PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 October 1; 64(Pt 10): o1944.
Published online 2008 September 17. doi:  10.1107/S1600536808029176
PMCID: PMC2959255

5-(2-Methyl-5-nitro­phen­yl)-1H-tetra­zole

Abstract

In the title compound, C8H7N5O2, the benzene ring makes a dihedral angle of 45.7 (2)° with the tetra­zole ring. In the crystal structure, the mol­ecules are linked into a chain running along the a axis by N—H(...)N hydrogen bonds, and the chains are linked through π–π inter­actions between the tetra­zole rings [centroid–centroid distance = 3.450 (2) Å].

Related literature

For the use of tetra­zole derivatives in coordination chemisty, see: Arp et al. (2000 [triangle]); Dai & Fu (2008 [triangle]); Wang et al. (2005 [triangle]); Xiong et al. (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1944-scheme1.jpg

Experimental

Crystal data

  • C8H7N5O2
  • M r = 205.19
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1944-efi1.jpg
  • a = 4.9057 (10) Å
  • b = 16.938 (3) Å
  • c = 11.463 (2) Å
  • β = 98.65 (3)°
  • V = 941.7 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 298 (2) K
  • 0.25 × 0.18 × 0.15 mm

Data collection

  • Rigaku Mercury2 diffractometer
  • Absorption correction: multi-scan (CrystalClear, Rigaku, 2005 [triangle]) T min = 0.971, T max = 0.977
  • 9281 measured reflections
  • 2085 independent reflections
  • 1434 reflections with I > 2σ(I)
  • R int = 0.056

Refinement

  • R[F 2 > 2σ(F 2)] = 0.082
  • wR(F 2) = 0.203
  • S = 1.13
  • 2085 reflections
  • 137 parameters
  • H-atom parameters constrained
  • Δρmax = 0.30 e Å−3
  • Δρmin = −0.29 e Å−3

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, New_Global_Publ_Block. DOI: 10.1107/S1600536808029176/ci2669sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808029176/ci2669Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by a start-up grant from Southeast University to Professor Ren-Gen Xiong.

supplementary crystallographic information

Comment

Tetrazole derivatives have found wide range of applications in coordination chemistry because of their multiple coordination modes as ligands to metal ions and for the construction of novel metal-organic frameworks (Wang et al., 2005; Xiong et al., 2002). We report here the crystal structure of the title compound, 5-(2-methyl-5-nitrophenyl)-1H-tetrazole, (Fig.1).

The benzene ring makes a dihedral angle of 45.7 (2)° with the tetrazole ring owing to the C–C bond bridge which force the two rings to be twisted from each other. The bond distances and angles of the tetrazole rings are in the usual ranges (Wang et al., 2005; Arp et al., 2000; Dai & Fu, 2008).

The crystal packing is stabilized by N—H···N hydrogen bonds (Table 1), which link the molecules into chains running parallel to the a axis (Fig. 2). The adjacent chains are linked through π–π interactions between the tetrazole rings [centroid–centroid distance = 3.450 (2) Å] of the molecules at (x, y, z) and (1-x, 1-y, 1-z).

Experimental

Under nitrogen protection, 2-methyl-5-nitrobenzonitrile (30 mmol), NaN3 (45 mmol) and NH4Cl (33 mmol) were added in a flask and then DMF (50 ml) was added. The mixture was stirred at 383 K for 20 h, the resulting solution was poured into ice water (100 ml) and then hydrochloric acid (6 mol/l) was added to control the pH value to 6. The white solid obtained was filtered and washed with distilled water. The crude product was recrystallized with ethanol to obtain colourless block-shaped crystals of the title compound.

Refinement

All H atoms were positioned geometrically and treated as riding with C—H = 0.93 Å (aromatic), 0.96 Å (methyl) and N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(C,N) and Uiso(H) = 1.5Ueq(Cmethyl).

Figures

Fig. 1.
The molecular structure of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
Part of the crystal packing of the title compound, showing a hydrogen- bonded (dashed lines) chain running along the a axis. H atoms not involved in hydrogen bonding have been omitted for clarity.

Crystal data

C8H7N5O2F(000) = 424
Mr = 205.19Dx = 1.447 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1775 reflections
a = 4.9057 (10) Åθ = 2.4–27.1°
b = 16.938 (3) ŵ = 0.11 mm1
c = 11.463 (2) ÅT = 298 K
β = 98.65 (3)°Block, colourless
V = 941.7 (3) Å30.25 × 0.18 × 0.15 mm
Z = 4

Data collection

Rigaku Mercury2 diffractometer2085 independent reflections
Radiation source: fine-focus sealed tube1434 reflections with I > 2σ(I)
graphiteRint = 0.056
Detector resolution: 13.6612 pixels mm-1θmax = 27.2°, θmin = 3.0°
ω scansh = −6→6
Absorption correction: multi-scan (CrystalClear, Rigaku, 2005)k = −21→21
Tmin = 0.971, Tmax = 0.977l = −14→14
9281 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.082Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.203H-atom parameters constrained
S = 1.13w = 1/[σ2(Fo2) + (0.0655P)2 + 0.9796P] where P = (Fo2 + 2Fc2)/3
2085 reflections(Δ/σ)max = 0.001
137 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = −0.29 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O1−0.0317 (10)0.86679 (19)0.3611 (3)0.1152 (15)
O2−0.2052 (8)0.7689 (2)0.4436 (3)0.0930 (12)
N10.5142 (5)0.48416 (16)0.3549 (2)0.0425 (7)
H10.67660.49700.34190.051*
N40.0825 (5)0.48791 (16)0.3638 (2)0.0416 (7)
N30.1836 (6)0.41763 (16)0.4075 (3)0.0473 (7)
C10.2904 (6)0.52855 (17)0.3320 (3)0.0360 (7)
N20.4451 (6)0.41548 (16)0.4018 (3)0.0470 (7)
C20.2681 (6)0.61097 (19)0.2897 (3)0.0397 (7)
C70.3890 (7)0.6358 (2)0.1932 (3)0.0485 (9)
C30.1193 (7)0.6641 (2)0.3495 (3)0.0426 (8)
H30.03490.64730.41250.051*
C40.1007 (7)0.7403 (2)0.3140 (3)0.0506 (9)
C60.3672 (8)0.7152 (2)0.1624 (3)0.0565 (10)
H60.45100.73330.09990.068*
N5−0.0555 (8)0.7961 (2)0.3775 (3)0.0676 (10)
C50.2254 (9)0.7676 (2)0.2220 (4)0.0628 (11)
H50.21360.82060.20060.075*
C80.5334 (9)0.5794 (2)0.1215 (4)0.0628 (11)
H8A0.41640.53470.09920.094*
H8B0.70200.56180.16770.094*
H8C0.57380.60560.05190.094*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.197 (4)0.0494 (19)0.105 (3)0.033 (2)0.042 (3)0.0013 (19)
O20.107 (3)0.089 (2)0.095 (3)0.032 (2)0.054 (2)0.003 (2)
N10.0275 (13)0.0435 (15)0.0576 (18)0.0007 (12)0.0105 (12)0.0030 (13)
N40.0317 (13)0.0391 (14)0.0558 (17)−0.0045 (11)0.0129 (12)0.0006 (13)
N30.0422 (16)0.0397 (15)0.0616 (19)−0.0060 (13)0.0132 (14)0.0008 (14)
C10.0293 (15)0.0369 (16)0.0428 (17)−0.0034 (13)0.0090 (13)0.0002 (14)
N20.0434 (16)0.0359 (14)0.0637 (19)0.0033 (12)0.0144 (14)0.0005 (13)
C20.0305 (15)0.0437 (17)0.0455 (18)−0.0033 (13)0.0076 (13)0.0006 (15)
C70.0400 (18)0.061 (2)0.0447 (19)0.0012 (16)0.0085 (15)0.0040 (17)
C30.0394 (17)0.0451 (18)0.0443 (19)0.0003 (14)0.0096 (14)0.0048 (15)
C40.051 (2)0.049 (2)0.052 (2)0.0093 (16)0.0103 (17)0.0000 (17)
C60.061 (2)0.055 (2)0.057 (2)0.0009 (19)0.0216 (19)0.0211 (19)
N50.086 (3)0.055 (2)0.062 (2)0.0235 (19)0.013 (2)0.0028 (18)
C50.070 (3)0.050 (2)0.071 (3)0.008 (2)0.019 (2)0.016 (2)
C80.067 (3)0.072 (3)0.056 (2)0.012 (2)0.029 (2)0.000 (2)

Geometric parameters (Å, °)

O1—N51.220 (5)C7—C81.505 (5)
O2—N51.222 (5)C3—C41.352 (5)
N1—C11.324 (4)C3—H30.93
N1—N21.346 (4)C4—C51.377 (5)
N1—H10.86C4—N51.477 (5)
N4—C11.326 (4)C6—C51.371 (5)
N4—N31.357 (4)C6—H60.93
N3—N21.294 (4)C5—H50.93
C1—C21.477 (4)C8—H8A0.96
C2—C71.396 (5)C8—H8B0.96
C2—C31.401 (4)C8—H8C0.96
C7—C61.391 (5)
C1—N1—N2108.6 (2)C3—C4—C5122.2 (3)
C1—N1—H1125.7C3—C4—N5118.7 (3)
N2—N1—H1125.7C5—C4—N5119.1 (3)
C1—N4—N3107.7 (2)C5—C6—C7121.7 (3)
N2—N3—N4108.4 (2)C5—C6—H6119.2
N1—C1—N4107.5 (3)C7—C6—H6119.2
N1—C1—C2128.3 (3)O1—N5—O2123.2 (4)
N4—C1—C2124.0 (3)O1—N5—C4118.9 (4)
N3—N2—N1107.9 (3)O2—N5—C4117.9 (3)
C7—C2—C3120.6 (3)C6—C5—C4118.8 (4)
C7—C2—C1121.7 (3)C6—C5—H5120.6
C3—C2—C1117.7 (3)C4—C5—H5120.6
C6—C7—C2117.8 (3)C7—C8—H8A109.5
C6—C7—C8120.0 (3)C7—C8—H8B109.5
C2—C7—C8122.2 (3)H8A—C8—H8B109.5
C4—C3—C2118.9 (3)C7—C8—H8C109.5
C4—C3—H3120.6H8A—C8—H8C109.5
C2—C3—H3120.6H8B—C8—H8C109.5
C1—N4—N3—N2−0.4 (4)C1—C2—C7—C84.1 (5)
N2—N1—C1—N4−0.3 (4)C7—C2—C3—C4−1.6 (5)
N2—N1—C1—C2174.4 (3)C1—C2—C3—C4178.6 (3)
N3—N4—C1—N10.4 (4)C2—C3—C4—C5−0.7 (6)
N3—N4—C1—C2−174.5 (3)C2—C3—C4—N5−179.8 (3)
N4—N3—N2—N10.2 (4)C2—C7—C6—C5−1.9 (6)
C1—N1—N2—N30.1 (4)C8—C7—C6—C5176.7 (4)
N1—C1—C2—C749.1 (5)C3—C4—N5—O1166.6 (4)
N4—C1—C2—C7−137.0 (3)C5—C4—N5—O1−12.5 (6)
N1—C1—C2—C3−131.2 (3)C3—C4—N5—O2−14.0 (6)
N4—C1—C2—C342.7 (5)C5—C4—N5—O2166.9 (4)
C3—C2—C7—C62.9 (5)C7—C6—C5—C4−0.4 (6)
C1—C2—C7—C6−177.4 (3)C3—C4—C5—C61.7 (6)
C3—C2—C7—C8−175.7 (3)N5—C4—C5—C6−179.2 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···N4i0.861.982.775 (4)154

Symmetry codes: (i) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2669).

References

  • Arp, H. P. H., Decken, A., Passmore, J. & Wood, D. J. (2000). Inorg. Chem.39, 1840–1848. [PubMed]
  • Dai, W. & Fu, D.-W. (2008). Acta Cryst. E64, o1445. [PMC free article] [PubMed]
  • Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, X.-S., Tang, Y.-Z., Huang, X.-F., Qu, Z.-R., Che, C.-M., Chan, C. W. H. & Xiong, R.-G. (2005). Inorg. Chem.44, 5278–5285. [PubMed]
  • Xiong, R.-G., Xue, X., Zhao, H., You, X.-Z., Abrahams, B. F. & Xue, Z.-L. (2002). Angew. Chem. Int. Ed.41, 3800–3803. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography