PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 October 1; 64(Pt 10): o2011–o2012.
Published online 2008 September 27. doi:  10.1107/S160053680803064X
PMCID: PMC2959253

tert-Butyl 2-de­oxy-4,5-O-isopropyl­idene-d-gluconate

Abstract

The relative configuration of tert-butyl 2-de­oxy-4,5-O-iso­propyl­idene-d-gluconate, C13H24O6, an inter­mediate in the synthesis of 2-de­oxy sugars, was determined by X-ray crystallography, and the crystal structure consists of chains of O—H(...)O hydrogen-bonded mol­ecules running parallel to the a axis. There are two mol­ecules in the asymmetric unit. The absolute configuration was inferred from the use of d-erythrono­lactone as the starting material.

Related literature

For background information, see: Granstrom et al. (2004 [triangle]); Izumori (2002 [triangle], 2006 [triangle]); Rao et al. (2008 [triangle]); Yoshihara et al. (2008 [triangle]); Gullapalli et al. (2007 [triangle]); Jones et al. (2008 [triangle]). For related structures, see: Booth et al. (2008 [triangle]); Jenkinson, Booth, Gullapalli et al. (2008 [triangle]); Jenkinson, Booth, Yoshihara et al. (2008 [triangle]). For related literature, see: Görbitz (1999 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2011-scheme1.jpg

Experimental

Crystal data

  • C13H24O6
  • M r = 276.33
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2011-efi1.jpg
  • a = 5.9366 (2) Å
  • b = 11.1694 (5) Å
  • c = 12.7530 (6) Å
  • α = 113.413 (2)°
  • β = 100.3696 (19)°
  • γ = 93.783 (2)°
  • V = 754.42 (6) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 150 K
  • 0.50 × 0.05 × 0.05 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997 [triangle]) T min = 0.73, T max = 1.00 (expected range = 0.727–0.995)
  • 11759 measured reflections
  • 3441 independent reflections
  • 2788 reflections with I > 2σ(I)
  • R int = 0.045

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.104
  • S = 0.97
  • 3441 reflections
  • 344 parameters
  • 3 restraints
  • H-atom parameters constrained
  • Δρmax = 0.29 e Å−3
  • Δρmin = −0.37 e Å−3

Data collection: COLLECT (Nonius, 2001 [triangle]).; cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994 [triangle]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003 [triangle]); molecular graphics: CAMERON (Watkin et al., 1996 [triangle]); software used to prepare material for publication: CRYSTALS.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680803064X/lh2696sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680803064X/lh2696Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Oxford University Crystallography Service for access to equipment.

supplementary crystallographic information

Comment

The technique of Izumoring (Izumori, 2002; Izumori, 2006; Granstrom et al., 2004), the biotechnological interconversion of monosaccharides, has been seen to be generally applied to 1-deoxy-(Yoshihara et al., 2008; Booth et al., 2008; Jenkinson, Booth, Gullapalli et al., 2008; Jenkinson, Booth, Yoshihara et al., 2008; Gullapalli et al., 2007) and methyl-branched sugars (Rao et al., 2008; Jones et al., 2008). In order to extend this methodology further, a series of 2-deoxy sugars were synthesized via the addition of lithium tert-butyl acetate to sugar lactones. Thus, lithium tert-butyl acetate was added to D-erythronolactone 1 and on reduction two compounds were obtained (Fig. 1). One product was crystalline and was unequivocally identified by X-ray crystallography to be the tert-butyl 2-deoxy-4,5-O-isopropylidene-D-gluconate (Fig. 2), with the absolute configuration being determined by the use of D-erythronolactone as the starting material.

The X-ray structure shows that there are two molecules in the asymmetric unit, these only differ in the orientation of the terminal hydroxyl groups O19 and O39 (Fig. 3) (torsion angles C4-C5-C6-O19 = 69.2° and C24-C25-C26-O39 = -170.4°). The remainder of the residues are very similar (Fig.3). After least squares fitting of the residues (excluding O19 and O39) against each other, the r.m.s. positional discrepancy is 0.1270 Å, the r.m.s. bond length discrepancy is 0.0082 degrees, and the r.m.s. torsion angle deviation is 5.5037 degrees. The molecules form hydrogen-bonded chains running parallel to the a-axis (Fig. 4, Fig.5). Only classic intermolecular hydrogen bonding has been considered.

Experimental

The title compound was recrystallized from toluene: m.p. 345–347 K; [α]D22 +10.7 (c, 0.99 in CHCl3).

Refinement

In the absence of significant anomalous scattering, Friedel pairs were merged and the absolute configuration was assigned from the starting material.

The relatively large ratio of minimum to maximum corrections applied in the multiscan process (1:1.37) reflect changes in the illuminated volume of the crystal. Changes in illuminated volume were kept to a minimum, and were taken into account (Görbitz, 1999) by the multi-scan inter-frame scaling (DENZO/SCALEPACK, Otwinowski & Minor, 1997).

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, O—H = 0.82 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.

Figures

Fig. 1.
Synthetic scheme for the synthesis of the title compound.
Fig. 2.
The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius. There are two molecules in the asymmetric unit. Carbon atoms are shown in green (molecule 1) or blue (molecule 2) and ...
Fig. 3.
Overlay of the two molecules in the asymmetric unit.
Fig. 4.
Packing diagram projected along the a-axis. Hydrogen bonds are shown by dotted lines.
Fig. 5.
Packing diagram projected along the c-axis. The crystal structure consists of layers of hydrogen bonded molecules lying perpendicular to the c-axis.

Crystal data

C13H24O6Z = 2
Mr = 276.33F(000) = 300
Triclinic, P1Dx = 1.216 Mg m3
Hall symbol: P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.9366 (2) ÅCell parameters from 3172 reflections
b = 11.1694 (5) Åθ = 5–27°
c = 12.7530 (6) ŵ = 0.10 mm1
α = 113.413 (2)°T = 150 K
β = 100.3696 (19)°Plate, colourless
γ = 93.783 (2)°0.50 × 0.05 × 0.05 mm
V = 754.42 (6) Å3

Data collection

Nonius KappaCCD diffractometer2788 reflections with I > 2σ(I)
graphiteRint = 0.045
ω scansθmax = 27.6°, θmin = 5.2°
Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997)h = −7→7
Tmin = 0.73, Tmax = 1.00k = −14→14
11759 measured reflectionsl = −16→15
3441 independent reflections

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.040w = 1/[σ2(F2) + (0.05P)2 + 0.04P], where P = [max(Fo2,0) + 2Fc2]/3
wR(F2) = 0.104(Δ/σ)max = 0.009
S = 0.97Δρmax = 0.29 e Å3
3441 reflectionsΔρmin = −0.37 e Å3
344 parametersExtinction correction: Larson (1970), Equation 22
3 restraintsExtinction coefficient: 300 (50)
Primary atom site location: structure-invariant direct methods

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C1−0.0837 (4)0.8713 (3)0.3566 (2)0.0306
C2−0.0148 (4)0.7957 (3)0.2427 (2)0.0322
C30.1598 (5)0.7048 (3)0.2533 (2)0.0300
C40.2288 (4)0.6384 (3)0.1362 (2)0.0296
C50.3854 (4)0.5302 (2)0.1211 (2)0.0297
C60.4988 (4)0.5130 (3)0.2286 (2)0.0338
O70.1033 (3)0.94685 (18)0.43945 (15)0.0333
C80.0854 (5)1.0276 (3)0.5600 (2)0.0342
C9−0.0134 (6)0.9420 (4)0.6127 (3)0.0497
C10−0.0575 (5)1.1357 (3)0.5601 (3)0.0448
C110.3368 (5)1.0859 (3)0.6218 (3)0.0469
O12−0.2796 (3)0.8666 (2)0.37003 (19)0.0434
O130.0757 (3)0.61392 (18)0.29471 (16)0.0330
O140.0195 (3)0.57145 (19)0.04704 (15)0.0335
C150.0657 (5)0.4490 (3)−0.0322 (2)0.0315
C16−0.1538 (5)0.3507 (3)−0.0776 (2)0.0403
C170.1621 (5)0.4644 (3)−0.1296 (2)0.0408
O180.2336 (3)0.41137 (18)0.04004 (16)0.0325
O190.6656 (3)0.4251 (2)0.20259 (18)0.0391
C210.6774 (5)0.7195 (3)0.8287 (2)0.0356
C220.8773 (5)0.7868 (3)0.9330 (2)0.0357
C231.0405 (4)0.8902 (3)0.9222 (2)0.0306
C241.2437 (5)0.9472 (3)1.0283 (2)0.0350
C251.4344 (5)1.0537 (3)1.0373 (2)0.0327
C261.4393 (5)1.0846 (3)0.9321 (2)0.0373
O270.7534 (3)0.6588 (2)0.73097 (16)0.0386
C280.5895 (5)0.5818 (3)0.6156 (2)0.0400
C310.7540 (6)0.5357 (4)0.5339 (3)0.0531
C300.4520 (6)0.4661 (4)0.6211 (3)0.0553
C290.4360 (6)0.6706 (4)0.5831 (3)0.0533
O320.4758 (4)0.7182 (2)0.8340 (2)0.0513
O330.9021 (3)0.9849 (2)0.90964 (19)0.0433
O341.1547 (4)1.0087 (2)1.13082 (17)0.0549
C351.2946 (5)1.1313 (3)1.2071 (2)0.0377
C361.1384 (6)1.2284 (4)1.2579 (3)0.0572
C371.4752 (6)1.1154 (4)1.2987 (3)0.0593
O381.4021 (3)1.17115 (18)1.13186 (15)0.0334
O391.2520 (3)1.14885 (18)0.90474 (16)0.0354
H210.05520.86640.22650.0350*
H374−0.15350.74910.18850.0343*
H310.30320.75270.30230.0358*
H410.30720.71130.12410.0318*
H510.51230.55650.09370.0299*
H610.57850.59720.28540.0415*
H620.38420.48670.26760.0379*
H910.00910.99310.69690.0748*
H92−0.17810.90900.57410.0753*
H930.07080.86660.59690.0762*
H101−0.06951.18920.63830.0603*
H1020.01841.19240.53100.0619*
H103−0.21121.09370.50940.0604*
H1110.34901.14320.70560.0638*
H1120.39111.13600.58170.0621*
H1130.43031.01390.61210.0605*
H161−0.13350.2644−0.13560.0533*
H162−0.27100.3893−0.11180.0541*
H163−0.20180.3427−0.01020.0533*
H1710.21040.3825−0.17640.0583*
H1720.04390.4833−0.18090.0615*
H1730.29320.5356−0.09310.0603*
H2210.81350.83091.00280.0370*
H2220.96740.72300.94700.0375*
H2311.10050.84160.84410.0329*
H2411.31490.87251.03240.0438*
H2511.58711.02451.05030.0384*
H2611.58571.14530.95440.0459*
H2621.43081.00160.86390.0418*
H3110.66430.47810.45590.0697*
H3120.84100.60730.52690.0725*
H3130.86020.48480.55750.0711*
H3010.35120.41530.54560.0753*
H3020.36150.50070.67930.0752*
H3030.55650.41290.64240.0755*
H2910.35500.62320.50020.0783*
H2920.32330.69220.63270.0779*
H2930.53420.75080.59610.0786*
H3611.23111.31401.30970.0856*
H3621.05541.19461.30150.0842*
H3631.03131.23541.19540.0846*
H3711.56761.20091.35120.0897*
H3721.39541.07961.34090.0880*
H3731.57441.05531.26000.0883*
H220.60690.34430.17450.0550*
H370.99881.04070.90810.0730*
H49−0.03940.56170.25500.0476*
H51.26941.22330.95970.0500*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0284 (13)0.0241 (13)0.0345 (13)0.0024 (10)0.0056 (10)0.0082 (11)
C20.0343 (13)0.0255 (13)0.0318 (12)0.0046 (10)0.0077 (10)0.0069 (11)
C30.0297 (12)0.0274 (13)0.0316 (12)0.0024 (10)0.0081 (9)0.0109 (11)
C40.0343 (13)0.0236 (13)0.0312 (12)0.0027 (10)0.0103 (10)0.0110 (11)
C50.0298 (12)0.0228 (13)0.0335 (12)0.0009 (10)0.0102 (10)0.0079 (10)
C60.0298 (12)0.0320 (14)0.0391 (14)0.0067 (11)0.0087 (10)0.0136 (11)
O70.0300 (9)0.0307 (10)0.0312 (9)0.0033 (7)0.0109 (7)0.0030 (8)
C80.0352 (13)0.0356 (15)0.0266 (12)0.0057 (11)0.0112 (10)0.0058 (11)
C90.0574 (19)0.0531 (19)0.0414 (15)0.0020 (15)0.0160 (14)0.0213 (15)
C100.0477 (16)0.0340 (16)0.0424 (16)0.0098 (13)0.0092 (13)0.0053 (13)
C110.0385 (16)0.0500 (19)0.0384 (14)0.0013 (13)0.0060 (12)0.0063 (14)
O120.0297 (10)0.0414 (12)0.0477 (11)0.0036 (8)0.0120 (8)0.0059 (9)
O130.0321 (9)0.0332 (10)0.0339 (9)0.0005 (7)0.0081 (7)0.0147 (8)
O140.0379 (10)0.0288 (10)0.0280 (9)0.0092 (8)0.0063 (7)0.0057 (8)
C150.0414 (15)0.0258 (13)0.0253 (11)0.0103 (11)0.0086 (10)0.0073 (10)
C160.0411 (15)0.0351 (15)0.0359 (14)0.0033 (12)0.0043 (11)0.0080 (12)
C170.0532 (17)0.0378 (16)0.0294 (13)0.0083 (13)0.0126 (12)0.0103 (12)
O180.0370 (10)0.0227 (9)0.0354 (9)0.0049 (7)0.0046 (7)0.0110 (8)
O190.0311 (9)0.0307 (10)0.0510 (11)0.0069 (8)0.0077 (8)0.0129 (9)
C210.0399 (15)0.0298 (15)0.0351 (14)0.0042 (11)0.0074 (11)0.0121 (12)
C220.0425 (15)0.0291 (14)0.0307 (13)0.0038 (11)0.0035 (11)0.0100 (11)
C230.0322 (13)0.0275 (13)0.0321 (12)0.0102 (10)0.0064 (10)0.0121 (11)
C240.0422 (15)0.0286 (14)0.0331 (13)0.0028 (11)0.0042 (11)0.0140 (12)
C250.0325 (13)0.0268 (13)0.0349 (13)0.0068 (10)0.0073 (10)0.0085 (11)
C260.0428 (15)0.0322 (15)0.0400 (14)0.0115 (12)0.0153 (12)0.0146 (12)
O270.0370 (10)0.0368 (11)0.0310 (9)0.0039 (8)0.0019 (8)0.0053 (8)
C280.0374 (14)0.0404 (17)0.0348 (14)−0.0020 (12)0.0015 (11)0.0120 (13)
C310.0525 (19)0.059 (2)0.0333 (14)0.0006 (16)0.0091 (13)0.0060 (14)
C300.066 (2)0.049 (2)0.0388 (16)−0.0109 (16)0.0027 (14)0.0126 (15)
C290.0459 (17)0.065 (2)0.0492 (17)0.0050 (16)−0.0018 (14)0.0293 (17)
O320.0376 (11)0.0576 (15)0.0490 (12)0.0053 (10)0.0111 (9)0.0120 (11)
O330.0349 (10)0.0435 (12)0.0654 (14)0.0144 (9)0.0148 (9)0.0343 (11)
O340.0727 (15)0.0466 (13)0.0281 (10)−0.0250 (11)0.0114 (10)0.0031 (9)
C350.0431 (15)0.0355 (15)0.0299 (13)−0.0060 (12)0.0042 (11)0.0125 (12)
C360.061 (2)0.062 (2)0.0487 (17)0.0073 (17)0.0258 (16)0.0180 (17)
C370.067 (2)0.067 (2)0.0449 (18)0.0006 (18)−0.0012 (16)0.0313 (18)
O380.0384 (10)0.0290 (10)0.0301 (9)0.0022 (8)0.0085 (7)0.0097 (8)
O390.0481 (11)0.0262 (9)0.0302 (9)0.0090 (8)0.0087 (8)0.0096 (8)

Geometric parameters (Å, °)

C1—C21.508 (3)C21—C221.504 (4)
C1—O71.344 (3)C21—O271.337 (3)
C1—O121.206 (3)C21—O321.210 (4)
C2—C31.524 (4)C22—C231.522 (4)
C2—H210.977C22—H2210.988
C2—H3740.937C22—H2220.971
C3—C41.526 (3)C23—C241.522 (4)
C3—O131.418 (3)C23—O331.423 (3)
C3—H310.940C23—H2311.066
C4—C51.546 (4)C24—C251.542 (4)
C4—O141.445 (3)C24—O341.429 (3)
C4—H410.989C24—H2410.975
C5—C61.504 (4)C25—C261.516 (4)
C5—O181.435 (3)C25—O381.439 (3)
C5—H510.961C25—H2510.992
C6—O191.429 (3)C26—O391.427 (3)
C6—H610.954C26—H2610.988
C6—H621.004C26—H2620.978
O7—C81.469 (3)O27—C281.490 (3)
C8—C91.513 (4)C28—C311.520 (4)
C8—C101.521 (4)C28—C301.514 (5)
C8—C111.521 (4)C28—C291.516 (5)
C9—H910.974C31—H3110.971
C9—H920.985C31—H3120.967
C9—H930.977C31—H3130.962
C10—H1010.956C30—H3010.960
C10—H1020.974C30—H3020.966
C10—H1030.980C30—H3030.964
C11—H1110.990C29—H2910.983
C11—H1120.970C29—H2920.979
C11—H1130.987C29—H2930.973
O13—H490.807O33—H370.827
O14—C151.420 (3)O34—C351.418 (4)
C15—C161.508 (4)C35—C361.499 (5)
C15—C171.520 (4)C35—C371.512 (4)
C15—O181.432 (3)C35—O381.431 (3)
C16—H1610.986C36—H3610.975
C16—H1620.970C36—H3620.967
C16—H1630.987C36—H3630.959
C17—H1710.968C37—H3710.976
C17—H1720.965C37—H3720.955
C17—H1730.974C37—H3730.967
O19—H220.849O39—H50.832
C2—C1—O7110.2 (2)C22—C21—O27110.8 (2)
C2—C1—O12124.6 (2)C22—C21—O32124.2 (2)
O7—C1—O12125.2 (2)O27—C21—O32125.0 (3)
C1—C2—C3112.8 (2)C21—C22—C23113.8 (2)
C1—C2—H21102.3C21—C22—H221108.0
C3—C2—H21110.5C23—C22—H221108.2
C1—C2—H374105.5C21—C22—H222111.0
C3—C2—H374112.2C23—C22—H222108.3
H21—C2—H374112.9H221—C22—H222107.4
C2—C3—C4109.1 (2)C22—C23—C24110.0 (2)
C2—C3—O13111.77 (19)C22—C23—O33105.6 (2)
C4—C3—O13113.4 (2)C24—C23—O33113.9 (2)
C2—C3—H31111.7C22—C23—H231106.9
C4—C3—H31100.9C24—C23—H231110.2
O13—C3—H31109.6O33—C23—H231109.8
C3—C4—C5118.7 (2)C23—C24—C25119.8 (2)
C3—C4—O14107.8 (2)C23—C24—O34108.3 (2)
C5—C4—O14104.06 (19)C25—C24—O34104.3 (2)
C3—C4—H41105.0C23—C24—H241106.4
C5—C4—H41109.2C25—C24—H241108.8
O14—C4—H41112.2O34—C24—H241108.9
C4—C5—C6118.2 (2)C24—C25—C26119.6 (2)
C4—C5—O18103.49 (19)C24—C25—O38103.7 (2)
C6—C5—O18109.7 (2)C26—C25—O38108.4 (2)
C4—C5—H51105.4C24—C25—H251108.9
C6—C5—H51104.5C26—C25—H251101.8
O18—C5—H51116.0O38—C25—H251115.1
C5—C6—O19110.7 (2)C25—C26—O39113.7 (2)
C5—C6—H61107.6C25—C26—H261105.0
O19—C6—H61107.9O39—C26—H261108.5
C5—C6—H62113.0C25—C26—H262108.2
O19—C6—H62112.6O39—C26—H262107.9
H61—C6—H62104.6H261—C26—H262113.6
C1—O7—C8121.33 (19)C21—O27—C28121.5 (2)
O7—C8—C9110.5 (2)O27—C28—C31101.9 (2)
O7—C8—C10109.2 (2)O27—C28—C30109.1 (2)
C9—C8—C10112.6 (2)C31—C28—C30111.3 (3)
O7—C8—C11102.4 (2)O27—C28—C29110.2 (3)
C9—C8—C11110.9 (3)C31—C28—C29111.3 (3)
C10—C8—C11110.7 (3)C30—C28—C29112.6 (3)
C8—C9—H91109.0C28—C31—H311108.8
C8—C9—H92109.5C28—C31—H312113.1
H91—C9—H92112.0H311—C31—H312106.9
C8—C9—H93107.4C28—C31—H313111.9
H91—C9—H93110.2H311—C31—H313106.7
H92—C9—H93108.6H312—C31—H313109.1
C8—C10—H101109.9C28—C30—H301108.4
C8—C10—H102109.8C28—C30—H302108.0
H101—C10—H102108.0H301—C30—H302109.9
C8—C10—H103108.1C28—C30—H303109.6
H101—C10—H103110.7H301—C30—H303110.6
H102—C10—H103110.4H302—C30—H303110.2
C8—C11—H111110.5C28—C29—H291108.4
C8—C11—H112106.6C28—C29—H292109.2
H111—C11—H112111.1H291—C29—H292110.0
C8—C11—H113109.5C28—C29—H293108.0
H111—C11—H113111.5H291—C29—H293111.1
H112—C11—H113107.5H292—C29—H293110.0
C3—O13—H49118.0C23—O33—H37102.0
C4—O14—C15108.28 (18)C24—O34—C35110.3 (2)
O14—C15—C16108.2 (2)O34—C35—C36108.2 (3)
O14—C15—C17111.3 (2)O34—C35—C37110.9 (3)
C16—C15—C17112.9 (2)C36—C35—C37113.5 (3)
O14—C15—O18103.72 (19)O34—C35—O38104.4 (2)
C16—C15—O18109.1 (2)C36—C35—O38108.6 (3)
C17—C15—O18111.1 (2)C37—C35—O38110.6 (2)
C15—C16—H161111.7C35—C36—H361109.6
C15—C16—H162106.1C35—C36—H362107.2
H161—C16—H162111.4H361—C36—H362110.4
C15—C16—H163108.4C35—C36—H363109.2
H161—C16—H163111.4H361—C36—H363110.6
H162—C16—H163107.5H362—C36—H363110.0
C15—C17—H171109.6C35—C37—H371109.8
C15—C17—H172110.2C35—C37—H372107.5
H171—C17—H172107.4H371—C37—H372110.8
C15—C17—H173107.8C35—C37—H373109.1
H171—C17—H173110.7H371—C37—H373109.7
H172—C17—H173111.1H372—C37—H373109.9
C5—O18—C15106.46 (18)C25—O38—C35107.8 (2)
C6—O19—H22113.3C26—O39—H5107.4

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C2—H21···O34i0.982.463.407 (4)164
C3—H31···O12ii0.942.543.442 (4)161
C9—H91···O39iii0.972.603.502 (4)154
C10—H103···O120.982.403.031 (4)121
C22—H222···O14iv0.972.503.349 (4)147
C30—H302···O320.972.403.009 (4)121
O19—H22···O38v0.852.032.861 (4)165
O33—H37···C260.832.573.231 (4)138
O33—H37···O390.831.882.703 (4)171
O13—H49···O19iii0.812.062.842 (4)162
O39—H5···O18vi0.831.982.771 (4)157

Symmetry codes: (i) x−1, y, z−1; (ii) x+1, y, z; (iii) x−1, y, z; (iv) x+1, y, z+1; (v) x−1, y−1, z−1; (vi) x+1, y+1, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2696).

References

  • Altomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst.27, 435.
  • Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst.36, 1487.
  • Booth, K. V., Jenkinson, S. F., Fleet, G. W. J., Gullapalli, P., Yoshihara, A., Izumori, K. & Watkin, D. J. (2008). Acta Cryst. E64, o1385. [PMC free article] [PubMed]
  • Görbitz, C. H. (1999). Acta Cryst. B55, 1090–1098. [PubMed]
  • Granstrom, T. B., Takata, G., Tokuda, M. & Izumori, K. (2004). J. Biosci. Bioeng.97, 89–94. [PubMed]
  • Gullapalli, P., Shiji, T., Rao, D., Yoshihara, A., Morimoto, K., Takata, G., Fleet, G. W. J. & Izumori, K. (2007). Tetrahedron Asymmetry, 18, 1995–2000.
  • Izumori, K. (2002). Naturwissenschaften, 89, 120–124. [PubMed]
  • Izumori, K. (2006). J. Biotechnol.124, 717–722. [PubMed]
  • Jenkinson, S. F., Booth, K. V., Gullapalli, P., Morimoto, K., Izumori, K., Fleet, G. W. J. & Watkin, D. J. (2008). Acta Cryst. E64, o1705–o1706. [PMC free article] [PubMed]
  • Jenkinson, S. F., Booth, K. V., Yoshihara, A., Morimoto, K., Fleet, G. W. J., Izumori, K. & Watkin, D. J. (2008). Acta Cryst. E64, o1429. [PMC free article] [PubMed]
  • Jones, N. A., Rao, D., Yoshihara, A., Gullapalli, P., Morimoto, K., Takata, G., Hunter, S. J., Wormald, M. R., Dwek, R. A., Izumori, K. & Fleet, G. W. J. (2008). Tetrahedron Asymmetry, 19, 1904–1918.
  • Nonius (2001). COLLECT Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Rao, D., Yoshihara, A., Gullapalli, P., Morimoto, K., Takata, G., da Cruz, F. P., Jenkinson, S. F., Wormald, M. R., Dwek, R. A., Fleet, G. W. J. & Izumori, K. (2008). Tetrahedron Lett.49, 3316–3121.
  • Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON Chemical Crystallography Laboratory, Oxford, England.
  • Yoshihara, A., Haraguchi, S., Gullapalli, P., Rao, D., Morimoto, K., Takata, G., Jones, N., Jenkinson, S. F., Wormald, M. R., Dwek, R. A., Fleet, G. W. J. & Izumori, K. (2008). Tetrahedron Asymmetry, 19, 739–745.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography