23950.15430.62980.122*0.50
O20.5916 (3)0.2119 (3)0.71261 (17)0.0762 (10)
H3W0.55350.24260.68270.114*
H4W0.66150.20790.70650.114*
O30.6648 (4)0.4534 (3)0.5299 (2)0.0938 (12)
H5W0.63670.45930.49120.141*
H6W0.61160.43990.55280.141*
O40.4748 (7)0.8801 (5)0.9582 (4)0.084 (2)0.50
H7W0.42230.85580.97710.127*0.50
H8W0.46460.85930.91780.127*0.50
O50.6211 (3)−0.0084 (3)0.89567 (18)0.0763 (10)
H9W0.5833−0.06060.89750.114*
H10W0.6840−0.02610.91560.114*
O90.7577 (2)0.0611 (2)0.79683 (15)0.0566 (7)
O100.8024 (3)0.1301 (3)0.70624 (19)0.0765 (10)
O111.0017 (3)0.1011 (3)0.6679 (2)0.0915 (13)
H110.93110.11250.66210.137*
N10.6667 (3)0.2157 (3)0.86085 (17)0.0531 (9)
N20.6301 (7)0.7173 (4)0.9694 (4)0.119 (2)
N30.5365 (3)−0.0069 (3)0.74554 (18)0.0545 (9)
N40.0690 (3)−0.3576 (3)0.67586 (18)0.0512 (8)
C10.7555 (4)0.1994 (3)0.9076 (2)0.0577 (11)
H10.77930.13630.91590.069*
C20.8125 (4)0.2702 (4)0.9436 (2)0.0609 (12)
H20.87340.25530.97560.073*
C30.7792 (4)0.3647 (3)0.9322 (2)0.0591 (11)
C40.6873 (5)0.3829 (4)0.8847 (3)0.0680 (13)
H40.66150.44540.87600.082*
C50.6349 (4)0.3076 (3)0.8506 (2)0.0628 (12)
H50.57360.32080.81840.075*
C60.7725 (5)0.5558 (4)0.9719 (3)0.0777 (15)
C70.8082 (7)0.6385 (5)0.9465 (3)0.097 (2)
H70.88030.64260.93020.116*
C80.7340 (9)0.7170 (5)0.9456 (4)0.113 (2)
H80.75790.77350.92720.135*
C90.5986 (7)0.6361 (6)0.9958 (4)0.115 (2)
H90.52720.63431.01300.138*
C100.6680 (6)0.5523 (5)0.9989 (4)0.0945 (19)
H100.64420.49671.01850.113*
C110.4525 (4)0.0005 (4)0.6954 (2)0.0617 (12)
H11A0.41780.06000.68660.074*
C120.4151 (4)−0.0753 (4)0.6564 (2)0.0647 (12)
H120.3560−0.06640.62220.078*
C130.4639 (4)−0.1637 (3)0.6674 (2)0.0592 (11)
C140.5518 (5)−0.1722 (4)0.7173 (3)0.0743 (14)
H140.5884−0.23110.72580.089*
C150.5863 (5)−0.0938 (4)0.7548 (3)0.0733 (14)
H150.6471−0.10120.78820.088*
C160.2851 (4)−0.2967 (3)0.6419 (2)0.0548 (10)
C170.2466 (4)−0.2696 (4)0.7005 (2)0.0635 (12)
H170.2928−0.23050.72950.076*
C180.1396 (4)−0.3014 (4)0.7149 (2)0.0614 (12)
H180.1148−0.28270.75420.074*
C190.1080 (4)−0.3847 (4)0.6199 (2)0.0628 (12)
H190.0610−0.42490.59210.075*
C200.2136 (4)−0.3559 (4)0.6018 (2)0.0645 (12)
H200.2369−0.37630.56250.077*
C210.8262 (4)0.0772 (3)0.7551 (2)0.0487 (10)
C220.9428 (4)0.0302 (3)0.7648 (2)0.0500 (10)
C230.9732 (4)−0.0280 (3)0.8182 (2)0.0520 (10)
H230.9185−0.03950.84710.062*
C241.0833 (4)−0.0692 (3)0.8294 (2)0.0558 (11)
C251.1637 (4)−0.0526 (4)0.7859 (3)0.0692 (13)
H251.2382−0.07950.79340.083*
C261.1358 (4)0.0022 (4)0.7325 (3)0.0786 (16)
H261.19070.01150.70330.094*
C271.0251 (4)0.0452 (4)0.7209 (2)0.0638 (12)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S30.0600 (7)0.0674 (8)0.0720 (8)0.0162 (6)−0.0135 (6)−0.0046 (6)
O60.097 (3)0.101 (4)0.091 (3)0.027 (3)0.001 (3)0.014 (3)
O70.114 (4)0.080 (3)0.090 (3)−0.011 (3)−0.024 (3)0.010 (2)
O80.074 (3)0.118 (4)0.108 (4)0.007 (3)−0.026 (3)0.012 (3)
S3'0.0600 (7)0.0674 (8)0.0720 (8)0.0162 (6)−0.0135 (6)−0.0046 (6)
O6'0.097 (3)0.101 (4)0.091 (3)0.027 (3)0.001 (3)0.014 (3)
O7'0.114 (4)0.080 (3)0.090 (3)−0.011 (3)−0.024 (3)0.010 (2)
O8'0.074 (3)0.118 (4)0.108 (4)0.007 (3)−0.026 (3)0.012 (3)
Ni10.0342 (3)0.0437 (3)0.0563 (3)0.0050 (2)0.0026 (2)−0.0027 (2)
S10.0655 (8)0.0828 (10)0.1068 (12)−0.0091 (7)−0.0121 (8)−0.0239 (8)
S20.0628 (8)0.0861 (9)0.0849 (9)−0.0234 (7)0.0313 (7)−0.0296 (7)
O10.090 (5)0.062 (4)0.103 (5)−0.020 (3)0.061 (4)−0.011 (3)
O20.068 (2)0.088 (2)0.073 (2)0.0191 (18)0.0125 (17)0.0177 (19)
O30.081 (3)0.122 (3)0.076 (2)0.007 (2)−0.003 (2)−0.007 (2)
O40.069 (4)0.059 (4)0.127 (6)0.001 (3)0.020 (4)0.031 (4)
O50.067 (2)0.072 (2)0.088 (2)0.0028 (17)0.0020 (18)0.0209 (19)
O90.0428 (16)0.0611 (18)0.0661 (19)0.0083 (14)0.0075 (14)0.0037 (15)
O100.059 (2)0.089 (2)0.082 (2)0.0182 (18)0.0104 (17)0.026 (2)
O110.068 (2)0.119 (3)0.092 (3)0.016 (2)0.027 (2)0.039 (2)
N10.0474 (19)0.053 (2)0.058 (2)0.0062 (16)0.0000 (16)0.0026 (16)
N20.142 (6)0.066 (4)0.140 (6)0.004 (4)−0.027 (5)−0.021 (4)
N30.0425 (18)0.057 (2)0.063 (2)0.0050 (16)0.0035 (16)0.0009 (18)
N40.0455 (19)0.051 (2)0.057 (2)−0.0061 (16)0.0047 (16)−0.0015 (17)
C10.054 (3)0.053 (3)0.064 (3)0.006 (2)−0.003 (2)0.008 (2)
C20.054 (3)0.069 (3)0.057 (3)0.004 (2)−0.005 (2)0.007 (2)
C30.056 (3)0.061 (3)0.059 (3)−0.004 (2)0.004 (2)−0.009 (2)
C40.071 (3)0.055 (3)0.073 (3)0.006 (2)−0.014 (3)−0.001 (2)
C50.058 (3)0.057 (3)0.069 (3)0.012 (2)−0.014 (2)−0.001 (2)
C60.081 (4)0.072 (4)0.075 (3)−0.015 (3)−0.014 (3)−0.017 (3)
C70.125 (6)0.084 (4)0.079 (4)−0.019 (4)−0.001 (4)−0.005 (3)
C80.148 (8)0.073 (5)0.111 (6)−0.006 (5)−0.012 (5)0.001 (4)
C90.109 (6)0.098 (6)0.135 (7)0.002 (5)−0.002 (5)−0.027 (5)
C100.085 (4)0.072 (4)0.124 (5)−0.005 (3)0.001 (4)−0.014 (4)
C110.050 (2)0.064 (3)0.071 (3)0.008 (2)0.002 (2)0.001 (2)
C120.055 (3)0.073 (3)0.064 (3)−0.006 (2)0.000 (2)−0.005 (2)
C130.047 (2)0.062 (3)0.071 (3)−0.010 (2)0.015 (2)−0.009 (2)
C140.081 (4)0.051 (3)0.088 (4)0.002 (2)−0.003 (3)−0.006 (3)
C150.074 (3)0.061 (3)0.079 (3)0.013 (3)−0.018 (3)−0.002 (3)
C160.049 (2)0.059 (3)0.057 (3)−0.003 (2)0.0089 (19)−0.002 (2)
C170.052 (3)0.074 (3)0.066 (3)−0.020 (2)0.012 (2)−0.024 (2)
C180.056 (3)0.071 (3)0.059 (3)−0.013 (2)0.013 (2)−0.012 (2)
C190.060 (3)0.067 (3)0.061 (3)−0.015 (2)0.006 (2)−0.011 (2)
C200.067 (3)0.072 (3)0.057 (3)−0.017 (2)0.016 (2)−0.015 (2)
C210.044 (2)0.045 (2)0.056 (2)−0.0004 (17)−0.0016 (19)0.0009 (19)
C220.041 (2)0.047 (2)0.062 (3)0.0018 (17)0.0029 (19)−0.008 (2)
C230.047 (2)0.050 (2)0.057 (2)0.0039 (18)−0.0016 (19)−0.004 (2)
C240.044 (2)0.051 (2)0.070 (3)0.0082 (19)−0.003 (2)−0.010 (2)
C250.048 (3)0.069 (3)0.090 (4)0.013 (2)0.005 (3)−0.007 (3)
C260.051 (3)0.097 (4)0.091 (4)0.017 (3)0.023 (3)0.006 (3)
C270.051 (3)0.075 (3)0.066 (3)0.000 (2)0.007 (2)0.008 (2)

Geometric parameters (Å, °)

S3—O71.418 (5)C2—H20.9300
S3—O81.450 (5)C3—C41.381 (7)
S3—O61.477 (5)C4—C51.365 (7)
S3—C241.771 (5)C4—H40.9300
Ni1—O91.981 (3)C5—H50.9300
Ni1—N4i2.040 (3)C6—C71.349 (8)
Ni1—N12.041 (4)C6—C101.379 (9)
Ni1—N32.055 (4)C7—C81.385 (11)
Ni1—O22.430 (3)C7—H70.9300
Ni1—O52.437 (3)C8—H80.9300
S1—C31.759 (5)C9—C101.411 (9)
S1—C61.798 (6)C9—H90.9300
S2—C161.762 (4)C10—H100.9300
S2—C131.789 (5)C11—C121.369 (7)
O1—H1W0.8504C11—H11A0.9300
O1—H2W0.8000C12—C131.362 (7)
O2—H3W0.8350C12—H120.9300
O2—H4W0.8278C13—C141.363 (7)
O3—H5W0.8338C14—C151.373 (7)
O3—H6W0.8347C14—H140.9300
O4—H7W0.8256C15—H150.9300
O4—H8W0.8821C16—C201.375 (6)
O5—H9W0.8501C16—C171.390 (6)
O5—H10W0.8267C17—C181.369 (6)
O9—C211.252 (5)C17—H170.9300
O10—C211.256 (5)C18—H180.9300
O11—C271.348 (6)C19—C201.367 (7)
O11—H110.8200C19—H190.9300
N1—C11.342 (5)C20—H200.9300
N1—C51.343 (6)C21—C221.482 (6)
N2—C91.324 (10)C22—C231.384 (6)
N2—C81.340 (11)C22—C271.397 (6)
N3—C111.337 (6)C23—C241.382 (6)
N3—C151.344 (6)C23—H230.9300
N4—C181.332 (6)C24—C251.380 (7)
N4—C191.344 (6)C25—C261.352 (8)
N4—Ni1ii2.040 (3)C25—H250.9300
C1—C21.358 (6)C26—C271.399 (7)
C1—H10.9300C26—H260.9300
C2—C31.385 (7)
O7—S3—O8113.4 (4)C6—C7—H7121.1
O7—S3—O6111.9 (4)C8—C7—H7121.1
O8—S3—O6109.2 (4)N2—C8—C7124.5 (8)
O7—S3—C24108.6 (3)N2—C8—H8117.7
O8—S3—C24107.7 (4)C7—C8—H8117.7
O6—S3—C24105.7 (3)N2—C9—C10123.2 (8)
O9—Ni1—N4i173.60 (14)N2—C9—H9118.4
O9—Ni1—N188.00 (13)C10—C9—H9118.4
N4i—Ni1—N190.87 (14)C6—C10—C9117.6 (7)
O9—Ni1—N387.87 (13)C6—C10—H10121.2
N4i—Ni1—N393.50 (14)C9—C10—H10121.2
N1—Ni1—N3175.23 (14)N3—C11—C12123.3 (5)
O9—Ni1—O292.99 (12)N3—C11—H11A118.4
N4i—Ni1—O293.24 (13)C12—C11—H11A118.4
N1—Ni1—O287.06 (14)C13—C12—C11120.3 (5)
N3—Ni1—O290.79 (14)C13—C12—H12119.9
O9—Ni1—O580.75 (12)C11—C12—H12119.9
N4i—Ni1—O593.03 (13)C12—C13—C14117.4 (4)
N1—Ni1—O593.08 (14)C12—C13—S2122.2 (4)
N3—Ni1—O588.60 (14)C14—C13—S2120.3 (4)
O2—Ni1—O5173.73 (12)C13—C14—C15120.0 (5)
C3—S1—C6103.4 (2)C13—C14—H14120.0
C16—S2—C13102.6 (2)C15—C14—H14120.0
H1W—O1—H2W92.5N3—C15—C14123.1 (5)
Ni1—O2—H3W149.8N3—C15—H15118.4
Ni1—O2—H4W98.5C14—C15—H15118.4
H3W—O2—H4W110.7C20—C16—C17117.7 (4)
H5W—O3—H6W109.9C20—C16—S2117.5 (3)
H7W—O4—H8W106.8C17—C16—S2124.8 (3)
Ni1—O5—H9W124.9C18—C17—C16118.9 (4)
Ni1—O5—H10W126.7C18—C17—H17120.6
H9W—O5—H10W98.2C16—C17—H17120.6
C21—O9—Ni1132.4 (3)N4—C18—C17123.8 (4)
C27—O11—H11109.5N4—C18—H18118.1
C1—N1—C5116.5 (4)C17—C18—H18118.1
C1—N1—Ni1119.9 (3)N4—C19—C20123.1 (4)
C5—N1—Ni1123.5 (3)N4—C19—H19118.5
C9—N2—C8116.5 (7)C20—C19—H19118.5
C11—N3—C15115.9 (4)C19—C20—C16119.7 (4)
C11—N3—Ni1124.7 (3)C19—C20—H20120.1
C15—N3—Ni1119.4 (3)C16—C20—H20120.1
C18—N4—C19116.7 (4)O9—C21—O10124.4 (4)
C18—N4—Ni1ii123.2 (3)O9—C21—C22117.0 (4)
C19—N4—Ni1ii119.9 (3)O10—C21—C22118.6 (4)
N1—C1—C2123.3 (4)C23—C22—C27118.7 (4)
N1—C1—H1118.3C23—C22—C21120.5 (4)
C2—C1—H1118.3C27—C22—C21120.8 (4)
C1—C2—C3119.6 (4)C24—C23—C22121.3 (4)
C1—C2—H2120.2C24—C23—H23119.3
C3—C2—H2120.2C22—C23—H23119.3
C4—C3—C2118.0 (4)C25—C24—C23119.0 (5)
C4—C3—S1125.2 (4)C25—C24—S3120.6 (3)
C2—C3—S1116.6 (4)C23—C24—S3120.3 (4)
C5—C4—C3118.8 (4)C26—C25—C24121.0 (4)
C5—C4—H4120.6C26—C25—H25119.5
C3—C4—H4120.6C24—C25—H25119.5
N1—C5—C4123.9 (4)C25—C26—C27120.5 (5)
N1—C5—H5118.1C25—C26—H26119.8
C4—C5—H5118.1C27—C26—H26119.8
C7—C6—C10120.3 (7)O11—C27—C22121.9 (4)
C7—C6—S1119.2 (6)O11—C27—C26118.7 (5)
C10—C6—S1120.4 (5)C22—C27—C26119.4 (5)
C6—C7—C8117.9 (8)
N4i—Ni1—O9—C21−172.7 (11)Ni1—N3—C11—C12180.0 (4)
N1—Ni1—O9—C21−92.8 (4)N3—C11—C12—C13−0.3 (8)
N3—Ni1—O9—C2184.9 (4)C11—C12—C13—C14−1.4 (7)
O2—Ni1—O9—C21−5.8 (4)C11—C12—C13—S2−178.2 (4)
O5—Ni1—O9—C21173.8 (4)C16—S2—C13—C12−76.2 (4)
O9—Ni1—N1—C1−45.1 (3)C16—S2—C13—C14107.0 (4)
N4i—Ni1—N1—C1128.6 (4)C12—C13—C14—C151.2 (8)
N3—Ni1—N1—C1−74.9 (18)S2—C13—C14—C15178.0 (4)
O2—Ni1—N1—C1−138.2 (3)C11—N3—C15—C14−2.3 (8)
O5—Ni1—N1—C135.6 (4)Ni1—N3—C15—C14179.7 (5)
O9—Ni1—N1—C5130.2 (4)C13—C14—C15—N30.7 (9)
N4i—Ni1—N1—C5−56.1 (4)C13—S2—C16—C20163.6 (4)
N3—Ni1—N1—C5100.3 (17)C13—S2—C16—C17−18.9 (5)
O2—Ni1—N1—C537.1 (4)C20—C16—C17—C18−1.1 (8)
O5—Ni1—N1—C5−149.2 (4)S2—C16—C17—C18−178.6 (4)
O9—Ni1—N3—C11−134.4 (4)C19—N4—C18—C171.0 (7)
N4i—Ni1—N3—C1151.8 (4)Ni1ii—N4—C18—C17−174.8 (4)
N1—Ni1—N3—C11−104.5 (17)C16—C17—C18—N40.1 (8)
O2—Ni1—N3—C11−41.5 (4)C18—N4—C19—C20−1.1 (7)
O5—Ni1—N3—C11144.8 (4)Ni1ii—N4—C19—C20174.8 (4)
O9—Ni1—N3—C1543.4 (4)N4—C19—C20—C160.2 (8)
N4i—Ni1—N3—C15−130.3 (4)C17—C16—C20—C190.9 (8)
N1—Ni1—N3—C1573.3 (18)S2—C16—C20—C19178.6 (4)
O2—Ni1—N3—C15136.4 (4)Ni1—O9—C21—O100.8 (7)
O5—Ni1—N3—C15−37.4 (4)Ni1—O9—C21—C22−179.4 (3)
C5—N1—C1—C2−0.1 (7)O9—C21—C22—C23−0.4 (6)
Ni1—N1—C1—C2175.4 (4)O10—C21—C22—C23179.4 (4)
N1—C1—C2—C3−0.3 (8)O9—C21—C22—C27−179.2 (4)
C1—C2—C3—C40.8 (7)O10—C21—C22—C270.6 (6)
C1—C2—C3—S1−173.6 (4)C27—C22—C23—C241.5 (6)
C6—S1—C3—C426.3 (5)C21—C22—C23—C24−177.4 (4)
C6—S1—C3—C2−159.8 (4)C22—C23—C24—C25−0.7 (7)
C2—C3—C4—C5−1.0 (8)C22—C23—C24—S3−179.0 (3)
S1—C3—C4—C5172.8 (4)O7—S3—C24—C25−98.3 (5)
C1—N1—C5—C4−0.1 (8)O8—S3—C24—C2524.9 (5)
Ni1—N1—C5—C4−175.5 (4)O6—S3—C24—C25141.5 (5)
C3—C4—C5—N10.7 (8)O7—S3—C24—C2380.1 (5)
C3—S1—C6—C7−123.6 (5)O8—S3—C24—C23−156.8 (5)
C3—S1—C6—C1060.5 (5)O6—S3—C24—C23−40.1 (5)
C10—C6—C7—C8−3.4 (9)C23—C24—C25—C26−0.8 (7)
S1—C6—C7—C8−179.3 (5)S3—C24—C25—C26177.6 (4)
C9—N2—C8—C70.4 (12)C24—C25—C26—C271.4 (9)
C6—C7—C8—N21.5 (11)C23—C22—C27—O11−179.9 (5)
C8—N2—C9—C10−0.5 (12)C21—C22—C27—O11−1.0 (7)
C7—C6—C10—C93.3 (9)C23—C22—C27—C26−0.8 (7)
S1—C6—C10—C9179.2 (5)C21—C22—C27—C26178.0 (5)
N2—C9—C10—C6−1.3 (11)C25—C26—C27—O11178.5 (5)
C15—N3—C11—C122.1 (7)C25—C26—C27—C22−0.6 (8)

Symmetry codes: (i) −x+1/2, y+1/2, −z+3/2; (ii) −x+1/2, y−1/2, −z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O11—H11···O100.821.842.535 (5)142.
O5—H10W···O3iii0.831.982.797 (5)170.
O5—H9W···O4iv0.852.042.721 (8)136.
O4—H7W···O8v0.832.302.713 (9)112.
O3—H6W···O6vi0.832.102.811 (7)143.
O3—H5W···O6vii0.832.242.765 (8)122.
O2—H4W···O100.831.952.690 (5)149.
O2—H3W···O7vi0.841.872.652 (7)155.
O1—H1W···O11viii0.852.032.876 (7)180.

Symmetry codes: (iii) −x+3/2, y−1/2, −z+3/2; (iv) x, y−1, z; (v) x−1, y+1, z; (vi) −x+3/2, y+1/2, −z+3/2; (vii) x−1/2, −y+1/2, z−1/2; (viii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2628).

References

  • Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Fujita, M., Kwon, Y. J., Washizu, S. & Ogura, K. (1994). J. Am. Chem. Soc.116, 1151–1152.
  • Hao, Z. M. & Zhang, X. M. (2007). Cryst. Growth Des.7, 64–68.
  • Hou, H. W., Song, Y. L., Fan, Y. T., Zhang, L. P., Du, C. X. & Zhu, Y. (2001). Inorg. Chim. Acta, 316, 140–144.
  • Jung, O. S., Park, S. H., Lee, Y. A. & Lee, U. (2000). Chem. Lett pp. 1012–1013.
  • Jung, O. S., Sung, H. P., Chul, H. P. & Jong, K. P. (1999). Chem. Lett pp. 923-924.
  • Niu, Y. Y., Li, Z. J., Song, Y. L., Tanga, M. S., Wu, B. L. & Xin, X. Q. (2006). J. Solid State Chem.179, 4003–4010.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Vaganova, E., Wachtel, E., Rozenberg, H., Khodorkovsky, V., Leitus, G., Shimon, L., Reich, S. & Yitzchaik, S. (2004). Chem. Mater.16, 3976–3979.
  • Wen, Y.-H., Cheng, J.-K., Zhang, J., Li, Z.-J. & Yao, Y.-G. (2004). Acta Cryst. C60, m618–m619. [PubMed]
  • Zeng, Q. D., Wu, D. X., Ma, H. W., Shu, C. Y., Li, Y. & Wang, C. (2006). CrystEngComm, 8, 189–201.
  • Zheng, L. M., Fang, X., Li, K. H., Song, H. H., Xin, X. Q., Fun, H. K., Chinnakali, K. & Razak, I. A. (1999). J. Chem. Soc. Dalton Trans. pp. 2311–2316.
  • Zheng, N. & Vittal, J. J. (2001). Cryst. Growth Des.1, 195–197.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography