PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 October 1; 64(Pt 10): m1224.
Published online 2008 September 6. doi:  10.1107/S1600536808027566
PMCID: PMC2959252

Bis(4,4′-bipyridinium) dodeca­tungsto­silicate 4,4′-bipyridine hexa­hydrate

Abstract

The title compound, (C10H10N2)2[SiW12O40]·C10H8N2·6H2O or (4,4′-bipyH2)2[SiW12O40].(4,4′-bipy)·6H2O (4,4′-bipy is 4,4′-bipyridine), was prepared under hydro­thermal conditions. The asymmetric unit contains a discrete Keggin-type [SiW12O40]4− anion (located on a twofold axis), one 4,4′-bipy (located on a twofold axis), two (4,4′-bipyH2)2+ cations and six uncoordinated water mol­ecules. The polyoxoanion is constructed from a central SiO4 tetra­hedron which shares its O atoms with four trinuclear W3O13 groups, each of which is made up of three edge-sharing WO6 octa­hedra. The water mol­ecules and [SiW12O40]4− anions are linked through hydrogen bonds.

Related literature

For related literature, see: Hill (1998 [triangle]); Kurth et al. (2001 [triangle]); Misono (1987 [triangle]); Pope (1983 [triangle]). H4SiW12O40.nH2O was prepared according to literature procedures (Rocchiccioli-Deltcheff et al., 1983 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1224-scheme1.jpg

Experimental

Crystal data

  • (C10H10N2)2[SiW12O40]·C10H8N2·6H2O
  • M r = 3454.85
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1224-efi3.jpg
  • a = 15.491 (5) Å
  • b = 18.096 (5) Å
  • c = 20.921 (5) Å
  • β = 100.834 (5)°
  • V = 5760 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 23.99 mm−1
  • T = 293 (2) K
  • 0.15 × 0.12 × 0.10 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.041, T max = 0.095
  • 15853 measured reflections
  • 5652 independent reflections
  • 5214 reflections with I > 2σ(I)
  • R int = 0.042

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.101
  • S = 1.10
  • 5652 reflections
  • 455 parameters
  • 8 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 3.60 e Å−3
  • Δρmin = −3.50 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998 [triangle]); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL-Plus (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808027566/rk2097sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808027566/rk2097Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Jilin Agricultural Science and Technology College (China) for support.

supplementary crystallographic information

Comment

Polyoxometalates (POMs) have been known for more than 200 years, but continue to receive attention due to their versatile structures and applications in medicine, materials science, catalysis (Misono, 1987; Pope, 1983; Hill, 1998).

The structure of the title compound is built from one independent 4,4'–bipyridines (4,4'-bipy) (placed on twofold axis by N3/C13/C14/N4) and two protonated 4,4'–bipyridines (4,4'-bipyH2)2+, and Keggin–type anion [SiW12O40]4- (placed on twofold axis) and six water molecules (Fig. 1). In the well known Keggin structure, there are 12 WO6–octahedra and one SiO4–tetrahedron. The 12 WO6–octahedra can be categorized into four W3O13 trinuclear groups, each of which is made of three edge–sharing WO6–octahedra and are joined to each other by sharing corners. The SiO4–tetrahedron is located in the centre of the polyoxoanion by sharing its O atoms with the four W3O13–groups. In the Keggin anion, the Si—O and W—O distances as well as the corresponding angles are very similar to those of H4SiW12O40 (Kurth et al., 2001). The water molecules and [SiW12O40]4- anions are linked through hydrogen bonds. It can be seen that all of the H atoms come from water molecules. The O atoms, which come from the [SiW12O40]4- anions, are also involved in hydrogen bonds and play the role of acceptors.

Experimental

The H4SiW12O40.nH2O was prepared according to the method given by Rocchiccioli-Deltcheff et al., (1983). The starting mixture of H4SiW12O40.nH2O (0.302 g), 4,4'-bipy (0.026 g), and H2O (10 ml) was adjusted to pH = 5.6 by addition of 2 mol.L-1 NaOH under stirring for 30 min. The final solution was transferred into a 25 ml teflon lined autoclave and was heated at 453 K for 96 h. Then, the autoclave was cooled with a rate of 10 K.h-1 to room temperature. Black block–like crystals were filtered off, washed with distilled water and dried at ambient temperature (45% yield on W).

Refinement

All H atoms on C atoms were poisitioned geometrically and refined as riding atoms, with C—H = 0.93Å and Uiso = 1.2Ueq(C). The H atoms bonded to N atom and O atoms of water molecules were located in a difference Fourier map and refined isotropically. In the final Fourier map, the highest peak is 0.85Å away from W3 and the deepest hole is 0.55Å from W4.

Figures

Fig. 1.
A view of the structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitraryv radius. Symmetry codes: i = -x+2, y, -z+3/2; ii = -x+1, y, -z+3/2.

Crystal data

(C10H10N2)2[SiW12O40]·C10H8N2·6H2OF(000) = 6128
Mr = 3454.85Dx = 3.984 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -C 2ycCell parameters from 5214 reflections
a = 15.491 (5) Åθ = 1.8–26.0°
b = 18.096 (5) ŵ = 23.99 mm1
c = 20.921 (5) ÅT = 293 K
β = 100.834 (5)°Block, black
V = 5760 (3) Å30.15 × 0.12 × 0.10 mm
Z = 4

Data collection

Rigaku R-AXIS RAPID diffractometer5652 independent reflections
Radiation source: Rotor target5214 reflections with I > 2σ(I)
graphiteRint = 0.042
Detector resolution: 10.0 pixels mm-1θmax = 26.0°, θmin = 1.8°
ω scansh = −19→14
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)k = −22→22
Tmin = 0.041, Tmax = 0.095l = −23→25
15853 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.10w = 1/[σ2(Fo2) + (0.049P)2 + 129.9363P] where P = (Fo2 + 2Fc2)/3
5652 reflections(Δ/σ)max = 0.002
455 parametersΔρmax = 3.60 e Å3
8 restraintsΔρmin = −3.50 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as largeas those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Si11.00000.14417 (15)0.75000.0055 (5)
W10.98109 (2)0.004870 (18)0.865205 (16)0.01358 (10)
W20.81326 (2)0.150489 (19)0.823667 (17)0.01562 (10)
W30.83728 (2)0.008359 (18)0.701365 (16)0.01280 (10)
W40.86857 (2)0.136541 (19)0.593364 (17)0.01711 (10)
W50.83464 (2)0.280029 (18)0.712749 (16)0.01327 (10)
W61.03445 (2)0.282564 (18)0.639007 (16)0.01417 (10)
C10.7254 (7)0.6611 (5)0.4178 (5)0.0264 (14)
H10.77140.66640.39530.032*
C20.6599 (7)0.7125 (5)0.4101 (5)0.0254 (13)
H20.65980.75200.38160.031*
C30.5934 (6)0.7045 (5)0.4454 (5)0.0210 (13)
C40.5952 (7)0.6445 (5)0.4877 (5)0.0223 (13)
H40.55150.63860.51230.027*
C50.6624 (7)0.5948 (5)0.4922 (5)0.0266 (13)
H50.66490.55440.52000.032*
C60.5183 (6)0.7587 (5)0.4376 (5)0.0210 (13)
C70.4350 (6)0.7337 (5)0.4437 (5)0.0219 (13)
H70.42620.68430.45300.026*
C80.3650 (7)0.7838 (5)0.4357 (5)0.0228 (14)
H80.30900.76810.43960.027*
C90.4582 (6)0.8799 (5)0.4160 (5)0.0240 (14)
H90.46480.92970.40690.029*
C100.5303 (7)0.8325 (5)0.4228 (5)0.0227 (13)
H100.58500.84980.41750.027*
C110.5736 (6)−0.0110 (5)0.7442 (4)0.0195 (13)
H110.6235−0.03790.74010.023*
C120.5755 (6)0.0660 (5)0.7443 (4)0.0174 (12)
H120.62690.09080.74060.021*
C130.50000.1061 (7)0.75000.0159 (14)
C140.50000.1881 (6)0.75000.0146 (14)
C150.5682 (6)0.2278 (5)0.7320 (4)0.0174 (12)
H150.61470.20290.71930.021*
C160.5676 (6)0.3045 (5)0.7328 (4)0.0206 (13)
H160.61410.33070.72140.025*
N10.7246 (6)0.6045 (5)0.4565 (4)0.0265 (13)
H1N0.770 (5)0.584 (6)0.461 (6)0.040*
N20.3794 (6)0.8539 (4)0.4226 (4)0.0252 (14)
H2N0.334 (5)0.875 (6)0.419 (6)0.038*
N30.5000−0.0457 (6)0.75000.0192 (16)
N40.50000.3407 (6)0.75000.0192 (16)
O10.9447 (4)−0.0617 (3)0.9112 (3)0.0163 (12)
O21.0599 (4)0.0597 (3)0.9308 (3)0.0120 (10)
O31.0822 (4)−0.0439 (3)0.8440 (3)0.0122 (10)
O50.8959 (4)0.0815 (3)0.8665 (3)0.0116 (9)
O60.8667 (4)0.2281 (3)0.8797 (3)0.0134 (9)
O70.7236 (4)0.1323 (3)0.8568 (3)0.0165 (11)
O80.7635 (4)0.2270 (3)0.7623 (3)0.0146 (8)
O90.7957 (4)0.0824 (3)0.7520 (3)0.0141 (8)
O100.9299 (4)0.1957 (3)0.7773 (3)0.0104 (8)
O110.9167 (4)−0.0197 (3)0.7808 (3)0.0135 (9)
O120.7571 (4)−0.0570 (3)0.6969 (3)0.0198 (12)
O130.9484 (4)0.0926 (3)0.6913 (3)0.0096 (8)
O140.7932 (4)0.0625 (3)0.6220 (3)0.0135 (9)
O150.8026 (4)0.1562 (3)0.5197 (3)0.0184 (12)
O160.9609 (4)0.2067 (3)0.5959 (3)0.0136 (9)
O170.8220 (4)0.2048 (3)0.6488 (3)0.0146 (9)
O180.7599 (4)0.3442 (3)0.6770 (3)0.0198 (12)
O191.1124 (4)0.3313 (3)0.7084 (3)0.0136 (10)
O201.0266 (5)0.3501 (3)0.5807 (3)0.0214 (13)
O210.9400 (4)0.3087 (3)0.6807 (3)0.0159 (9)
O1W0.9247 (5)0.4797 (4)0.5870 (4)0.0332 (12)
H1A0.890 (7)0.469 (7)0.615 (4)0.050*
H1B0.920 (8)0.457 (6)0.553 (4)0.050*
O2W0.8790 (5)0.5277 (4)0.4605 (4)0.0319 (13)
H2A0.932 (7)0.547 (6)0.463 (5)0.048*
H2B0.859 (7)0.506 (6)0.427 (4)0.048*
O3W0.7508 (5)0.4587 (4)0.5805 (4)0.0380 (13)
H3A0.780 (8)0.416 (4)0.594 (5)0.057*
H3B0.763 (9)0.487 (5)0.618 (4)0.057*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Si10.0050 (12)0.0012 (11)0.0111 (12)0.0000.0033 (10)0.000
W10.0161 (2)0.00723 (17)0.01860 (19)0.00094 (13)0.00648 (14)0.00361 (12)
W20.0143 (2)0.01192 (18)0.02205 (19)0.00164 (13)0.00714 (14)−0.00002 (13)
W30.0121 (2)0.00709 (17)0.01982 (18)−0.00403 (12)0.00457 (13)−0.00200 (12)
W40.0176 (2)0.01453 (19)0.01848 (19)0.00010 (14)0.00146 (14)0.00044 (13)
W50.0137 (2)0.00674 (17)0.01943 (18)0.00445 (12)0.00332 (13)0.00175 (12)
W60.0179 (2)0.00714 (17)0.01819 (18)−0.00104 (13)0.00512 (14)0.00300 (12)
C10.022 (3)0.022 (3)0.037 (3)0.000 (2)0.010 (2)−0.002 (2)
C20.023 (3)0.019 (2)0.035 (3)0.001 (2)0.008 (2)0.000 (2)
C30.018 (3)0.017 (2)0.029 (3)0.000 (2)0.007 (2)−0.002 (2)
C40.019 (2)0.018 (2)0.031 (2)0.001 (2)0.007 (2)−0.001 (2)
C50.023 (3)0.022 (3)0.034 (3)0.001 (2)0.005 (2)0.001 (2)
C60.020 (3)0.015 (2)0.028 (3)0.002 (2)0.005 (2)0.000 (2)
C70.020 (3)0.017 (2)0.030 (3)0.003 (2)0.006 (2)0.000 (2)
C80.019 (3)0.019 (3)0.032 (3)0.003 (3)0.009 (3)0.002 (3)
C90.023 (3)0.016 (3)0.033 (3)0.002 (3)0.006 (3)−0.002 (3)
C100.021 (3)0.016 (2)0.031 (3)0.000 (2)0.007 (2)0.000 (2)
C110.018 (2)0.012 (2)0.029 (2)0.001 (2)0.003 (2)−0.002 (2)
C120.016 (2)0.011 (2)0.025 (2)0.000 (2)0.003 (2)0.000 (2)
C130.015 (3)0.010 (3)0.022 (3)0.0000.002 (2)0.000
C140.014 (3)0.009 (3)0.021 (3)0.0000.004 (2)0.000
C150.016 (2)0.011 (2)0.025 (2)0.000 (2)0.004 (2)0.000 (2)
C160.020 (3)0.014 (2)0.028 (3)−0.002 (2)0.004 (2)0.002 (2)
N10.020 (3)0.021 (2)0.038 (3)0.004 (2)0.005 (2)−0.004 (2)
N20.023 (3)0.019 (3)0.034 (3)0.006 (2)0.008 (2)0.001 (2)
N30.018 (3)0.011 (3)0.029 (3)0.0000.004 (3)0.000
N40.019 (3)0.013 (3)0.025 (3)0.0000.002 (3)0.000
O10.018 (3)0.010 (3)0.023 (3)0.001 (2)0.007 (2)0.007 (2)
O20.011 (2)0.0089 (19)0.016 (2)0.0007 (18)0.0036 (17)0.0043 (17)
O30.013 (2)0.005 (2)0.019 (2)0.0014 (18)0.0047 (18)0.0035 (18)
O50.0132 (18)0.0082 (17)0.0149 (17)−0.0005 (16)0.0060 (15)0.0017 (15)
O60.0144 (19)0.0075 (18)0.0190 (18)0.0021 (16)0.0049 (17)−0.0011 (16)
O70.015 (3)0.014 (2)0.021 (2)0.003 (2)0.006 (2)0.000 (2)
O80.0131 (17)0.0107 (16)0.0201 (16)0.0028 (15)0.0037 (15)0.0016 (15)
O90.0138 (16)0.0097 (15)0.0194 (15)0.0000 (14)0.0050 (14)−0.0002 (14)
O100.0116 (17)0.0047 (16)0.0155 (16)0.0012 (15)0.0039 (15)0.0004 (14)
O110.0158 (18)0.0084 (17)0.0171 (18)−0.0005 (16)0.0049 (16)0.0026 (16)
O120.016 (3)0.014 (3)0.030 (3)−0.004 (2)0.007 (2)−0.002 (2)
O130.0106 (16)0.0052 (16)0.0142 (16)0.0010 (15)0.0054 (14)−0.0004 (14)
O140.0119 (18)0.0090 (17)0.0194 (17)−0.0019 (16)0.0025 (16)−0.0018 (16)
O150.019 (3)0.016 (3)0.019 (3)0.002 (2)0.002 (2)0.004 (2)
O160.0141 (19)0.0090 (18)0.0189 (18)0.0006 (17)0.0061 (16)0.0016 (16)
O170.0140 (17)0.0103 (16)0.0193 (16)0.0017 (15)0.0023 (15)0.0004 (15)
O180.022 (3)0.016 (2)0.023 (3)0.009 (2)0.007 (2)0.007 (2)
O190.015 (2)0.005 (2)0.021 (2)−0.0026 (18)0.0053 (18)0.0020 (18)
O200.025 (3)0.015 (3)0.026 (3)0.000 (2)0.008 (2)0.012 (2)
O210.0165 (18)0.0096 (17)0.0224 (18)0.0011 (16)0.0053 (16)0.0014 (16)
O1W0.029 (2)0.026 (2)0.044 (2)−0.001 (2)0.006 (2)0.005 (2)
O2W0.025 (3)0.026 (3)0.045 (3)0.001 (2)0.008 (2)−0.003 (2)
O3W0.032 (3)0.033 (2)0.048 (3)0.001 (2)0.005 (2)0.007 (2)

Geometric parameters (Å, °)

Si1—O101.614 (6)C3—C41.397 (13)
Si1—O10i1.614 (6)C3—C61.507 (13)
Si1—O131.627 (5)C4—C51.366 (13)
Si1—O13i1.627 (5)C4—H40.9300
W1—O11.703 (6)C5—N11.337 (14)
W1—O111.911 (5)C5—H50.9300
W1—O51.918 (6)C6—C101.391 (13)
W1—O31.921 (6)C6—C71.395 (14)
W1—O21.931 (6)C7—C81.400 (13)
W1—O13i2.366 (5)C7—H70.9300
W2—O71.697 (6)C8—N21.325 (12)
W2—O51.889 (5)C8—H80.9300
W2—O61.915 (6)C9—N21.340 (13)
W2—O91.921 (6)C9—C101.394 (14)
W2—O81.945 (6)C9—H90.9300
W2—O102.353 (6)C10—H100.9300
W3—O121.706 (6)C11—N31.327 (11)
W3—O91.894 (6)C11—C121.395 (12)
W3—O141.939 (6)C11—H110.9300
W3—O111.940 (5)C12—C131.400 (11)
W3—O3i1.948 (6)C12—H120.9300
W3—O132.338 (5)C13—C12ii1.400 (11)
W4—O151.719 (6)C13—C141.483 (17)
W4—O2i1.904 (6)C14—C15ii1.388 (11)
W4—O161.907 (6)C14—C151.388 (11)
W4—O171.924 (6)C15—C161.387 (12)
W4—O141.943 (6)C15—H150.9300
W4—O132.325 (5)C16—N41.341 (11)
W5—O181.709 (6)C16—H160.9300
W5—O171.894 (6)N1—H1N0.79 (6)
W5—O81.909 (6)N2—H2N0.79 (6)
W5—O19i1.935 (6)N3—C11ii1.327 (11)
W5—O211.948 (6)N4—C16ii1.341 (11)
W5—O102.363 (5)O2—W4i1.904 (6)
W6—O201.715 (6)O3—W3i1.948 (6)
W6—O211.898 (6)O6—W6i1.923 (6)
W6—O161.900 (6)O10—W6i2.341 (5)
W6—O191.919 (6)O13—W1i2.366 (5)
W6—O6i1.923 (6)O19—W5i1.935 (6)
W6—O10i2.341 (5)O1W—H1A0.89 (6)
C1—N11.306 (13)O1W—H1B0.81 (6)
C1—C21.364 (14)O2W—H2A0.88 (9)
C1—H10.9300O2W—H2B0.80 (6)
C2—C31.383 (14)O3W—H3A0.92 (6)
C2—H20.9300O3W—H3B0.93 (6)
O10—Si1—O10i109.4 (4)O19—W6—O6i88.7 (2)
O10—Si1—O13109.3 (3)O20—W6—O10i170.4 (3)
O10i—Si1—O13109.4 (3)O21—W6—O10i85.3 (2)
O10—Si1—O13i109.4 (3)O16—W6—O10i84.6 (2)
O10i—Si1—O13i109.3 (3)O19—W6—O10i73.5 (2)
O13—Si1—O13i110.0 (4)O6i—W6—O10i74.0 (2)
O1—W1—O11100.7 (3)N1—C1—C2120.9 (10)
O1—W1—O5101.7 (3)N1—C1—H1119.5
O11—W1—O586.6 (2)C2—C1—H1119.5
O1—W1—O3100.2 (3)C1—C2—C3118.5 (10)
O11—W1—O389.2 (2)C1—C2—H2120.8
O5—W1—O3158.2 (2)C3—C2—H2120.8
O1—W1—O2101.2 (3)C2—C3—C4119.5 (9)
O11—W1—O2158.0 (2)C2—C3—C6120.7 (9)
O5—W1—O287.9 (2)C4—C3—C6119.8 (9)
O3—W1—O288.0 (2)C5—C4—C3118.6 (10)
O1—W1—O13i172.0 (2)C5—C4—H4120.7
O11—W1—O13i84.5 (2)C3—C4—H4120.7
O5—W1—O13i84.6 (2)N1—C5—C4119.7 (9)
O3—W1—O13i73.7 (2)N1—C5—H5120.2
O2—W1—O13i73.8 (2)C4—C5—H5120.2
O7—W2—O5102.2 (3)C10—C6—C7119.7 (9)
O7—W2—O6100.6 (3)C10—C6—C3121.1 (9)
O5—W2—O691.0 (2)C7—C6—C3119.2 (8)
O7—W2—O9100.8 (3)C6—C7—C8119.3 (9)
O5—W2—O986.0 (2)C6—C7—H7120.4
O6—W2—O9158.5 (3)C8—C7—H7120.4
O7—W2—O898.9 (3)N2—C8—C7119.2 (9)
O5—W2—O8158.8 (3)N2—C8—H8120.4
O6—W2—O887.4 (2)C7—C8—H8120.4
O9—W2—O887.8 (2)N2—C9—C10120.0 (9)
O7—W2—O10170.8 (2)N2—C9—H9120.0
O5—W2—O1085.5 (2)C10—C9—H9120.0
O6—W2—O1073.8 (2)C6—C10—C9118.4 (9)
O9—W2—O1084.7 (2)C6—C10—H10120.8
O8—W2—O1073.8 (2)C9—C10—H10120.8
O12—W3—O9101.6 (3)N3—C11—C12119.3 (9)
O12—W3—O1499.7 (3)N3—C11—H11120.3
O9—W3—O1491.1 (2)C12—C11—H11120.3
O12—W3—O11101.7 (3)C11—C12—C13120.1 (9)
O9—W3—O1186.2 (2)C11—C12—H12119.9
O14—W3—O11158.5 (2)C13—C12—H12119.9
O12—W3—O3i99.4 (3)C12ii—C13—C12117.5 (11)
O9—W3—O3i158.7 (2)C12ii—C13—C14121.2 (6)
O14—W3—O3i89.0 (2)C12—C13—C14121.2 (6)
O11—W3—O3i85.9 (2)C15ii—C14—C15117.5 (11)
O12—W3—O13171.3 (2)C15ii—C14—C13121.2 (6)
O9—W3—O1385.6 (2)C15—C14—C13121.2 (5)
O14—W3—O1374.9 (2)C16—C15—C14120.5 (9)
O11—W3—O1383.6 (2)C16—C15—H15119.7
O3i—W3—O1373.9 (2)C14—C15—H15119.7
O15—W4—O2i101.0 (3)N4—C16—C15120.0 (9)
O15—W4—O16101.7 (3)N4—C16—H16120.0
O2i—W4—O1691.3 (2)C15—C16—H16120.0
O15—W4—O17100.4 (3)C1—N1—C5122.8 (9)
O2i—W4—O17158.6 (2)C1—N1—H1N109 (9)
O16—W4—O1785.4 (3)C5—N1—H1N127 (9)
O15—W4—O1497.4 (3)C8—N2—C9123.4 (9)
O2i—W4—O1489.5 (2)C8—N2—H2N108 (9)
O16—W4—O14160.3 (2)C9—N2—H2N129 (9)
O17—W4—O1486.7 (2)C11ii—N3—C11123.6 (11)
O15—W4—O13171.5 (2)C16ii—N4—C16121.4 (11)
O2i—W4—O1375.2 (2)W4i—O2—W1120.5 (3)
O16—W4—O1386.1 (2)W1—O3—W3i121.0 (3)
O17—W4—O1383.5 (2)W2—O5—W1151.4 (3)
O14—W4—O1375.1 (2)W2—O6—W6i121.3 (3)
O18—W5—O17102.0 (3)W5—O8—W2121.2 (3)
O18—W5—O899.6 (3)W3—O9—W2151.4 (3)
O17—W5—O891.6 (3)Si1—O10—W6i125.0 (3)
O18—W5—O19i101.0 (3)Si1—O10—W2124.4 (3)
O17—W5—O19i156.7 (2)W6i—O10—W290.93 (19)
O8—W5—O19i88.5 (3)Si1—O10—W5124.1 (3)
O18—W5—O21102.2 (3)W6i—O10—W591.59 (19)
O17—W5—O2186.0 (3)W2—O10—W590.8 (2)
O8—W5—O21158.1 (2)W1—O11—W3150.2 (3)
O19i—W5—O2185.3 (2)Si1—O13—W4125.0 (3)
O18—W5—O10171.0 (3)Si1—O13—W3124.9 (3)
O17—W5—O1084.8 (2)W4—O13—W391.37 (19)
O8—W5—O1074.2 (2)Si1—O13—W1i123.6 (3)
O19i—W5—O1072.7 (2)W4—O13—W1i90.46 (18)
O21—W5—O1084.0 (2)W3—O13—W1i91.39 (18)
O20—W6—O21101.0 (3)W3—O14—W4118.5 (3)
O20—W6—O16102.7 (3)W6—O16—W4150.9 (3)
O21—W6—O1687.3 (3)W5—O17—W4152.4 (3)
O20—W6—O1999.3 (3)W6—O19—W5i122.0 (3)
O21—W6—O1988.2 (3)W6—O21—W5149.3 (3)
O16—W6—O19158.0 (2)H1A—O1W—H1B119 (9)
O20—W6—O6i99.9 (3)H2A—O2W—H2B117 (10)
O21—W6—O6i159.0 (2)H3A—O3W—H3B102 (6)
O16—W6—O6i87.8 (2)

Symmetry codes: (i) −x+2, y, −z+3/2; (ii) −x+1, y, −z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1A···O3W0.89 (10)2.15 (11)2.699 (11)119 (7)
O1W—H1B···O2W0.81 (9)2.31 (9)2.749 (12)115 (10)
O1W—H1B···O200.81 (9)2.54 (11)2.844 (10)104 (8)
N1—H1N···O2W0.78 (9)1.97 (9)2.754 (12)172 (14)
O3W—H3A···O180.91 (9)2.24 (10)2.878 (10)127 (9)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2097).

References

  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Hill, C. L. (1998). Chem. Rev.98, 1–2. [PubMed]
  • Kurth, D. G., Volkmer, D., Pope, M. T. & Müller, A. (2001). Polyoxometalate Chemistry, p. 301. Dordrecht: Kluwer.
  • Misono, M. (1987). Cat. Rev. Sci. Eng.29, 269–321.
  • Pope, M. T. (1983). Heteropoly and Isopoly Oxometalates Berlin: Springer.
  • Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  • Rocchiccioli-Deltcheff, C., Fournier, M., Franck, R. & Thouvenot, R. (1983). Inorg. Chem.22, 207–216.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography