PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 October 1; 64(Pt 10): o1938.
Published online 2008 September 13. doi:  10.1107/S160053680802905X
PMCID: PMC2959268

N′-(3-Bromo-5-chloro-2-hydroxy­benzyl­idene)-4-hydr­oxybenzohydrazide

Abstract

The mol­ecule of the title compound, C14H10BrClN2O3, is planar [dihedral angle between the aromatic rings = 3.0 (2)°] and shows a trans configuration with respect to the C=N double bond. The crystal structure is stabilized by inter­molecular N—H(...)O hydrogen bonds and an intramolecular O—H(...)N interaction also occurs.

Related literature

For the biological properties of Schiff bases, see: Bhandari et al. (2008 [triangle]); Sinha et al. (2008 [triangle]); Sondhi et al. (2006 [triangle]); Singh et al. (2006 [triangle]). For background on Schiff bases derived from aldehydes with benzohydrazides, see: He & Liu (2005 [triangle]); Zhen & Han (2005 [triangle]); Diao & Yu (2006 [triangle]); Shan et al. (2008 [triangle]); Fun et al. (2008 [triangle]). For related structures, see: Jing et al. (2005 [triangle]); Lu et al. (2008 [triangle]); Salhin et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1938-scheme1.jpg

Experimental

Crystal data

  • C14H10BrClN2O3
  • M r = 369.60
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1938-efi1.jpg
  • a = 8.279 (2) Å
  • b = 11.446 (3) Å
  • c = 14.998 (4) Å
  • β = 99.002 (4)°
  • V = 1403.7 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 3.13 mm−1
  • T = 298 (2) K
  • 0.17 × 0.15 × 0.15 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.618, T max = 0.651
  • 10685 measured reflections
  • 3006 independent reflections
  • 2102 reflections with I > 2σ(I)
  • R int = 0.049

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.100
  • S = 1.03
  • 3006 reflections
  • 195 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.50 e Å−3
  • Δρmin = −0.36 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1998 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680802905X/bx2178sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680802905X/bx2178Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Top-Class Foundation and the Applied Chemistry Key Laboratory Foundation of Pingdingshan University.

supplementary crystallographic information

Comment

Schiff bases are a kind of versatile compounds, which possess excellent biological properties (Bhandari et al., 2008; Sinha et al., 2008; Sondhi et al., 2006; Singh et al., 2006). Recently, a large number of Schiff bases derived from the reaction of aldehydes with benzohydrazides have been reported (He & Liu, 2005; Zhen & Han, 2005; Diao & Yu, 2006; Shan et al., 2008; Fun et al., 2008). In this paper, a new Schiff base, (I), Fig. 1, derived from the reaction of 3-bromo-5-chlorosalicylaldehyde with 4-hydroxybenzohydrazide is reported. The title Schiff base is a planar-shaped compound, with mean deviation from the least-squares plane of 0.064 (3)Å, and with the dihedral angle between the C1-C6 and C9-C14 phenyl rings of 3.0 (2)°. All the bond lengths are comparable to the values in the similar Schiff bases (Jing et al., 2005; Lu et al., 2008; Salhin et al., 2007). There is a intramolecular O—H···N hydrogen bond (Fig. 1). In the crystal structure, molecules are linked through intermolecular N—H···O hydrogen bonds , to form a 3-D network (Table 1) (Fig. 2).

Experimental

3-Bromo-5-chlorosalicylaldehyde and 4-hydroxybenzohydrazide of AR grade were purchased from Aldrich and were used as was obtained. 3-Bromo-5-chlorosalicylaldehyde (235.3 mg, 1.0 mmol) and 4-hydroxybenzohydrazide (152.2 mg, 1.0 mmol) were dissolved in a methanol solution (80 ml). The mixture was stirred for two hours at room temperature. The resulting solution was left in air for a few days, yielding colourless block-like crystals.

Refinement

H2 was located in a difference Fourier map and refined isotropically, with N—H distance restrained to 0.90 (3)Å, and with Uiso(H) fixed at 0.08Å2. Other H atoms were placed in idealized positions and constrained to ride on their parent atoms with C—H distances of 0.93Å, O—H distance of 0.82Å, and with Uiso(H) set at 1.2Ueq(C) and 1.5Ueq(O).

Figures

Fig. 1.
The structure of (I) with 30% probability displacement ellipsoids. dashed lines indicate intramolecular hydrogen bonds.
Fig. 2.
The molecular packing of (I). Intermolecular hydrogen bonds are shown as dashed lines. H atoms unrelated to the hydrogen bonding have been omitted for clarity.

Crystal data

C14H10BrClN2O3F(000) = 736
Mr = 369.60Dx = 1.749 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.279 (2) ÅCell parameters from 2405 reflections
b = 11.446 (3) Åθ = 2.3–24.6°
c = 14.998 (4) ŵ = 3.13 mm1
β = 99.002 (4)°T = 298 K
V = 1403.7 (6) Å3Block, colourless
Z = 40.17 × 0.15 × 0.15 mm

Data collection

Bruker SMART CCD area-detector diffractometer3006 independent reflections
Radiation source: fine-focus sealed tube2102 reflections with I > 2σ(I)
graphiteRint = 0.049
ω scansθmax = 27.0°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −10→10
Tmin = 0.618, Tmax = 0.651k = −14→14
10685 measured reflectionsl = −19→19

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.03w = 1/[σ2(Fo2) + (0.0455P)2 + 0.1022P] where P = (Fo2 + 2Fc2)/3
3006 reflections(Δ/σ)max = 0.001
195 parametersΔρmax = 0.50 e Å3
1 restraintΔρmin = −0.36 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br11.16504 (5)0.88843 (3)1.28591 (2)0.05440 (17)
Cl11.19663 (10)0.56024 (7)1.02050 (6)0.0436 (2)
N10.7282 (3)0.9996 (2)0.98662 (16)0.0299 (6)
N20.6142 (3)1.0530 (2)0.92314 (15)0.0303 (6)
O10.9168 (3)0.98960 (19)1.14418 (14)0.0409 (5)
H10.84791.01831.10510.061*
O20.5803 (3)1.20014 (17)1.01833 (13)0.0387 (5)
O30.0964 (3)1.38132 (18)0.68220 (14)0.0426 (6)
H30.09781.35530.63140.064*
C10.9178 (3)0.8455 (2)1.02657 (18)0.0275 (6)
C20.9719 (3)0.8893 (2)1.11358 (19)0.0278 (6)
C31.0902 (4)0.8268 (3)1.17019 (18)0.0314 (7)
C41.1560 (4)0.7256 (3)1.1431 (2)0.0351 (7)
H41.23410.68471.18240.042*
C51.1051 (4)0.6856 (3)1.0573 (2)0.0323 (7)
C60.9868 (4)0.7438 (3)0.9991 (2)0.0324 (7)
H60.95320.71490.94120.039*
C70.7930 (4)0.9061 (3)0.9632 (2)0.0327 (7)
H70.76100.87600.90560.039*
C80.5482 (4)1.1559 (3)0.94328 (19)0.0283 (7)
C90.4350 (3)1.2130 (2)0.87016 (17)0.0258 (6)
C100.3617 (4)1.3161 (3)0.89023 (19)0.0344 (7)
H100.38881.34820.94760.041*
C110.2498 (4)1.3723 (3)0.8275 (2)0.0375 (8)
H110.20091.44120.84260.045*
C120.2103 (4)1.3258 (3)0.74178 (18)0.0287 (7)
C130.2856 (4)1.2251 (3)0.71958 (18)0.0349 (7)
H130.26151.19480.66150.042*
C140.3965 (4)1.1692 (3)0.78333 (19)0.0339 (7)
H140.44651.10090.76790.041*
H20.577 (5)1.016 (3)0.8710 (15)0.080*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0585 (3)0.0637 (3)0.0345 (2)0.00635 (19)−0.01299 (16)−0.01098 (17)
Cl10.0499 (5)0.0294 (4)0.0502 (5)0.0096 (4)0.0043 (4)−0.0043 (4)
N10.0290 (13)0.0281 (14)0.0296 (13)−0.0019 (11)−0.0045 (10)0.0072 (11)
N20.0334 (14)0.0286 (14)0.0251 (13)0.0009 (11)−0.0071 (10)0.0026 (11)
O10.0468 (14)0.0366 (13)0.0358 (13)0.0113 (11)−0.0046 (10)−0.0055 (10)
O20.0562 (14)0.0317 (12)0.0229 (11)−0.0037 (10)−0.0105 (9)0.0004 (9)
O30.0609 (15)0.0360 (13)0.0264 (11)0.0180 (11)−0.0070 (11)0.0015 (9)
C10.0285 (16)0.0244 (16)0.0278 (15)−0.0028 (13)−0.0009 (12)0.0029 (12)
C20.0281 (16)0.0255 (16)0.0288 (15)−0.0008 (13)0.0006 (12)−0.0007 (12)
C30.0298 (16)0.0368 (18)0.0251 (15)−0.0048 (14)−0.0040 (12)−0.0032 (13)
C40.0330 (17)0.0341 (18)0.0368 (18)0.0013 (14)0.0011 (13)0.0044 (14)
C50.0335 (17)0.0258 (17)0.0376 (17)−0.0019 (13)0.0056 (13)−0.0002 (13)
C60.0358 (17)0.0311 (18)0.0283 (16)−0.0039 (14)−0.0009 (13)0.0006 (13)
C70.0356 (18)0.0313 (18)0.0288 (16)−0.0059 (14)−0.0023 (13)0.0023 (13)
C80.0301 (16)0.0251 (16)0.0274 (16)−0.0075 (13)−0.0023 (12)0.0043 (12)
C90.0300 (16)0.0243 (16)0.0214 (14)−0.0063 (13)−0.0009 (11)0.0043 (12)
C100.052 (2)0.0295 (18)0.0191 (14)0.0013 (15)−0.0020 (13)−0.0031 (12)
C110.056 (2)0.0253 (17)0.0296 (17)0.0130 (15)−0.0001 (15)−0.0038 (13)
C120.0373 (17)0.0239 (16)0.0227 (15)0.0020 (13)−0.0023 (12)0.0057 (12)
C130.051 (2)0.0319 (18)0.0185 (15)0.0053 (15)−0.0046 (13)−0.0041 (12)
C140.0457 (19)0.0232 (16)0.0299 (16)0.0090 (14)−0.0031 (13)−0.0029 (13)

Geometric parameters (Å, °)

Br1—C31.886 (3)C4—C51.369 (4)
Cl1—C51.751 (3)C4—H40.9300
N1—C71.271 (4)C5—C61.378 (4)
N1—N21.375 (3)C6—H60.9300
N2—C81.353 (4)C7—H70.9300
N2—H20.90 (3)C8—C91.478 (4)
O1—C21.343 (3)C9—C101.381 (4)
O1—H10.8200C9—C141.385 (4)
O2—C81.225 (3)C10—C111.372 (4)
O3—C121.353 (3)C10—H100.9300
O3—H30.8200C11—C121.383 (4)
C1—C61.387 (4)C11—H110.9300
C1—C21.404 (4)C12—C131.376 (4)
C1—C71.464 (4)C13—C141.376 (4)
C2—C31.390 (4)C13—H130.9300
C3—C41.368 (4)C14—H140.9300
C7—N1—N2117.2 (2)N1—C7—C1120.4 (3)
C8—N2—N1119.4 (2)N1—C7—H7119.8
C8—N2—H2120 (3)C1—C7—H7119.8
N1—N2—H2120 (3)O2—C8—N2121.8 (3)
C2—O1—H1109.5O2—C8—C9121.4 (3)
C12—O3—H3109.5N2—C8—C9116.8 (2)
C6—C1—C2119.3 (3)C10—C9—C14118.0 (3)
C6—C1—C7119.1 (3)C10—C9—C8117.7 (2)
C2—C1—C7121.6 (3)C14—C9—C8124.3 (3)
O1—C2—C3118.4 (3)C11—C10—C9121.6 (3)
O1—C2—C1123.2 (3)C11—C10—H10119.2
C3—C2—C1118.4 (3)C9—C10—H10119.2
C4—C3—C2122.0 (3)C10—C11—C12119.5 (3)
C4—C3—Br1120.1 (2)C10—C11—H11120.2
C2—C3—Br1117.9 (2)C12—C11—H11120.2
C3—C4—C5119.0 (3)O3—C12—C13122.0 (3)
C3—C4—H4120.5O3—C12—C11118.2 (3)
C5—C4—H4120.5C13—C12—C11119.8 (3)
C4—C5—C6121.2 (3)C14—C13—C12120.0 (3)
C4—C5—Cl1119.1 (2)C14—C13—H13120.0
C6—C5—Cl1119.7 (2)C12—C13—H13120.0
C5—C6—C1120.2 (3)C13—C14—C9121.0 (3)
C5—C6—H6119.9C13—C14—H14119.5
C1—C6—H6119.9C9—C14—H14119.5

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2···O3i0.90 (3)2.17 (3)2.922 (3)140 (3)
O1—H1···N10.821.912.623 (3)146.

Symmetry codes: (i) −x+1/2, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2178).

References

  • Bhandari, S. V., Bothara, K. G., Raut, M. K., Patil, A. A., Sarkate, A. P. & Mokale, V. J. (2008). Bioorg. Med. Chem.16, 1822–1831. [PubMed]
  • Bruker (1998). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Diao, C.-H. & Yu, M. (2006). Acta Cryst. E62, o5278–o5279.
  • Fun, H.-K., Patil, P. S., Rao, J. N., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1707. [PMC free article] [PubMed]
  • He, Y.-Z. & Liu, D.-Z. (2005). Acta Cryst. E61, o3855–o3856.
  • Jing, Z.-L., Wang, X.-Y., Chen, X. & Deng, Q.-L. (2005). Acta Cryst. E61, o4316–o4317.
  • Lu, J.-F., Min, S.-T., Ji, X.-H. & Dang, Z.-H. (2008). Acta Cryst. E64, o1694. [PMC free article] [PubMed]
  • Salhin, A., Tameem, A. A., Saad, B., Ng, S.-L. & Fun, H.-K. (2007). Acta Cryst. E63, o2880.
  • Shan, S., Tian, Y.-L., Wang, S.-H., Wang, W.-L. & Xu, Y.-L. (2008). Acta Cryst. E64, o1363. [PMC free article] [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Singh, K., Barwa, M. S. & Tyagi, P. (2006). Eur. J. Med. Chem.41, 147–153. [PubMed]
  • Sinha, D., Tiwari, A. K., Singh, S., Shukla, G., Mishra, P., Chandra, H. & Mishra, A. K. (2008). Eur. J. Med. Chem.43, 160–165. [PubMed]
  • Sondhi, S. M., Singh, N., Kumar, A., Lozach, O. & Meijer, L. (2006). Bioorg. Med. Chem.14, 3758–3765. [PubMed]
  • Zhen, X.-L. & Han, J.-R. (2005). Acta Cryst. E61, o4360–o4361.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography