PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 October 1; 64(Pt 10): o1950.
Published online 2008 September 17. doi:  10.1107/S1600536808028808
PMCID: PMC2959254

(S)-1,2-Dimethyl-1,1,2-triphenyl-2-(4-piperidiniometh­yl)disilane chloride

Abstract

The title compound, C26H34NSi2 +·Cl, shows chirality at silicon. Because of its highly selective synthesis with an e.r. of >99:1 by means of a racemic resolution with mandelic acid, the free disilane is of great importance to the chemistry of highly enanti­omerically enriched lithio­silanes and their trapping products. N—H(...)Cl hydrogen bonding is present between the protonated nitro­gen atom of the piperidino group and the chloride counter-anion. The silicon–silicon distance as well as silicon–carbon and carbon–nitro­gen bond lengths are in the same ranges as in other quaternary, functionalized di- and tetra­silanes.

Related literature

For details of lithio­silanes, see: Lickiss & Smith (1995 [triangle]); Sekiguchi et al. (2000 [triangle]); Strohmann et al. (2001 [triangle], 2006 [triangle]); Strohmann & Däschlein (2008a [triangle],b [triangle]); Tamao & Kawachi (1995 [triangle]). For enanti­o­merically enriched lithio­silanes, see: Colomer & Corriu (1976 [triangle]); Oestreich et al. (2005 [triangle]); Omote et al. (2000 [triangle]); Sommer & Mason (1965 [triangle]); Strohmann et al. (2007 [triangle]). For the determination of the absolute configuration of the disilane as the mandelic acid adduct, see: Strohmann et al. (2002 [triangle]). For related literature on hydro­chlorides of amines, see: Farrugia et al. (2001 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1950-scheme1.jpg

Experimental

Crystal data

  • C26H34NSi2 +·Cl
  • M r = 452.19
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1950-efi1.jpg
  • a = 10.120 (2) Å
  • b = 13.289 (3) Å
  • c = 18.598 (4) Å
  • V = 2501.3 (9) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.26 mm−1
  • T = 173 (2) K
  • 0.30 × 0.30 × 0.20 mm

Data collection

  • Bruker SMART APEX CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1999 [triangle]) T min = 0.926, T max = 0.950
  • 45451 measured reflections
  • 4911 independent reflections
  • 4808 reflections with I > 2σ(I)
  • R int = 0.077

Refinement

  • R[F 2 > 2σ(F 2)] = 0.055
  • wR(F 2) = 0.149
  • S = 1.05
  • 4911 reflections
  • 277 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.41 e Å−3
  • Δρmin = −0.34 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 2128 Friedel pairs
  • Flack parameter: 0.08 (10)

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT-Plus (Bruker, 1999 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, New_Global_Publ_Block. DOI: 10.1107/S1600536808028808/wm2191sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808028808/wm2191Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft. CS and VHG also acknowledge the Fonds der Chemischen Industrie and CD thanks the Studienstiftung des Deutschen Volkes for a doctoral scholarship.

supplementary crystallographic information

Comment

Functionalized lithiosilanes (Strohmann et al., 2001; Strohmann et al., 2006; Strohmann & Däschlein, 2008a,b) are versatile reagents in organic and organometallic chemistry, e.g. for the nucleophilic introduction of protecting groups, the synthesis of silyl-substituted transition metal complexes or for silicon-based polymers (Lickiss & Smith, 1995; Sekiguchi et al., 2000; Tamao & Kawachi, 1995). Especially highly enantiomerically enriched lithiosilanes are of great interest due to the increased stability of configuration at the stereogenic silicon center compared to the labile alkyllithium compounds. Yet, as the synthetic pathways to functionalized lithiosilanes are extremly limited, only six highly enantiomerically enriched systems are known until today (Colomer & Corriu, 1976; Oestreich et al., 2005; Omote et al., 2000; Sommer & Mason, 1965; Strohmann et al., 2002; Strohmann et al., 2007). Thereby the Si-Si bond cleavage of aryl substituted disilanes with lithium proved to be a potential method for the preperation of these useful compounds.

(S)-1,2-Dimethyl-1,1,2-triphenyl-1-(piperidinomethyl)disilane, (I), is an excellent starting system for the praparation of highly enantiomerically enriched lithiosilanes as it can be synthesised in an e.r. of > 99:1 by means of a racemic resolution with mandelic acid (Strohmann et al., 2002). The reaction with lithium metal results in the selective Si-Si bond cleavage and thus offers a synthetic pathway to highly enantiomerically enriched silicon-chiral di-, tri- and tetrasilanes (Strohmann et al., 2007) and -germanes (Strohmann & Däschlein, 2008b).

Treatment of (I) with HCl yields the title compound, (II), (S)-1,2-Dimethyl-1,1,2-triphenyl-1-(piperidiniummethyl)disilane chloride, as a crystalline solid. The determination of the absolute configuration of the stereogenic silicon center gave the same absolute configuration as the mandelic acid adduct published previously (Strohmann et al., 2002).

The asymmetric unit of (II) contains one molecule of the silicon-chiral disilane. Furthermore, hydrogen bonding between the hydrogen atom of the protonated nitrogen of the piperidino group and the chloride counteranion can be found (Fig. 1). The H···Cl distance (2.05 Å) and the N-H-Cl angle (166.1 °) are in the typical ranges of such hydrogen bonds (Farrugia et al., 2001). With a value of 2.3672 (13) Å, the Si-Si bond length is comparable to other known systems and is slightly larger than the sum of the covalent radii of two silicon atoms (2.33 Å). The silicon-carbon and carbon-nitrogen distances, respectively, are also in the same ranges as in previously published systems. Thereby, the longest silicon-carbon distance can be found between Si1 and C1. Due to the positive charge at the nitrogen in beta-position to Si1, the bond length to C1 is increased to 1.910 (3) Å. The other five Si-C(X) bonds (X = 7, 8, 14, 15, 21) have values between 1.873 (4) and 1.884 (4) Å (average: 1.881 Å) and thus are significantly smaller than the Si1-C1 distance but in very good agreement with the sum of the covalent radii of silicon and carbon (1.88 Å). Considering the Si1-Si2-axis, it is noteworthy to mention that the substituents at the silicon atoms do possess an almost ecliptical arrangement and therefore do not adopt the sterically less hindered staggered conformation.

Experimental

To the enantiomerically pure (S)-1,2-Dimethyl-1,2,2-triphenyldisilan-1-(piperidinomethyl)disilane, (I), dissolved in Et2O, one equivalent of etherical HCl solution was added and stored at room temperature for 24 h. After removal of the solvent, a colourless crystalline solid of (II) remained, suitable for single crystal x-ray studies.

1H-NMR (500.1 MHz, CDCl3): δ = -4.92 (s, 3H; NCSiSiCH3), -4.80 (s, 3H; NCSiCH3), 0.95–1.05, 1.55–1.60 (m, 1H each; NCCCH2), 1.40–1.50 (m, 2H; NCCH2), 1.95–2.05, 2.05–2.15 (m, 1H each; NCCH2), 2.22–2.28, 2.30–2.37 (m, 1H each; NCH2C), 2.70–2.75, 2.80–2.85 (m, 1H each; SiCH2), 3.03–3.07, 3.12–3.18 (m, 1H each; NCH2C),7.15–7.35 (m, 15H; aromat. H).

{1H}13C-NMR (125.8 MHz, CDCl3): δ = -4.9 (1 C) (NCSiCH3), -4.8 (1 C) (NCSiSiCH3), 21.3 (1 C) (NCCCH2), 22.5, 22.6 (1 C each) (NCCH2), 49.4 (1 C) (SiCH2), 55.2, 57.4 (1 C each) (NCH2C), 128.06, 128.17, 128.37 (2 C each) (all C-m), 129.36, 129.50,129.78 (1 C each) (all C-p), 134.06, 134.64,134.77 (2 C each) (all C-o), 133.74, 133.99,134.46 (1 C each) (all C-i).

{1H}29Si-NMR (99.4 MHz, CDCl3): δ = -25.3 (1Si) (NCSi), -23.5 (1Si) (NCSiSi).

Refinement

The H atoms were refined in their ideal geometric positions using the riding model approximation with Uiso(H) = 1.5Ueq(C) for methyl H atoms and of Uiso(H) = 1.2Ueq(C) for all other H atoms except atom H100 (bonded to the N atom of the piperidino group) which was refined freely.

Figures

Fig. 1.
ORTEP plot of the asymmetric unit of (I) with displacement ellipsoids drawn at the 50% probability level. The dashed line indicates the hydrogen bond.

Crystal data

C26H34NSi2+·ClF(000) = 968
Mr = 452.19Dx = 1.201 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 999 reflections
a = 10.120 (2) Åθ = 1.9–26.0°
b = 13.289 (3) ŵ = 0.26 mm1
c = 18.598 (4) ÅT = 173 K
V = 2501.3 (9) Å3Block, colourless
Z = 40.30 × 0.30 × 0.20 mm

Data collection

Bruker SMART APEX CCD diffractometer4911 independent reflections
Radiation source: fine-focus sealed tube4808 reflections with I > 2σ(I)
graphiteRint = 0.077
ω–scansθmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 1999)h = −12→12
Tmin = 0.926, Tmax = 0.950k = −16→16
45451 measured reflectionsl = −22→22

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.149w = 1/[σ2(Fo2) + (0.0402P)2 + 1.4067P] where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
4911 reflectionsΔρmax = 0.41 e Å3
277 parametersΔρmin = −0.34 e Å3
0 restraintsAbsolute structure: Flack (1983), 2128 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.08 (10)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl−0.09614 (10)0.04149 (6)0.25243 (5)0.0361 (2)
Si10.28622 (9)0.21087 (7)0.20801 (5)0.0249 (2)
Si20.40619 (9)0.23973 (7)0.10071 (5)0.0276 (2)
N10.0148 (3)0.2532 (2)0.25691 (15)0.0246 (5)
C3−0.2128 (4)0.2953 (3)0.2978 (2)0.0346 (8)
H3B−0.24110.22410.29610.042*
H3A−0.29090.33780.28760.042*
C170.4393 (5)0.0299 (3)−0.0646 (2)0.0433 (10)
H170.50600.0075−0.09680.052*
C80.3754 (3)0.2680 (3)0.28642 (17)0.0271 (7)
C2−0.1098 (3)0.3132 (3)0.24077 (19)0.0309 (7)
H2A−0.08810.38580.23870.037*
H2B−0.14520.29300.19330.037*
C160.4683 (4)0.1011 (3)−0.0121 (2)0.0374 (9)
H160.55590.1262−0.00820.045*
C60.0655 (3)0.2780 (3)0.32978 (17)0.0297 (7)
H6A0.09220.34960.33120.036*
H6B0.14460.23660.34000.036*
C10.1159 (3)0.2715 (2)0.19928 (16)0.0273 (7)
H1A0.12900.34520.19560.033*
H1B0.07730.24890.15310.033*
C110.4933 (4)0.3529 (4)0.4090 (2)0.0456 (10)
H110.53150.38120.45100.055*
C180.3126 (5)−0.0077 (3)−0.0696 (2)0.0435 (10)
H180.2926−0.0565−0.10540.052*
C190.2150 (5)0.0243 (3)−0.0237 (2)0.0466 (10)
H190.1282−0.0025−0.02730.056*
C100.4387 (4)0.4145 (3)0.3574 (2)0.0386 (9)
H100.44160.48550.36300.046*
C210.3634 (3)0.3622 (3)0.05534 (19)0.0302 (7)
C240.3080 (4)0.5453 (3)−0.0126 (2)0.0411 (9)
H240.28990.6077−0.03550.049*
C260.3724 (4)0.3723 (3)−0.0189 (2)0.0366 (8)
H260.39780.3157−0.04690.044*
C230.2970 (4)0.5373 (3)0.0615 (2)0.0420 (9)
H230.27080.59380.08940.050*
C90.3793 (4)0.3723 (3)0.29742 (19)0.0314 (7)
H90.34000.41540.26270.038*
C140.5853 (4)0.2419 (3)0.1259 (2)0.0397 (8)
H14C0.63920.24820.08230.060*
H14B0.60810.17940.15090.060*
H14A0.60240.29940.15760.060*
C70.2688 (4)0.0726 (3)0.2230 (2)0.0357 (8)
H7B0.35670.04200.22660.054*
H7C0.22090.04260.18250.054*
H7A0.21980.06070.26760.054*
C4−0.1613 (4)0.3193 (3)0.3725 (2)0.0394 (9)
H4A−0.14160.39200.37620.047*
H4B−0.22930.30240.40880.047*
C220.3244 (4)0.4466 (3)0.0945 (2)0.0363 (8)
H220.31660.44150.14520.044*
C120.4926 (4)0.2503 (4)0.3995 (2)0.0435 (9)
H120.53150.20800.43480.052*
C5−0.0374 (4)0.2590 (3)0.38669 (18)0.0334 (8)
H5A−0.00120.27740.43440.040*
H5B−0.05950.18640.38760.040*
C200.2446 (4)0.0968 (3)0.0282 (2)0.0368 (9)
H200.17700.11960.05960.044*
C150.3720 (4)0.1364 (3)0.03482 (18)0.0314 (8)
C130.4352 (4)0.2081 (3)0.33837 (18)0.0338 (8)
H130.43690.13720.33210.041*
C250.3450 (4)0.4636 (3)−0.0533 (2)0.0434 (9)
H250.35180.4690−0.10410.052*
H100−0.007 (5)0.180 (4)0.254 (3)0.050 (12)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl0.0441 (5)0.0229 (4)0.0413 (5)−0.0063 (4)−0.0004 (4)−0.0006 (3)
Si10.0270 (5)0.0232 (4)0.0246 (4)−0.0006 (4)0.0003 (4)−0.0014 (3)
Si20.0272 (5)0.0288 (4)0.0269 (4)0.0008 (4)0.0010 (4)−0.0027 (4)
N10.0219 (13)0.0218 (13)0.0300 (13)−0.0003 (11)−0.0012 (11)−0.0007 (11)
C30.0275 (17)0.0338 (18)0.0425 (19)0.0043 (15)−0.0010 (16)0.0033 (16)
C170.059 (3)0.040 (2)0.0312 (18)0.018 (2)0.0047 (17)−0.0007 (16)
C80.0232 (16)0.0319 (18)0.0263 (14)−0.0005 (13)0.0004 (13)−0.0045 (13)
C20.0268 (17)0.0288 (16)0.0370 (17)0.0046 (14)−0.0029 (15)0.0047 (14)
C160.044 (2)0.0319 (19)0.036 (2)0.0022 (16)0.0021 (17)0.0010 (15)
C60.0299 (18)0.0297 (17)0.0296 (15)−0.0014 (14)−0.0039 (13)0.0027 (14)
C10.0310 (17)0.0254 (16)0.0254 (15)−0.0010 (13)0.0006 (13)0.0002 (12)
C110.035 (2)0.067 (3)0.034 (2)0.003 (2)−0.0007 (17)−0.0203 (19)
C180.066 (3)0.037 (2)0.0277 (17)0.006 (2)−0.0085 (19)−0.0083 (15)
C190.046 (2)0.048 (2)0.046 (2)0.000 (2)−0.0119 (19)−0.0086 (18)
C100.030 (2)0.040 (2)0.046 (2)−0.0015 (16)0.0077 (16)−0.0142 (17)
C210.0263 (18)0.0330 (17)0.0314 (17)−0.0021 (14)0.0021 (14)0.0005 (14)
C240.038 (2)0.035 (2)0.051 (2)−0.0022 (17)−0.0056 (17)0.0141 (18)
C260.036 (2)0.039 (2)0.0353 (19)−0.0011 (16)−0.0011 (16)−0.0027 (16)
C230.044 (2)0.0252 (17)0.057 (2)−0.0022 (17)0.0085 (19)0.0011 (17)
C90.0306 (19)0.0304 (17)0.0333 (17)−0.0031 (14)−0.0030 (15)0.0015 (15)
C140.0336 (19)0.047 (2)0.0386 (19)0.0019 (18)−0.0008 (16)−0.0016 (17)
C70.046 (2)0.0242 (16)0.0369 (18)−0.0006 (16)0.0047 (16)0.0003 (14)
C40.035 (2)0.045 (2)0.0382 (19)0.0024 (17)0.0073 (16)−0.0065 (17)
C220.036 (2)0.0367 (19)0.0360 (18)−0.0055 (16)0.0053 (15)0.0010 (16)
C120.038 (2)0.061 (3)0.0323 (18)0.0150 (19)−0.0073 (16)0.0049 (19)
C50.0322 (18)0.0378 (19)0.0302 (17)−0.0004 (15)0.0056 (14)−0.0009 (15)
C200.036 (2)0.039 (2)0.0353 (19)0.0032 (16)0.0016 (16)−0.0080 (15)
C150.037 (2)0.0297 (17)0.0281 (17)0.0024 (15)−0.0028 (14)0.0009 (13)
C130.034 (2)0.0348 (18)0.0325 (17)0.0053 (16)−0.0001 (14)0.0002 (15)
C250.049 (2)0.044 (2)0.0368 (19)−0.0060 (19)−0.0076 (18)0.0085 (18)

Geometric parameters (Å, °)

Cl—H1002.05 (5)C18—H180.9500
Si1—C71.867 (4)C19—C201.397 (6)
Si1—C81.876 (3)C19—H190.9500
Si1—C11.910 (3)C10—C91.386 (5)
Si1—Si22.3672 (13)C10—H100.9500
Si2—C141.873 (4)C21—C261.390 (5)
Si2—C151.873 (4)C21—C221.393 (5)
Si2—C211.884 (4)C24—C251.375 (6)
N1—C61.486 (4)C24—C231.388 (6)
N1—C11.502 (4)C24—H240.9500
N1—C21.521 (4)C26—C251.400 (6)
N1—H1001.00 (5)C26—H260.9500
C3—C21.506 (5)C23—C221.381 (6)
C3—C41.518 (5)C23—H230.9500
C3—H3B0.9900C9—H90.9500
C3—H3A0.9900C14—H14C0.9800
C17—C181.379 (7)C14—H14B0.9800
C17—C161.392 (6)C14—H14A0.9800
C17—H170.9500C7—H7B0.9800
C8—C131.391 (5)C7—H7C0.9800
C8—C91.402 (5)C7—H7A0.9800
C2—H2A0.9900C4—C51.511 (5)
C2—H2B0.9900C4—H4A0.9900
C16—C151.389 (5)C4—H4B0.9900
C16—H160.9500C22—H220.9500
C6—C51.506 (5)C12—C131.395 (5)
C6—H6A0.9900C12—H120.9500
C6—H6B0.9900C5—H5A0.9900
C1—H1A0.9900C5—H5B0.9900
C1—H1B0.9900C20—C151.398 (5)
C11—C121.374 (7)C20—H200.9500
C11—C101.377 (6)C13—H130.9500
C11—H110.9500C25—H250.9500
C18—C191.374 (6)N1—Cl3.031 (3)
C7—Si1—C8109.16 (17)C11—C10—H10120.2
C7—Si1—C1110.05 (17)C9—C10—H10120.2
C8—Si1—C1109.24 (14)C26—C21—C22117.4 (3)
C7—Si1—Si2109.48 (13)C26—C21—Si2120.9 (3)
C8—Si1—Si2110.06 (11)C22—C21—Si2121.7 (3)
C1—Si1—Si2108.84 (10)C25—C24—C23120.5 (4)
C14—Si2—C15110.72 (17)C25—C24—H24119.7
C14—Si2—C21108.73 (17)C23—C24—H24119.7
C15—Si2—C21107.34 (15)C21—C26—C25121.6 (4)
C14—Si2—Si1106.77 (13)C21—C26—H26119.2
C15—Si2—Si1109.76 (12)C25—C26—H26119.2
C21—Si2—Si1113.55 (12)C22—C23—C24119.4 (4)
C6—N1—C1112.3 (2)C22—C23—H23120.3
C6—N1—C2110.5 (3)C24—C23—H23120.3
C1—N1—C2109.8 (2)C10—C9—C8122.0 (3)
C6—N1—H100110 (3)C10—C9—H9119.0
C1—N1—H100105 (3)C8—C9—H9119.0
C2—N1—H100109 (3)Si2—C14—H14C109.5
C2—C3—C4112.0 (3)Si2—C14—H14B109.5
C2—C3—H3B109.2H14C—C14—H14B109.5
C4—C3—H3B109.2Si2—C14—H14A109.5
C2—C3—H3A109.2H14C—C14—H14A109.5
C4—C3—H3A109.2H14B—C14—H14A109.5
H3B—C3—H3A107.9Si1—C7—H7B109.5
C18—C17—C16119.4 (4)Si1—C7—H7C109.5
C18—C17—H17120.3H7B—C7—H7C109.5
C16—C17—H17120.3Si1—C7—H7A109.5
C13—C8—C9116.9 (3)H7B—C7—H7A109.5
C13—C8—Si1121.2 (3)H7C—C7—H7A109.5
C9—C8—Si1121.8 (3)C5—C4—C3109.5 (3)
C3—C2—N1110.6 (3)C5—C4—H4A109.8
C3—C2—H2A109.5C3—C4—H4A109.8
N1—C2—H2A109.5C5—C4—H4B109.8
C3—C2—H2B109.5C3—C4—H4B109.8
N1—C2—H2B109.5H4A—C4—H4B108.2
H2A—C2—H2B108.1C23—C22—C21121.9 (4)
C15—C16—C17121.5 (4)C23—C22—H22119.1
C15—C16—H16119.3C21—C22—H22119.1
C17—C16—H16119.3C11—C12—C13120.4 (4)
N1—C6—C5111.4 (3)C11—C12—H12119.8
N1—C6—H6A109.3C13—C12—H12119.8
C5—C6—H6A109.3C6—C5—C4111.2 (3)
N1—C6—H6B109.3C6—C5—H5A109.4
C5—C6—H6B109.3C4—C5—H5A109.4
H6A—C6—H6B108.0C6—C5—H5B109.4
N1—C1—Si1119.1 (2)C4—C5—H5B109.4
N1—C1—H1A107.5H5A—C5—H5B108.0
Si1—C1—H1A107.5C19—C20—C15121.2 (4)
N1—C1—H1B107.5C19—C20—H20119.4
Si1—C1—H1B107.5C15—C20—H20119.4
H1A—C1—H1B107.0C16—C15—C20117.7 (3)
C12—C11—C10119.9 (4)C16—C15—Si2121.9 (3)
C12—C11—H11120.1C20—C15—Si2120.3 (3)
C10—C11—H11120.1C8—C13—C12121.1 (4)
C19—C18—C17121.0 (4)C8—C13—H13119.4
C19—C18—H18119.5C12—C13—H13119.4
C17—C18—H18119.5C24—C25—C26119.1 (4)
C18—C19—C20119.3 (4)C24—C25—H25120.4
C18—C19—H19120.4C26—C25—H25120.4
C20—C19—H19120.4N1—H100—Cl166.1 (41)
C11—C10—C9119.6 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H100···Cl1.00 (5)2.05 (5)3.031 (3)166 (4)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2191).

References

  • Bruker (1999). SADABS and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2001). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Colomer, E. & Corriu, R. J. P. (1976). J. Chem. Soc. Chem Commun.5, 176–177.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J., Cross, R. J. & Barley, H. R. L. (2001). Acta Cryst. E57, o992–o993.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Lickiss, P. D. & Smith, C. M. (1995). Coord. Chem. Rev.145, 75–124.
  • Oestreich, M., Auer, G. & Keller, M. (2005). Eur. J. Inorg. Chem. 1, 184–195.
  • Omote, M., Tokita, T., Shimizu, Y., Imae, I., Shirakawa, E. & Kawakami, Y. (2000). J. Organomet. Chem.611, 20–25.
  • Sekiguchi, A., Lee, V. Y. & Nanjo, M. (2000). Coord. Chem. Rev.210, 11–45.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sommer, L. H. & Mason, R. J. (1965). J. Am. Chem. Soc.87, 1619–1620.
  • Strohmann, C. & Däschlein, C. (2008a). Chem. Commun. pp. 2791–2793. [PubMed]
  • Strohmann, C. & Däschlein, C. (2008b). Organometallics, 27, 2499–2504.
  • Strohmann, C., Däschlein, C. & Auer, D. (2006). J. Am. Chem. Soc.128, 704–705. [PubMed]
  • Strohmann, C., Däschlein, C., Kellert, M. & Auer, D. (2007). Angew. Chem. Int. Ed.46, 4780–4782. [PubMed]
  • Strohmann, C., Hörnig, J. & Auer, D. (2002). Chem. Commun. pp. 766–767. [PubMed]
  • Strohmann, C., Ulbrich, O. & Auer, D. (2001). Eur. J. Inorg. Chem. pp. 1013–1018.
  • Tamao, K. & Kawachi, A. (1995). Adv. Organomet. Chem.38, 1–58.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography