PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 October 1; 64(Pt 10): m1225.
Published online 2008 September 6. doi:  10.1107/S1600536808027621
PMCID: PMC2959258

trans-(4-Acetyl­naphth­yl)chlorido­bis(triphenyl­phosphine-κP)nickel(II) dichloro­methane solvate

Abstract

The title compound, [Ni(C12H9O)Cl(C18H15P)2]·CH2Cl2, was synthesized from the reaction between 1-acetyl-4-chloro­naphthalene, NiCl2·6H2O and triphenyl­phosphine (PPh3) in ethanol. The compound contains one crystallographically unique nickel ion in a pseudo-square-planar geometry.

Related literature

For related literature, see: Brandsma et al. (1998 [triangle]); Semmelhack et al. (1971 [triangle]); Soolinger et al. (1990 [triangle]); Chen & Yang (2007 [triangle]); Cramer & Coulson (1975 [triangle]); Morrell & Kochi (1975 [triangle]); Parshall (1974 [triangle]); Semmelhack & Ryono (1975 [triangle]); Tsou & Kochi (1979a [triangle],b [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1225-scheme1.jpg

Experimental

Crystal data

  • [Ni(C12H9O)Cl(C18H15P)2]·CH2Cl2
  • M r = 872.82
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1225-efi1.jpg
  • a = 21.203 (4) Å
  • b = 10.957 (2) Å
  • c = 21.048 (4) Å
  • β = 117.95 (3)°
  • V = 4319.5 (15) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.74 mm−1
  • T = 296 (2) K
  • 0.22 × 0.17 × 0.14 mm

Data collection

  • Rigaku R-AXIS RAPID IP area-detector diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle] T min = 0.853, T max = 0.903
  • 14070 measured reflections
  • 7579 independent reflections
  • 4611 reflections with I > 2σ(I)
  • R int = 0.063

Refinement

  • R[F 2 > 2σ(F 2)] = 0.080
  • wR(F 2) = 0.182
  • S = 1.05
  • 7579 reflections
  • 505 parameters
  • 9 restraints
  • H-atom parameters constrained
  • Δρmax = 0.39 e Å−3
  • Δρmin = −0.53 e Å−3

Data collection: RAPID-AUTO (Rigaku, 2001 [triangle]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELX97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808027621/bv2106sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808027621/bv2106Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the National Natural Science Foundation of China (project No. 20672116) for financial support.

supplementary crystallographic information

Comment

Research in the field of organonickel catalysts has developed significantly in recent years. Semmelhack et al. (1971) have demonstrated that the Ni(II)–(σ–aryl) complex may act as an intermediate (oxidative adduct) in the catalytic cycle of Ni-catalyzed cross-couplings. Cramer & Coulson (1975), Morrell & Kochi (1975), Parshall (1974), Tsou & Kochi (1979a) and Tsou & Kochi (1979b) have also conducted an intensive investigation of Ni(II)–(σ–aryl) complexes, focusing mainly on insight into the nature and mechanism of nickel-catalyzed processes. In addition, Soolinger et al. (1990) have shown that it is possible to use such complexes as catalyst in cross-coupling reactions. Consequently, we were interested in the synthesis and direct application of Ni(II)–(σ–aryl) complex catalysts for carbon-heteroatom coupling. In particular, we are investigating a type of isolatable trans-haloarylbis(triphenylphosphine)nickel(II) that is readily available and air- and thermally stable (Chen & Yang, 2007). For this purpose, we have synthesized the title compound in an analogous fashion to a previous literature precedent (Brandsma et al. 1998).

The reaction between NiCl2.6H2O, PPh3 and 1-acetyl-4-chloronaphthalene in ethanol leads to the formation the title compound (I) in high yield. The Ni2+ metal centre of the complex displays a pseudo-square-planar geometry (Figure I).

Experimental

A stirred mixture of 48.0 g (0.20 mol) of NiCl2.6H2O, 115.3 g (0.44 mol) of triphenylphosphine and 900 ml of 96% ethanol was heated until a gentle reflux started. 1-Acetyl-4-chloronaphthalene (0.4 mol, 82 g, excesss) was then added, followed by zinc dust (13 g, 0.2 mol, Merck, analytical grade) over 5 min. The mixture very soon turned yellow. After stirring and heating under reflux for 1.5 h (under nitrogen), the mixture was cooled to 293 K. Four 20-ml portions of 30% aqueous hydrochloric acid were added over 15 min. After stirring for 1.5 h, the solid was filtered off on a sintered-glass funnel and successively washed with 200 ml of ethanol, twice with 200 ml of 1M aqueous hydrochloric acid, twice with 200 ml of 96% ethanol and once with 200 ml of pentane. The yellowish solid was dried in vacuo. The yield was at least 80%. Single crystals suitable for X-ray measurements were grown by slow evaporation of a CH2Cl2 solution and the crystals contain one molecule of CH2Cl2. 1HNMR (CDCl3, 300 MHz): 2.40 (s, 3 H), 5.29 (s, 2 H), 7.11–7.15 (m, 15 H), 7.22–7.25 (m, 8 H), 7.47–7.49 (m, 13 H). Anal. Calcd for C48H39ClNiOP2?CH2Cl2: C, 67.43; H, 4.73. Found: C, 67.76; H, 4.71.

Refinement

All nine restraints were used to make the refinement of the slightly disordered solvent, dichloromethane, more stable. Six of the restraints were used to make the anisotropic displacement parameters of C49 in dichloromethane approximately isotropic. The other three restraints were used to make the components of the anisotropic displacement parameters in the direction of the C-Cl bond in dichloromethane approximately equal. H atoms were fixed geometrically and allowed to ride on their parent atoms, with C—H distances of 0.93–0.97 Å, and with Uiso=1.2–1.5Ueq of the parent atoms.

Figures

Fig. 1.
A view of the complex, Ellipsoids are drawn at the 30% probability level.

Crystal data

[Ni(C12H9O)Cl(C18H15P)2]·CH2Cl2F(000) = 1808
Mr = 872.82Dx = 1.342 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 21.203 (4) ÅCell parameters from 14070 reflections
b = 10.957 (2) Åθ = 2.2–25.0°
c = 21.048 (4) ŵ = 0.75 mm1
β = 117.95 (3)°T = 296 K
V = 4319.5 (15) Å3Block, yellow
Z = 40.22 × 0.17 × 0.14 mm

Data collection

Rigaku R-AXIS RAPID IP area-detector diffractometer7579 independent reflections
Radiation source: rotating anode4611 reflections with I > 2σ(I)
graphiteRint = 0.063
ω scans at fixed χ = 45°θmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995h = −25→25
Tmin = 0.853, Tmax = 0.903k = −13→13
14070 measured reflectionsl = −24→25

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.080Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.182H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + (0.074P)2 + 3.5819P] where P = (Fo2 + 2Fc2)/3
7579 reflections(Δ/σ)max < 0.001
505 parametersΔρmax = 0.39 e Å3
9 restraintsΔρmin = −0.53 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni10.30210 (4)0.08593 (7)0.15828 (4)0.0395 (2)
P10.32506 (8)0.00633 (14)0.26432 (7)0.0388 (4)
P20.27230 (8)0.16467 (14)0.05070 (8)0.0425 (4)
Cl10.40230 (8)0.00498 (17)0.16800 (9)0.0618 (5)
C10.2331 (3)0.1868 (6)0.1637 (3)0.0488 (15)
C20.2542 (3)0.3039 (6)0.1945 (3)0.0487 (15)
H2A0.30050.32990.20830.058*
C30.2087 (4)0.3806 (6)0.2049 (3)0.0614 (18)
H3A0.22530.45600.22650.074*
C40.1373 (3)0.3475 (7)0.1834 (4)0.0587 (18)
C50.0452 (4)0.1886 (7)0.1291 (4)0.073 (2)
H5A0.01310.23770.13580.088*
C60.0226 (4)0.0753 (9)0.0977 (5)0.096 (3)
H6A−0.02400.04980.08300.115*
C70.0703 (4)0.0002 (8)0.0885 (5)0.087 (3)
H7A0.0559−0.07680.06810.104*
C80.1382 (3)0.0388 (6)0.1093 (3)0.0507 (16)
H8A0.1691−0.01210.10170.061*
C90.1628 (3)0.1510 (6)0.1413 (3)0.0490 (15)
C100.1131 (3)0.2317 (6)0.1507 (3)0.0554 (17)
C110.0928 (5)0.4364 (8)0.1947 (5)0.085 (2)
C120.1249 (5)0.5371 (9)0.2479 (5)0.112 (3)
H12A0.08760.58690.24780.169*
H12B0.15480.58610.23520.169*
H12C0.15290.50320.29500.169*
C130.3593 (3)−0.1497 (5)0.2738 (3)0.0409 (13)
C140.3231 (4)−0.2292 (6)0.2175 (3)0.0612 (18)
H14A0.2821−0.20350.17710.073*
C150.3475 (4)−0.3463 (7)0.2209 (4)0.077 (2)
H15A0.3223−0.39970.18300.092*
C160.4082 (4)−0.3856 (7)0.2789 (5)0.073 (2)
H16A0.4244−0.46500.28070.088*
C170.4447 (4)−0.3064 (7)0.3344 (4)0.070 (2)
H17A0.4864−0.33200.37400.084*
C180.4201 (3)−0.1883 (6)0.3324 (3)0.0511 (15)
H18A0.4450−0.13560.37070.061*
C190.2542 (3)−0.0083 (5)0.2901 (3)0.0410 (14)
C200.2276 (3)0.0955 (6)0.3072 (3)0.0534 (16)
H20A0.24950.17030.31000.064*
C210.1692 (4)0.0906 (8)0.3204 (3)0.065 (2)
H21A0.15140.16160.33030.078*
C220.1384 (4)−0.0189 (9)0.3187 (4)0.078 (2)
H22A0.0994−0.02310.32750.094*
C230.1648 (4)−0.1226 (8)0.3042 (5)0.087 (3)
H23A0.1444−0.19760.30450.104*
C240.2212 (4)−0.1174 (6)0.2891 (4)0.0649 (19)
H24A0.2375−0.18890.27800.078*
C250.3928 (3)0.0981 (5)0.3373 (3)0.0432 (14)
C260.4041 (3)0.0847 (7)0.4081 (3)0.0594 (17)
H26A0.37870.02600.41860.071*
C270.4523 (4)0.1571 (8)0.4619 (4)0.074 (2)
H27A0.45990.14690.50890.089*
C280.4892 (4)0.2442 (8)0.4466 (4)0.079 (3)
H28A0.52120.29430.48320.094*
C290.4795 (3)0.2588 (6)0.3778 (4)0.069 (2)
H29A0.50500.31820.36800.083*
C300.4314 (3)0.1846 (6)0.3229 (4)0.0549 (17)
H30A0.42530.19350.27640.066*
C310.1786 (3)0.1968 (6)−0.0129 (3)0.0531 (16)
C320.1423 (4)0.2884 (7)0.0015 (4)0.0653 (19)
H32A0.16550.33210.04420.078*
C330.0719 (4)0.3167 (9)−0.0466 (5)0.088 (3)
H33A0.04810.3794−0.03690.105*
C340.0382 (4)0.2491 (10)−0.1094 (5)0.095 (3)
H34A−0.00900.2667−0.14210.114*
C350.0724 (5)0.1580 (9)−0.1239 (5)0.094 (3)
H35A0.04900.1135−0.16630.113*
C360.1427 (4)0.1311 (7)−0.0751 (4)0.066 (2)
H36A0.16580.0674−0.08490.080*
C370.2992 (3)0.0733 (6)−0.0052 (3)0.0484 (15)
C380.2945 (4)−0.0516 (6)−0.0044 (4)0.072 (2)
H38A0.2819−0.08850.02790.086*
C390.3079 (5)−0.1232 (7)−0.0505 (4)0.084 (2)
H39A0.3038−0.2076−0.04970.101*
C400.3272 (4)−0.0701 (9)−0.0972 (4)0.085 (2)
H40A0.3355−0.1180−0.12900.102*
C410.3345 (4)0.0533 (8)−0.0972 (4)0.081 (2)
H41A0.34930.0893−0.12800.097*
C420.3200 (4)0.1257 (6)−0.0517 (4)0.0623 (19)
H42A0.32430.2101−0.05260.075*
C430.3157 (3)0.3125 (5)0.0609 (3)0.0474 (15)
C440.2852 (4)0.4064 (6)0.0119 (4)0.0594 (17)
H44A0.24150.3939−0.02870.071*
C450.3187 (5)0.5187 (7)0.0223 (5)0.081 (2)
H45A0.29700.5809−0.01100.097*
C460.3827 (5)0.5386 (8)0.0806 (5)0.083 (2)
H46A0.40480.61440.08750.100*
C470.4149 (4)0.4462 (8)0.1293 (4)0.072 (2)
H47A0.45930.45900.16890.087*
C480.3810 (3)0.3325 (6)0.1198 (3)0.0553 (17)
H48A0.40280.27060.15330.066*
O10.0262 (4)0.4345 (7)0.1605 (5)0.145 (3)
C490.1173 (9)0.8578 (12)0.4912 (7)0.222 (8)
H49A0.06640.85290.45920.266*
H49B0.13470.93130.47890.266*
Cl20.1563 (2)0.7385 (4)0.4758 (3)0.1911 (17)
Cl30.1305 (3)0.8714 (6)0.5768 (3)0.247 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.0434 (4)0.0430 (4)0.0364 (4)0.0042 (3)0.0222 (3)0.0058 (3)
P10.0431 (8)0.0412 (9)0.0335 (8)0.0034 (7)0.0192 (6)0.0030 (7)
P20.0488 (9)0.0426 (9)0.0389 (8)−0.0022 (7)0.0228 (7)0.0058 (7)
Cl10.0528 (9)0.0820 (13)0.0607 (10)0.0167 (9)0.0350 (8)0.0139 (9)
C10.047 (3)0.050 (4)0.044 (3)−0.003 (3)0.018 (3)0.014 (3)
C20.044 (3)0.050 (4)0.052 (4)−0.008 (3)0.022 (3)0.001 (3)
C30.065 (4)0.057 (5)0.055 (4)0.014 (3)0.022 (3)0.002 (3)
C40.048 (4)0.065 (5)0.063 (4)0.014 (3)0.026 (3)0.016 (4)
C50.056 (4)0.065 (5)0.087 (6)0.000 (4)0.025 (4)0.008 (4)
C60.053 (5)0.098 (7)0.126 (8)−0.005 (5)0.033 (5)0.011 (6)
C70.062 (5)0.081 (6)0.101 (6)−0.006 (5)0.023 (4)0.010 (5)
C80.045 (3)0.048 (4)0.054 (4)−0.002 (3)0.019 (3)0.002 (3)
C90.054 (4)0.047 (4)0.046 (3)−0.001 (3)0.023 (3)0.009 (3)
C100.055 (4)0.054 (4)0.060 (4)0.014 (3)0.029 (3)0.017 (3)
C110.076 (6)0.080 (6)0.098 (6)0.010 (5)0.041 (5)0.001 (5)
C120.127 (8)0.099 (7)0.110 (7)0.037 (6)0.054 (6)−0.019 (6)
C130.048 (3)0.037 (3)0.043 (3)0.007 (3)0.026 (3)0.003 (3)
C140.065 (4)0.060 (5)0.053 (4)0.011 (4)0.023 (3)−0.001 (3)
C150.100 (6)0.065 (5)0.072 (5)0.011 (5)0.046 (5)−0.012 (4)
C160.091 (6)0.049 (5)0.097 (6)0.020 (4)0.058 (5)0.005 (4)
C170.064 (4)0.064 (5)0.081 (5)0.018 (4)0.034 (4)0.020 (4)
C180.052 (4)0.048 (4)0.055 (4)0.007 (3)0.027 (3)0.007 (3)
C190.046 (3)0.048 (4)0.033 (3)0.011 (3)0.022 (3)0.002 (3)
C200.064 (4)0.058 (4)0.041 (3)0.010 (3)0.026 (3)0.005 (3)
C210.072 (4)0.086 (6)0.048 (4)0.023 (4)0.038 (3)0.003 (4)
C220.072 (5)0.101 (7)0.085 (6)−0.005 (5)0.055 (5)−0.002 (5)
C230.100 (6)0.072 (6)0.121 (7)−0.030 (5)0.079 (6)−0.012 (5)
C240.081 (5)0.055 (5)0.081 (5)−0.010 (4)0.056 (4)−0.006 (4)
C250.043 (3)0.041 (3)0.038 (3)0.011 (3)0.014 (3)−0.002 (3)
C260.060 (4)0.070 (5)0.045 (4)0.009 (4)0.022 (3)−0.003 (4)
C270.067 (5)0.095 (6)0.043 (4)0.006 (5)0.012 (4)−0.020 (4)
C280.051 (4)0.080 (6)0.074 (6)0.012 (4)0.003 (4)−0.037 (5)
C290.051 (4)0.052 (4)0.089 (6)0.000 (3)0.020 (4)−0.012 (4)
C300.050 (4)0.051 (4)0.058 (4)0.005 (3)0.021 (3)−0.002 (3)
C310.057 (4)0.054 (4)0.050 (4)−0.009 (3)0.026 (3)0.014 (3)
C320.058 (4)0.071 (5)0.061 (4)0.009 (4)0.023 (4)0.017 (4)
C330.065 (5)0.096 (7)0.098 (7)0.016 (5)0.035 (5)0.032 (6)
C340.059 (5)0.104 (8)0.087 (7)−0.009 (5)0.006 (5)0.036 (6)
C350.071 (6)0.100 (7)0.079 (6)−0.025 (5)0.008 (5)−0.001 (5)
C360.061 (4)0.062 (5)0.061 (5)−0.014 (4)0.016 (4)0.005 (4)
C370.059 (4)0.047 (4)0.040 (3)−0.007 (3)0.024 (3)0.001 (3)
C380.113 (6)0.055 (5)0.066 (5)−0.010 (4)0.059 (5)−0.002 (4)
C390.131 (7)0.048 (5)0.080 (6)0.003 (5)0.055 (5)−0.001 (4)
C400.094 (6)0.089 (7)0.083 (6)−0.004 (5)0.051 (5)−0.022 (5)
C410.095 (6)0.092 (7)0.078 (5)−0.023 (5)0.058 (5)−0.015 (5)
C420.078 (5)0.060 (5)0.065 (4)−0.012 (4)0.047 (4)−0.009 (3)
C430.059 (4)0.043 (4)0.049 (4)−0.010 (3)0.032 (3)−0.005 (3)
C440.077 (4)0.045 (4)0.061 (4)−0.002 (4)0.037 (4)0.010 (3)
C450.099 (6)0.055 (5)0.106 (7)−0.009 (4)0.062 (6)0.014 (4)
C460.097 (7)0.058 (5)0.121 (8)−0.017 (5)0.072 (6)−0.010 (5)
C470.059 (4)0.088 (6)0.083 (5)−0.029 (4)0.045 (4)−0.041 (5)
C480.053 (4)0.065 (5)0.061 (4)−0.009 (3)0.038 (3)−0.004 (3)
O10.083 (5)0.133 (6)0.204 (8)0.034 (4)0.054 (5)−0.043 (6)
C490.32 (2)0.117 (10)0.143 (9)0.080 (11)0.034 (12)−0.023 (9)
Cl20.154 (3)0.179 (4)0.273 (5)0.019 (3)0.128 (3)−0.007 (3)
Cl30.246 (5)0.310 (7)0.184 (4)−0.016 (5)0.100 (4)−0.079 (4)

Geometric parameters (Å, °)

Ni1—C11.880 (6)C23—C241.375 (10)
Ni1—P22.2204 (17)C23—H23A0.9300
Ni1—Cl12.2215 (17)C24—H24A0.9300
Ni1—P12.2273 (17)C25—C301.375 (8)
P1—C191.829 (6)C25—C261.402 (8)
P1—C131.831 (6)C26—C271.367 (9)
P1—C251.834 (6)C26—H26A0.9300
P2—C431.825 (6)C27—C281.366 (11)
P2—C371.828 (6)C27—H27A0.9300
P2—C311.836 (6)C28—C291.374 (10)
C1—C91.392 (8)C28—H28A0.9300
C1—C21.412 (8)C29—C301.390 (9)
C2—C31.371 (8)C29—H29A0.9300
C2—H2A0.9300C30—H30A0.9300
C3—C41.409 (9)C31—C361.370 (9)
C3—H3A0.9300C31—C321.382 (9)
C4—C101.420 (9)C32—C331.389 (9)
C4—C111.452 (10)C32—H32A0.9300
C5—C101.374 (9)C33—C341.386 (12)
C5—C61.381 (11)C33—H33A0.9300
C5—H5A0.9300C34—C351.350 (12)
C6—C71.386 (12)C34—H34A0.9300
C6—H6A0.9300C35—C361.389 (10)
C7—C81.362 (9)C35—H35A0.9300
C7—H7A0.9300C36—H36A0.9300
C8—C91.381 (8)C37—C381.373 (9)
C8—H8A0.9300C37—C421.373 (8)
C9—C101.459 (8)C38—C391.378 (10)
C11—O11.248 (9)C38—H38A0.9300
C11—C121.490 (11)C39—C401.360 (11)
C12—H12A0.9600C39—H39A0.9300
C12—H12B0.9600C40—C411.361 (11)
C12—H12C0.9600C40—H40A0.9300
C13—C181.368 (8)C41—C421.385 (10)
C13—C141.378 (8)C41—H41A0.9300
C14—C151.373 (9)C42—H42A0.9300
C14—H14A0.9300C43—C481.376 (8)
C15—C161.363 (10)C43—C441.384 (8)
C15—H15A0.9300C44—C451.385 (9)
C16—C171.367 (10)C44—H44A0.9300
C16—H16A0.9300C45—C461.355 (11)
C17—C181.388 (9)C45—H45A0.9300
C17—H17A0.9300C46—C471.374 (11)
C18—H18A0.9300C46—H46A0.9300
C19—C241.380 (8)C47—C481.404 (9)
C19—C201.390 (8)C47—H47A0.9300
C20—C211.391 (9)C48—H48A0.9300
C20—H20A0.9300C49—Cl21.658 (13)
C21—C221.359 (10)C49—Cl31.696 (15)
C21—H21A0.9300C49—H49A0.9700
C22—C231.362 (11)C49—H49B0.9700
C22—H22A0.9300
C1—Ni1—P288.62 (18)C23—C22—H22A120.0
C1—Ni1—Cl1165.33 (19)C22—C23—C24120.7 (7)
P2—Ni1—Cl192.97 (7)C22—C23—H23A119.7
C1—Ni1—P188.87 (18)C24—C23—H23A119.7
P2—Ni1—P1176.57 (7)C23—C24—C19121.5 (7)
Cl1—Ni1—P190.05 (7)C23—C24—H24A119.3
C19—P1—C13103.0 (3)C19—C24—H24A119.3
C19—P1—C25103.2 (3)C30—C25—C26118.9 (6)
C13—P1—C25107.8 (3)C30—C25—P1120.4 (5)
C19—P1—Ni1120.53 (18)C26—C25—P1120.6 (5)
C13—P1—Ni1111.32 (19)C27—C26—C25120.6 (7)
C25—P1—Ni1110.0 (2)C27—C26—H26A119.7
C43—P2—C37105.7 (3)C25—C26—H26A119.7
C43—P2—C31103.2 (3)C28—C27—C26119.8 (7)
C37—P2—C31101.2 (3)C28—C27—H27A120.1
C43—P2—Ni1109.7 (2)C26—C27—H27A120.1
C37—P2—Ni1114.7 (2)C27—C28—C29120.8 (7)
C31—P2—Ni1120.8 (2)C27—C28—H28A119.6
C9—C1—C2118.0 (6)C29—C28—H28A119.6
C9—C1—Ni1123.6 (5)C28—C29—C30119.8 (8)
C2—C1—Ni1118.3 (4)C28—C29—H29A120.1
C3—C2—C1122.3 (6)C30—C29—H29A120.1
C3—C2—H2A118.8C25—C30—C29120.0 (7)
C1—C2—H2A118.8C25—C30—H30A120.0
C2—C3—C4121.4 (6)C29—C30—H30A120.0
C2—C3—H3A119.3C36—C31—C32118.3 (6)
C4—C3—H3A119.3C36—C31—P2121.5 (6)
C3—C4—C10118.4 (6)C32—C31—P2120.2 (5)
C3—C4—C11117.3 (7)C31—C32—C33121.4 (8)
C10—C4—C11124.3 (6)C31—C32—H32A119.3
C10—C5—C6122.8 (8)C33—C32—H32A119.3
C10—C5—H5A118.6C34—C33—C32118.3 (9)
C6—C5—H5A118.6C34—C33—H33A120.9
C5—C6—C7119.3 (8)C32—C33—H33A120.9
C5—C6—H6A120.4C35—C34—C33121.2 (8)
C7—C6—H6A120.4C35—C34—H34A119.4
C8—C7—C6120.1 (8)C33—C34—H34A119.4
C8—C7—H7A120.0C34—C35—C36119.6 (8)
C6—C7—H7A120.0C34—C35—H35A120.2
C7—C8—C9122.3 (7)C36—C35—H35A120.2
C7—C8—H8A118.9C31—C36—C35121.2 (8)
C9—C8—H8A118.9C31—C36—H36A119.4
C8—C9—C1121.0 (6)C35—C36—H36A119.4
C8—C9—C10118.3 (6)C38—C37—C42118.4 (6)
C1—C9—C10120.7 (6)C38—C37—P2119.4 (5)
C5—C10—C4123.5 (7)C42—C37—P2122.1 (5)
C5—C10—C9117.3 (7)C37—C38—C39121.2 (7)
C4—C10—C9119.1 (6)C37—C38—H38A119.4
O1—C11—C4122.7 (8)C39—C38—H38A119.4
O1—C11—C12116.2 (8)C40—C39—C38119.8 (7)
C4—C11—C12121.1 (8)C40—C39—H39A120.1
C11—C12—H12A109.5C38—C39—H39A120.1
C11—C12—H12B109.5C39—C40—C41119.8 (8)
H12A—C12—H12B109.5C39—C40—H40A120.1
C11—C12—H12C109.5C41—C40—H40A120.1
H12A—C12—H12C109.5C40—C41—C42120.4 (8)
H12B—C12—H12C109.5C40—C41—H41A119.8
C18—C13—C14119.3 (6)C42—C41—H41A119.8
C18—C13—P1123.0 (5)C37—C42—C41120.2 (7)
C14—C13—P1117.6 (4)C37—C42—H42A119.9
C15—C14—C13120.1 (6)C41—C42—H42A119.9
C15—C14—H14A120.0C48—C43—C44118.3 (6)
C13—C14—H14A120.0C48—C43—P2119.1 (5)
C16—C15—C14121.1 (7)C44—C43—P2122.6 (5)
C16—C15—H15A119.4C43—C44—C45121.1 (7)
C14—C15—H15A119.4C43—C44—H44A119.5
C15—C16—C17118.9 (7)C45—C44—H44A119.5
C15—C16—H16A120.6C46—C45—C44120.6 (8)
C17—C16—H16A120.6C46—C45—H45A119.7
C16—C17—C18120.8 (7)C44—C45—H45A119.7
C16—C17—H17A119.6C45—C46—C47119.5 (8)
C18—C17—H17A119.6C45—C46—H46A120.2
C13—C18—C17119.8 (6)C47—C46—H46A120.2
C13—C18—H18A120.1C46—C47—C48120.4 (7)
C17—C18—H18A120.1C46—C47—H47A119.8
C24—C19—C20116.6 (6)C48—C47—H47A119.8
C24—C19—P1123.5 (5)C43—C48—C47120.1 (7)
C20—C19—P1119.7 (5)C43—C48—H48A120.0
C19—C20—C21121.8 (7)C47—C48—H48A120.0
C19—C20—H20A119.1Cl2—C49—Cl3115.4 (8)
C21—C20—H20A119.1Cl2—C49—H49A108.4
C22—C21—C20119.4 (7)Cl3—C49—H49A108.4
C22—C21—H21A120.3Cl2—C49—H49B108.4
C20—C21—H21A120.3Cl3—C49—H49B108.4
C21—C22—C23120.0 (7)H49A—C49—H49B107.5
C21—C22—H22A120.0
C1—Ni1—P1—C1932.3 (3)Ni1—P1—C19—C24103.8 (5)
P2—Ni1—P1—C19−10.5 (13)C13—P1—C19—C20163.7 (4)
Cl1—Ni1—P1—C19−162.3 (2)C25—P1—C19—C2051.6 (5)
C1—Ni1—P1—C13153.0 (3)Ni1—P1—C19—C20−71.5 (5)
P2—Ni1—P1—C13110.2 (12)C24—C19—C20—C21−2.0 (9)
Cl1—Ni1—P1—C13−41.6 (2)P1—C19—C20—C21173.7 (4)
C1—Ni1—P1—C25−87.5 (3)C19—C20—C21—C222.0 (9)
P2—Ni1—P1—C25−130.4 (12)C20—C21—C22—C23−0.1 (11)
Cl1—Ni1—P1—C2577.8 (2)C21—C22—C23—C24−1.9 (13)
C1—Ni1—P2—C4380.4 (3)C22—C23—C24—C191.9 (13)
Cl1—Ni1—P2—C43−85.1 (2)C20—C19—C24—C230.1 (10)
P1—Ni1—P2—C43123.2 (12)P1—C19—C24—C23−175.4 (6)
C1—Ni1—P2—C37−160.9 (3)C19—P1—C25—C30−142.6 (5)
Cl1—Ni1—P2—C3733.7 (2)C13—P1—C25—C30108.9 (5)
P1—Ni1—P2—C37−118.1 (12)Ni1—P1—C25—C30−12.7 (5)
C1—Ni1—P2—C31−39.4 (3)C19—P1—C25—C2635.0 (5)
Cl1—Ni1—P2—C31155.2 (3)C13—P1—C25—C26−73.6 (5)
P1—Ni1—P2—C313.4 (13)Ni1—P1—C25—C26164.8 (4)
P2—Ni1—C1—C992.1 (5)C30—C25—C26—C270.6 (9)
Cl1—Ni1—C1—C9−171.5 (4)P1—C25—C26—C27−177.0 (5)
P1—Ni1—C1—C9−85.6 (5)C25—C26—C27—C280.7 (11)
P2—Ni1—C1—C2−90.3 (4)C26—C27—C28—C29−1.2 (11)
Cl1—Ni1—C1—C26.2 (11)C27—C28—C29—C300.3 (11)
P1—Ni1—C1—C292.0 (4)C26—C25—C30—C29−1.5 (9)
C9—C1—C2—C32.0 (9)P1—C25—C30—C29176.1 (5)
Ni1—C1—C2—C3−175.7 (5)C28—C29—C30—C251.0 (10)
C1—C2—C3—C4−1.7 (10)C43—P2—C31—C36125.6 (5)
C2—C3—C4—C100.2 (10)C37—P2—C31—C3616.4 (6)
C2—C3—C4—C11−178.2 (7)Ni1—P2—C31—C36−111.4 (5)
C10—C5—C6—C71.2 (13)C43—P2—C31—C32−54.9 (6)
C5—C6—C7—C8−0.9 (13)C37—P2—C31—C32−164.1 (5)
C6—C7—C8—C91.5 (12)Ni1—P2—C31—C3268.1 (6)
C7—C8—C9—C1178.3 (6)C36—C31—C32—C33−2.1 (10)
C7—C8—C9—C10−2.1 (9)P2—C31—C32—C33178.4 (6)
C2—C1—C9—C8178.6 (6)C31—C32—C33—C341.1 (11)
Ni1—C1—C9—C8−3.8 (8)C32—C33—C34—C35−0.1 (13)
C2—C1—C9—C10−1.0 (8)C33—C34—C35—C360.1 (14)
Ni1—C1—C9—C10176.7 (4)C32—C31—C36—C352.1 (10)
C6—C5—C10—C4−179.6 (7)P2—C31—C36—C35−178.3 (6)
C6—C5—C10—C9−1.8 (11)C34—C35—C36—C31−1.2 (12)
C3—C4—C10—C5178.5 (6)C43—P2—C37—C38159.7 (5)
C11—C4—C10—C5−3.3 (11)C31—P2—C37—C38−93.0 (6)
C3—C4—C10—C90.8 (9)Ni1—P2—C37—C3838.7 (6)
C11—C4—C10—C9179.0 (6)C43—P2—C37—C42−24.5 (6)
C8—C9—C10—C52.2 (9)C31—P2—C37—C4282.8 (6)
C1—C9—C10—C5−178.3 (6)Ni1—P2—C37—C42−145.5 (5)
C8—C9—C10—C4−179.9 (6)C42—C37—C38—C39−2.0 (11)
C1—C9—C10—C4−0.4 (9)P2—C37—C38—C39174.0 (6)
C3—C4—C11—O1158.6 (9)C37—C38—C39—C400.9 (13)
C10—C4—C11—O1−19.7 (13)C38—C39—C40—C411.2 (13)
C3—C4—C11—C12−20.7 (11)C39—C40—C41—C42−2.2 (13)
C10—C4—C11—C12161.1 (8)C38—C37—C42—C411.0 (10)
C19—P1—C13—C18−99.9 (5)P2—C37—C42—C41−174.8 (6)
C25—P1—C13—C188.8 (6)C40—C41—C42—C371.0 (12)
Ni1—P1—C13—C18129.5 (5)C37—P2—C43—C48−93.3 (5)
C19—P1—C13—C1482.8 (5)C31—P2—C43—C48160.9 (5)
C25—P1—C13—C14−168.5 (5)Ni1—P2—C43—C4830.9 (5)
Ni1—P1—C13—C14−47.8 (5)C37—P2—C43—C4487.1 (6)
C18—C13—C14—C150.9 (10)C31—P2—C43—C44−18.7 (6)
P1—C13—C14—C15178.3 (6)Ni1—P2—C43—C44−148.7 (5)
C13—C14—C15—C16−1.1 (12)C48—C43—C44—C45−1.4 (10)
C14—C15—C16—C170.2 (12)P2—C43—C44—C45178.2 (5)
C15—C16—C17—C180.8 (12)C43—C44—C45—C460.8 (12)
C14—C13—C18—C170.1 (9)C44—C45—C46—C470.6 (12)
P1—C13—C18—C17−177.1 (5)C45—C46—C47—C48−1.3 (12)
C16—C17—C18—C13−1.0 (11)C44—C43—C48—C470.6 (9)
C13—P1—C19—C24−20.9 (6)P2—C43—C48—C47−179.0 (5)
C25—P1—C19—C24−133.0 (5)C46—C47—C48—C430.8 (10)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BV2106).

References

  • Brandsma, L., Vasilevsky, S. F. & Verkruijsse, H. D. (1998). Application of Transition Metal Catalysts in Organic Synthesis, pp 3–4. New York: Springer.
  • Chen, C. & Yang, L. M. (2007). Tetrahedron Lett.48, 2427–2430.
  • Cramer, R. & Coulson, D. R. (1975). J. Org. Chem.40, 2267–2273.
  • Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
  • Morrell, D. G. & Kochi, J. K. (1975). J. Am. Chem. Soc.97, 7262–7270.
  • Parshall, G. W. (1974). J. Am. Chem. Soc.96, 2360–2366.
  • Rigaku (2001). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  • Semmelhack, M. F., Helquist, P. M. & Jones, L. D. (1971). J. Am. Chem. Soc.93, 5908–5910.
  • Semmelhack, M. F. & Ryono, L. S. (1975). J. Am. Chem. Soc.97, 3873–3875.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Soolinger, J. V., Verkruijsse, H. D., Keegstra, M. A. & Brandsma, L. (1990). Synth. Commun 20, 3153–3156.
  • Tsou, T. T. & Kochi, J. K. (1979a). J. Am. Chem. Soc.101, 7547–7560.
  • Tsou, T. T. & Kochi, J. K. (1979b). J. Am. Chem. Soc.101, 6319–6332.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography