PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 October 1; 64(Pt 10): m1280–m1281.
Published online 2008 September 20. doi:  10.1107/S1600536808029243
PMCID: PMC2959249

Tricaesium tris­(pyridine-2,6-dicarboxyl­ato-κ3 O 2,N,O 6)lutetium(III) octa­hydrate

Abstract

Colourless block crystals of the title compound, Cs3[Lu(dipic)3]·8H2O [dipic is dipicolinate or pyridine-2,6-dicarboxyl­ate, C7H3NO4] were synthesized by slow evaporation of the solvent. The crystal structure of this LuIII-complex, isostructural with the DyIII and EuIII complexes, was determined from a crystal twinned by inversion and consists of discrete [Lu(dipic)3]3− anions, Cs+ cations and water mol­ecules involving hydrogen bonding. The Lu atom lies on a twofold rotation axis and is coordinated by six O atoms and three N atoms of three dipicolinate ligands. One Cs atom is also on a twofold axis. The unit cell can be regarded as successive layers along the crystallographic c-axis formed by [Lu(dipic)3]3− anionic planes and [Cs+, H2O] cationic planes. In the crystal structure, although the H atoms attached to water mol­ecules could not be located, short O—O contacts clearly indicate the occurrence of an intricate hydrogen-bonded network through contacts with other water mol­ecules, Cs cations or with the O atoms of the dipicolinate ligands.

Related literature

For potential applications of lanthanide complexes as second-order non-linear optical materials, see: Tancrez et al. (2005 [triangle]); Sénéchal et al. (2004 [triangle]). For the isostructural EuIII complex, see: Brayshaw et al. (1995 [triangle]). For other related complexes, see: Murray et al. (1990 [triangle]). For related literature, see: Flack & Bernardinelli (1999 [triangle], 2000 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1280-scheme1.jpg

Experimental

Crystal data

  • Cs3[Lu(C7H3NO4)3]·8H2O
  • M r = 1213.14
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1280-efi1.jpg
  • a = 10.0406 (2) Å
  • b = 17.8109 (6) Å
  • c = 18.4221 (5) Å
  • V = 3294.46 (16) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 6.36 mm−1
  • T = 100 (2) K
  • 0.20 × 0.19 × 0.19 mm

Data collection

  • Oxford Diffraction Xcalibur–Sapphire3 diffractometer
  • Absorption correction: Gaussian (ABSORB; DeTitta, 1985 [triangle]) T min = 0.307, T max = 0.425
  • 51066 measured reflections
  • 3520 independent reflections
  • 3491 reflections with I > 2σ(I)
  • R int = 0.045

Refinement

  • R[F 2 > 2σ(F 2)] = 0.025
  • wR(F 2) = 0.063
  • S = 1.46
  • 3520 reflections
  • 208 parameters
  • H-atom parameters constrained
  • Δρmax = 3.00 e Å−3
  • Δρmin = −0.94 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1501 Friedel pairs
  • Flack parameter: 0.270 (12)

Data collection: CrysAlis CCD (Oxford Diffraction 2006 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction 2006 [triangle]); data reduction: SORTAV (Blessing, 1989 [triangle]); program(s) used to solve structure: SIR97 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808029243/dn2357sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808029243/dn2357Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Lanthanide complexes attract considerable interest due to their magnetic and luminescent properties, but also for their potentialities in the field of second-order nonlinear optics (Sénéchal et al., 2004; Tancrez et al., 2005). Lanthanides emission can be sensitized either by direct absorption in the forbidden f-f transitions or via energy transfer from an organic ligand acting as antenna. Pulsed excitations induce long luminescence decay of the lanthanides and this time-gated emission can be used in medicine as probes in biological system for diagnosis or therapeutic purposes. In this context, lanthanide tris-dipicolinate (= pyridine-2,6-dicarboxylate) have been extensively studied both in solution and in solid state. We report the synthesis and structural characterization by X-ray diffraction measurements of the following complex: Cs3[Lu(dipic)3].8H2O, (I).

The compound (I) is isomorphous to the EuIII complex (Brayshaw et al., 1995). The asymmetric unit contains one LuIII atom located on a twofold rotation axis, one and a half dipicolinate carboxylate ligand, two Cs+ cations and water molecules (Fig. 1). The unit cell could be regarded as successive layers along the crystallographic c-axis formed by [Lu(dipic)3]3- anionic planes and [Cs+, H2O] cationic planes (Fig. 2).

Two types of Cs+ cations, which are bridged by both carboxylate and water oxygen atoms, form a chain extending throughout the crystal (Fig. 2). The chain could be considered as a sequence of ten-coordinate caesium ions linked, through bridging coordination, to eight-coordinate caesium ions. All water molecules are involved in coordination either to Cs+, to other water molecules or to the oxygen atoms of the dipicolinate ligands.

The LuIII atom, being nine-coordinated by six O and three N atoms of three dipicolinate ligands, is in the centre of a quite regular tricapped trigonal prismatic coordination sphere (Fig. 1). In those compounds, metal-to-metal distances play an important role concerning the electronic interactions affecting luminescence behaviour. For (I) the shortest Lu···Lu separation is 10.22 Å in contrast with the 4.50Å of the shortest Cs···Lu separation. These distances compare well with those observed in the Cs3[Eu(dipic)3].9H2O (Brayshaw et al., 1995). Geometrical parameters of the dipicolinate ligand are found to be in agreement with those of other structures containing dipicolinate.

Although the H atoms attached to water molecules could not be located, short O—O contacts clearly indicate the occurrence of a complicated hydrogen-bonded network. The water molecules are positioned in a channel formed by the successive anionic and cationic layers. The water molecules in this channel appear to have considerable freedom of motion. The structural refinement of (I) reveals high values of the thermal motion parameters of the water oxygen atoms indicating that most of the water molecules are incorporated in the unit cell in disordered positions. This effect was also observed in the complexes Cs3[Eu(dipic)3].9H2O, [Co(sar)][Lu(dipic)3].13H2O and Na3[Eu(dipic)3].nH2O (Brayshaw et al., 1995; Murray et al., 1990) which have also been investigated by emission spectroscopy, showing that different arrangements of the water molecules induce different crystal field splittings, clearly pointed out in the emission spectra.

Experimental

The caesium salt of the tris(dipicolinato)-LuIII anion was prepared by reaction between dipicolinic acid (3Eq) and CsCO3 acting as base and counter-anion in water. After stirring until everything dissolved, LuCl3.6H2O (1Eq) was added and the reaction was stirred at room temperature for two more hours. The water was evaporated and the white solid was dissolved in the minimum of boiling water. The complex was purified by three successive crystallizations at 4°C.

Refinement

H atoms of the dipic ligand were placed in geometrically idealized positions with fixed C—H distances (0.93 Å) and refined in riding mode, with Uiso(H) = 1.2Ueq(C). Due to the large disorder observed on the water molecules, it was not possible to position correctly the associated H atoms which were not included in the final refinement.

The crystal structure of (I) indicates a disorder of the O4w water oxygen atom which was refined at two independent positions; the two O4w positions have complementary refined occupancies of 0.69 (2) and 0.31 (2) for the major and minor positions respectively. The highest peak in the final difference Fourier map is located at 2.26 Å from O4wA and stands on a two fold axis lying equidistant to 3 heavy atoms. PLATON shows that there are no accessible voids in the cell and so this position might be related to the occurrence of diffraction ripple from the 3 heavy atoms. The deepest hole is at 1.20 Å from atom Lu1. The atom C24, which stands on a symmetry axis, lies essentially equidistant from two heavy atoms and stands on a diffraction ripple lying with a maximum right beside the C24 site; the thermal motion parameters of C24 were so constraint to be identical as C22 and C23.

The absolute structure parameter was calculated using SHELX97 (Sheldrick, 2008). Owing to the occurrence of strong inversion-distinguishing power (Flack, 1983; Flack and Bernardinelli, 1999; 2000), the value given for the Flack parameter and its standard uncertainty (0.270 (12)) could be regarded as reliable, and then indicates that the crystal is twinned by inversion (Brayshaw et al., 1995).

Figures

Fig. 1.
The molecular structure of [Lu(dipic)3]3- with the atom numbering scheme. Displacement ellipsoids are drawn at 50% probability level and H atoms are omitted for clarity.
Fig. 2.
Crystal packing of Cs3[Lu(dipic)3].8H2O with hydrogen bonds (in dotted line) and coordinate bonds to caesium. [Lu(dipic)3]3- anions and Cs+ cations are distributed in the cell as successive anionic/cationic layers along the crystallographic c-axis (Lu ...

Crystal data

Cs3[Lu(C7H3NO4)3]·8H2OF(000) = 2312
Mr = 1213.14Dx = 2.446 Mg m3
Orthorhombic, C2221Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2c 2Cell parameters from 17659 reflections
a = 10.0406 (2) Åθ = 3.2–59.9°
b = 17.8109 (6) ŵ = 6.36 mm1
c = 18.4221 (5) ÅT = 100 K
V = 3294.46 (16) Å3Block, colourless
Z = 40.20 × 0.19 × 0.19 mm

Data collection

Oxford Diffraction Xcalibur-Sapphire3 diffractometer3520 independent reflections
Radiation source: fine-focus sealed tube3491 reflections with I > 2σ(I)
graphiteRint = 0.045
ω scansθmax = 27.0°, θmin = 3.2°
Absorption correction: gaussian (ABSORB; DeTitta, 1985)h = −12→12
Tmin = 0.308, Tmax = 0.425k = −22→22
51066 measured reflectionsl = −23→23

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.063w = 1/[σ2(Fo2) + (0.0149P)2 + 27.044P] where P = (Fo2 + 2Fc2)/3
S = 1.46(Δ/σ)max < 0.001
3520 reflectionsΔρmax = 3.00 e Å3
208 parametersΔρmin = −0.94 e Å3
0 restraintsAbsolute structure: Flack (1983),1501 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.270 (12)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Lu10.75054 (5)0.00000.00000.00950 (7)
Cs10.74407 (4)0.021678 (17)−0.24335 (2)0.01702 (8)
Cs20.5000−0.26389 (3)−0.25000.01796 (11)
N110.8713 (4)−0.1197 (2)−0.0042 (3)0.0107 (8)
O110.6846 (4)−0.0835 (2)−0.0950 (2)0.0149 (8)
O120.7226 (5)−0.1846 (3)−0.1649 (2)0.0228 (12)
O131.0389 (5)−0.0907 (3)0.1601 (2)0.0174 (11)
O140.9174 (4)−0.01382 (19)0.0906 (2)0.0124 (8)
C120.9612 (6)−0.1355 (3)0.0466 (3)0.0131 (12)
C131.0349 (6)−0.2016 (3)0.0468 (3)0.0187 (13)
H131.1001−0.20890.08190.022*
C141.0140 (14)−0.2518 (3)−0.0006 (8)0.040 (2)
H141.0567−0.29800.00260.048*
C150.9185 (7)−0.2357 (4)−0.0624 (3)0.0199 (13)
H150.9073−0.2688−0.10100.024*
C160.8496 (6)−0.1693 (3)−0.0580 (3)0.0132 (11)
C170.7438 (8)−0.1440 (3)−0.1112 (3)0.0146 (6)
C180.9756 (6)−0.0754 (3)0.1041 (4)0.0146 (6)
N210.5071 (8)0.00000.00000.0173 (12)
O210.4794 (7)−0.1104 (3)0.1573 (3)0.0323 (15)
O220.6543 (5)−0.0785 (2)0.0880 (2)0.0168 (9)
C220.4415 (7)−0.0390 (4)0.0490 (3)0.0242 (9)
C230.3047 (7)−0.0426 (4)0.0509 (3)0.0242 (9)
H230.2584−0.07190.08430.029*
C240.2430 (13)0.00000.00000.0242 (9)
H240.15030.00000.00000.029*
C250.5310 (6)−0.0805 (4)0.1040 (4)0.0146 (6)
O1W0.7467 (9)−0.1739 (4)−0.3818 (4)0.0584 (17)
O2W0.9514 (7)−0.0907 (4)−0.3228 (4)0.0424 (18)
O3W0.5456 (5)−0.0888 (3)−0.3207 (3)0.0240 (12)
O4WA0.6970 (8)0.2031 (4)−0.2207 (6)0.032 (3)0.69 (2)
O4WB0.7228 (15)0.1956 (8)−0.1715 (11)0.023 (6)0.31 (2)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Lu10.00740 (14)0.01013 (12)0.01097 (13)0.0000.000−0.00081 (10)
Cs10.01540 (16)0.02237 (15)0.01327 (15)−0.00244 (13)0.00109 (19)−0.00051 (11)
Cs20.0245 (3)0.01430 (19)0.0151 (2)0.000−0.0028 (2)0.000
N110.008 (2)0.0127 (18)0.011 (2)−0.0017 (15)0.0012 (18)0.0004 (17)
O110.013 (2)0.013 (2)0.018 (2)−0.0015 (16)−0.0019 (16)−0.0004 (16)
O120.023 (4)0.023 (2)0.022 (2)0.0013 (18)−0.0084 (19)−0.0097 (17)
O130.019 (3)0.023 (3)0.010 (2)0.0014 (18)−0.0035 (16)0.0022 (17)
O140.010 (2)0.008 (2)0.018 (2)0.0010 (14)−0.0021 (15)−0.0017 (14)
C120.015 (3)0.011 (2)0.014 (3)−0.0009 (19)0.001 (2)0.002 (2)
C130.018 (4)0.017 (3)0.021 (3)0.004 (2)−0.004 (2)0.001 (2)
C140.033 (6)0.023 (3)0.066 (5)−0.003 (3)−0.040 (5)0.009 (3)
C150.026 (4)0.018 (3)0.016 (3)0.007 (3)−0.002 (2)−0.005 (2)
C160.015 (3)0.012 (3)0.012 (3)−0.002 (2)0.003 (2)0.001 (2)
C170.0135 (16)0.0138 (13)0.0166 (13)−0.0096 (16)0.0027 (15)−0.0028 (10)
C180.0135 (16)0.0138 (13)0.0166 (13)−0.0096 (16)0.0027 (15)−0.0028 (10)
N210.009 (3)0.027 (3)0.016 (3)0.0000.000−0.010 (3)
O210.038 (4)0.039 (3)0.021 (2)−0.021 (3)0.014 (2)−0.009 (2)
O220.020 (3)0.013 (2)0.0168 (19)−0.0027 (17)0.0040 (17)−0.0020 (15)
C220.0106 (19)0.048 (2)0.0143 (17)−0.007 (2)0.0024 (15)−0.0146 (17)
C230.0106 (19)0.048 (2)0.0143 (17)−0.007 (2)0.0024 (15)−0.0146 (17)
C240.0106 (19)0.048 (2)0.0143 (17)−0.007 (2)0.0024 (15)−0.0146 (17)
C250.0135 (16)0.0138 (13)0.0166 (13)−0.0096 (16)0.0027 (15)−0.0028 (10)
O1W0.046 (4)0.079 (5)0.051 (3)0.016 (5)−0.002 (4)−0.012 (3)
O2W0.047 (4)0.021 (3)0.059 (4)0.003 (3)0.028 (3)0.001 (3)
O3W0.018 (3)0.032 (3)0.022 (3)−0.004 (2)−0.005 (2)0.004 (2)
O4WA0.028 (4)0.030 (4)0.039 (6)−0.002 (3)−0.003 (3)0.007 (3)
O4WB0.012 (11)0.018 (7)0.038 (13)0.005 (5)0.011 (7)0.015 (6)

Geometric parameters (Å, °)

Lu1—O22i2.348 (4)O11—C171.267 (8)
Lu1—O222.348 (4)O12—C171.244 (7)
Lu1—O142.377 (4)O13—C181.242 (9)
Lu1—O14i2.377 (4)O13—Cs1ix3.070 (5)
Lu1—O112.390 (4)O13—Cs2x3.100 (5)
Lu1—O11i2.390 (4)O13—Cs1i3.553 (5)
Lu1—N212.445 (8)O14—C181.267 (8)
Lu1—N11i2.454 (4)O14—Cs1i3.312 (4)
Lu1—N112.454 (4)C12—C131.390 (8)
Lu1—Cs14.5002 (4)C12—C181.513 (8)
Lu1—Cs1i4.5002 (4)C13—C141.267 (13)
Cs1—O13ii3.070 (5)C13—Cs2x3.810 (6)
Cs1—O3W3.142 (5)C13—H130.9300
Cs1—O22i3.167 (4)C14—C151.517 (12)
Cs1—O2W3.237 (6)C14—H140.9300
Cs1—O4WA3.293 (8)C15—C161.373 (9)
Cs1—O21iii3.299 (6)C15—H150.9300
Cs1—O14i3.312 (4)C16—C171.514 (9)
Cs1—O113.367 (4)C18—Cs1i3.592 (6)
Cs1—O4WB3.375 (16)N21—C22i1.315 (8)
Cs1—O21i3.474 (6)N21—C221.315 (8)
Cs1—C25i3.502 (6)O21—C251.230 (9)
Cs1—O13i3.553 (5)O21—Cs1xi3.299 (6)
Cs2—O123.073 (5)O21—Cs1i3.474 (6)
Cs2—O12iv3.073 (5)O22—C251.273 (8)
Cs2—O13v3.100 (5)O22—Cs1i3.167 (4)
Cs2—O13vi3.100 (5)C22—C231.376 (10)
Cs2—O4WAvii3.145 (8)C22—C251.544 (10)
Cs2—O4WAviii3.145 (8)C23—C241.356 (9)
Cs2—O4WBvii3.219 (14)C23—Cs1xi3.840 (6)
Cs2—O4WBviii3.219 (14)C23—H230.9300
Cs2—O3W3.410 (6)C24—C23i1.356 (9)
Cs2—O3Wiv3.410 (6)C24—H240.9300
Cs2—C13v3.810 (6)C25—Cs1i3.502 (6)
Cs2—C13vi3.810 (6)O3W—Cs1iv3.705 (6)
N11—C121.330 (7)O4WA—Cs2xii3.145 (8)
N11—C161.345 (7)O4WB—Cs2xii3.219 (14)
O22i—Lu1—O22131.4 (2)O13v—Cs2—O4WAviii82.77 (19)
O22i—Lu1—O14146.72 (14)O13vi—Cs2—O4WAviii79.26 (18)
O22—Lu1—O1475.16 (15)O4WAvii—Cs2—O4WAviii158.5 (3)
O22i—Lu1—O14i75.16 (15)O12—Cs2—O4WBvii120.2 (4)
O22—Lu1—O14i146.72 (14)O12iv—Cs2—O4WBvii72.8 (3)
O14—Lu1—O14i90.4 (2)O13v—Cs2—O4WBvii86.8 (3)
O22i—Lu1—O1175.58 (13)O13vi—Cs2—O4WBvii71.4 (3)
O22—Lu1—O1191.20 (14)O4WAvii—Cs2—O4WBvii17.2 (3)
O14—Lu1—O11130.16 (14)O4WAviii—Cs2—O4WBvii150.6 (3)
O14i—Lu1—O1175.28 (14)O12—Cs2—O4WBviii72.8 (3)
O22i—Lu1—O11i91.20 (14)O12iv—Cs2—O4WBviii120.2 (4)
O22—Lu1—O11i75.58 (13)O13v—Cs2—O4WBviii71.4 (3)
O14—Lu1—O11i75.28 (14)O13vi—Cs2—O4WBviii86.8 (3)
O14i—Lu1—O11i130.16 (14)O4WAvii—Cs2—O4WBviii150.6 (3)
O11—Lu1—O11i147.8 (2)O4WAviii—Cs2—O4WBviii17.2 (3)
O22i—Lu1—N2165.71 (12)O4WBvii—Cs2—O4WBviii154.1 (5)
O22—Lu1—N2165.71 (12)O12—Cs2—O3W71.14 (12)
O14—Lu1—N21134.81 (10)O12iv—Cs2—O3W58.84 (12)
O14i—Lu1—N21134.81 (10)O13v—Cs2—O3W125.24 (14)
O11—Lu1—N2173.90 (11)O13vi—Cs2—O3W162.07 (13)
O11i—Lu1—N2173.90 (11)O4WAvii—Cs2—O3W111.48 (18)
O22i—Lu1—N11i73.00 (16)O4WAviii—Cs2—O3W88.59 (17)
O22—Lu1—N11i134.33 (16)O4WBvii—Cs2—O3W119.5 (3)
O14—Lu1—N11i73.72 (14)O4WBviii—Cs2—O3W85.3 (3)
O14i—Lu1—N11i65.42 (14)O12—Cs2—O3Wiv58.84 (12)
O11—Lu1—N11i134.47 (16)O12iv—Cs2—O3Wiv71.14 (12)
O11i—Lu1—N11i64.75 (15)O13v—Cs2—O3Wiv162.07 (13)
N21—Lu1—N11i119.60 (10)O13vi—Cs2—O3Wiv125.24 (14)
O22i—Lu1—N11134.33 (16)O4WAvii—Cs2—O3Wiv88.59 (17)
O22—Lu1—N1173.00 (16)O4WAviii—Cs2—O3Wiv111.48 (19)
O14—Lu1—N1165.42 (14)O4WBvii—Cs2—O3Wiv85.3 (3)
O14i—Lu1—N1173.72 (14)O4WBviii—Cs2—O3Wiv119.5 (3)
O11—Lu1—N1164.75 (15)O3W—Cs2—O3Wiv47.76 (19)
O11i—Lu1—N11134.47 (16)O12—Cs2—C13v129.96 (13)
N21—Lu1—N11119.60 (10)O12iv—Cs2—C13v60.42 (13)
N11i—Lu1—N11120.8 (2)O13v—Cs2—C13v47.80 (13)
O22i—Lu1—Cs141.88 (11)O13vi—Cs2—C13v113.68 (13)
O22—Lu1—Cs1137.11 (11)O4WAvii—Cs2—C13v92.8 (2)
O14—Lu1—Cs1135.91 (10)O4WAviii—Cs2—C13v83.7 (2)
O14i—Lu1—Cs145.74 (10)O4WBvii—Cs2—C13v109.0 (4)
O11—Lu1—Cs147.15 (10)O4WBviii—Cs2—C13v66.5 (4)
O11i—Lu1—Cs1132.23 (10)O3W—Cs2—C13v77.57 (13)
N21—Lu1—Cs189.173 (8)O3Wiv—Cs2—C13v120.70 (13)
N11i—Lu1—Cs187.94 (12)O12—Cs2—C13vi60.42 (13)
N11—Lu1—Cs192.88 (12)O12iv—Cs2—C13vi129.96 (13)
O22i—Lu1—Cs1i137.11 (11)O13v—Cs2—C13vi113.68 (13)
O22—Lu1—Cs1i41.88 (11)O13vi—Cs2—C13vi47.80 (13)
O14—Lu1—Cs1i45.74 (10)O4WAvii—Cs2—C13vi83.7 (2)
O14i—Lu1—Cs1i135.91 (10)O4WAviii—Cs2—C13vi92.8 (2)
O11—Lu1—Cs1i132.23 (10)O4WBvii—Cs2—C13vi66.5 (4)
O11i—Lu1—Cs1i47.15 (10)O4WBviii—Cs2—C13vi109.0 (4)
N21—Lu1—Cs1i89.173 (8)O3W—Cs2—C13vi120.70 (13)
N11i—Lu1—Cs1i92.88 (12)O3Wiv—Cs2—C13vi77.57 (13)
N11—Lu1—Cs1i87.94 (12)C13v—Cs2—C13vi161.41 (18)
Cs1—Lu1—Cs1i178.347 (17)C12—N11—C16119.3 (5)
O13ii—Cs1—O3W115.98 (14)C12—N11—Lu1119.8 (4)
O13ii—Cs1—O22i126.72 (12)C16—N11—Lu1120.9 (4)
O3W—Cs1—O22i115.44 (13)C17—O11—Lu1124.9 (4)
O13ii—Cs1—O2W61.89 (12)C17—O11—Cs1101.4 (3)
O3W—Cs1—O2W79.37 (13)Lu1—O11—Cs1101.50 (14)
O22i—Cs1—O2W142.10 (16)C17—O12—Cs2142.9 (5)
O13ii—Cs1—O4WA77.43 (18)C18—O13—Cs1ix139.2 (4)
O3W—Cs1—O4WA125.53 (19)C18—O13—Cs2x124.2 (4)
O22i—Cs1—O4WA62.0 (2)Cs1ix—O13—Cs2x96.56 (13)
O2W—Cs1—O4WA139.14 (19)C18—O13—Cs1i81.8 (4)
O13ii—Cs1—O21iii88.27 (12)Cs1ix—O13—Cs1i101.70 (14)
O3W—Cs1—O21iii67.47 (13)Cs2x—O13—Cs1i87.33 (12)
O22i—Cs1—O21iii98.92 (14)C18—O14—Lu1123.5 (4)
O2W—Cs1—O21iii118.85 (19)C18—O14—Cs1i92.2 (4)
O4WA—Cs1—O21iii60.2 (2)Lu1—O14—Cs1i103.33 (13)
O13ii—Cs1—O14i97.84 (11)N11—C12—C13122.8 (5)
O3W—Cs1—O14i133.79 (12)N11—C12—C18114.0 (5)
O22i—Cs1—O14i52.77 (10)C13—C12—C18123.1 (5)
O2W—Cs1—O14i91.16 (16)C14—C13—C12120.5 (7)
O4WA—Cs1—O14i90.54 (19)C14—C13—Cs2x123.1 (7)
O21iii—Cs1—O14i148.13 (12)C12—C13—Cs2x95.2 (4)
O13ii—Cs1—O11144.99 (12)C14—C13—H13119.7
O3W—Cs1—O1184.68 (12)C12—C13—H13119.7
O22i—Cs1—O1152.66 (10)Cs2x—C13—H1350.1
O2W—Cs1—O1197.89 (14)C13—C14—C15119.3 (7)
O4WA—Cs1—O11114.7 (2)C13—C14—H14120.4
O21iii—Cs1—O11126.59 (13)C15—C14—H14120.4
O14i—Cs1—O1151.67 (10)C16—C15—C14115.9 (6)
O13ii—Cs1—O4WB84.6 (3)C16—C15—H15122.1
O3W—Cs1—O4WB135.4 (3)C14—C15—H15122.1
O22i—Cs1—O4WB48.2 (3)N11—C16—C15121.9 (5)
O2W—Cs1—O4WB141.8 (3)N11—C16—C17113.3 (5)
O4WA—Cs1—O4WB16.4 (3)C15—C16—C17124.8 (5)
O21iii—Cs1—O4WB74.7 (4)O12—C17—O11127.0 (7)
O14i—Cs1—O4WB74.8 (4)O12—C17—C16117.5 (6)
O11—Cs1—O4WB100.4 (3)O11—C17—C16115.5 (5)
O13ii—Cs1—O21i128.72 (14)O12—C17—Cs186.7 (3)
O3W—Cs1—O21i90.39 (15)O11—C17—Cs159.6 (3)
O22i—Cs1—O21i39.15 (12)C16—C17—Cs1129.9 (4)
O2W—Cs1—O21i168.30 (16)O13—C18—O14126.1 (6)
O4WA—Cs1—O21i52.14 (18)O13—C18—C12118.4 (6)
O21iii—Cs1—O21i61.01 (17)O14—C18—C12115.5 (5)
O14i—Cs1—O21i91.90 (11)O13—C18—Cs1i78.2 (4)
O11—Cs1—O21i75.32 (12)O14—C18—Cs1i67.2 (3)
O4WB—Cs1—O21i49.9 (3)C12—C18—Cs1i128.8 (4)
O13ii—Cs1—C25i137.62 (15)C22i—N21—C22119.9 (9)
O3W—Cs1—C25i97.62 (14)C22i—N21—Lu1120.0 (4)
O22i—Cs1—C25i21.25 (13)C22—N21—Lu1120.0 (4)
O2W—Cs1—C25i155.39 (16)C25—O21—Cs1xi121.5 (5)
O4WA—Cs1—C25i61.7 (2)C25—O21—Cs1i81.1 (4)
O21iii—Cs1—C25i81.26 (15)Cs1xi—O21—Cs1i92.82 (13)
O14i—Cs1—C25i73.18 (12)C25—O22—Lu1125.2 (4)
O11—Cs1—C25i57.51 (13)C25—O22—Cs1i94.4 (4)
O4WB—Cs1—C25i53.1 (3)Lu1—O22—Cs1i108.45 (15)
O21i—Cs1—C25i20.31 (14)N21—C22—C23122.8 (7)
O13ii—Cs1—O13i61.34 (14)N21—C22—C25114.3 (6)
O3W—Cs1—O13i160.15 (13)C23—C22—C25122.8 (6)
O22i—Cs1—O13i74.71 (11)C24—C23—C22114.3 (8)
O2W—Cs1—O13i82.72 (16)C24—C23—Cs1xi124.7 (4)
O4WA—Cs1—O13i74.07 (18)C22—C23—Cs1xi98.5 (4)
O21iii—Cs1—O13i129.85 (12)C24—C23—H23122.8
O14i—Cs1—O13i37.82 (10)C22—C23—H23122.8
O11—Cs1—O13i89.41 (11)Cs1xi—C23—H2348.6
O4WB—Cs1—O13i64.3 (3)C23i—C24—C23125.6 (11)
O21i—Cs1—O13i106.43 (12)C23i—C24—H24117.2
C25i—Cs1—O13i95.10 (14)C23—C24—H24117.2
O12—Cs2—O12iv125.26 (18)O21—C25—O22127.3 (7)
O12—Cs2—O13v138.44 (13)O21—C25—C22119.0 (6)
O12iv—Cs2—O13v91.16 (13)O22—C25—C22113.6 (5)
O12—Cs2—O13vi91.16 (13)O21—C25—Cs1i78.6 (4)
O12iv—Cs2—O13vi138.44 (13)O22—C25—Cs1i64.4 (3)
O13v—Cs2—O13vi66.60 (18)C22—C25—Cs1i133.9 (4)
O12—Cs2—O4WAvii134.6 (2)Cs1—O3W—Cs2119.00 (16)
O12iv—Cs2—O4WAvii58.0 (2)Cs1—O3W—Cs1iv91.19 (14)
O13v—Cs2—O4WAvii79.26 (18)Cs2—O3W—Cs1iv104.99 (14)
O13vi—Cs2—O4WAvii82.77 (19)Cs2xii—O4WA—Cs191.3 (2)
O12—Cs2—O4WAviii58.0 (2)Cs2xii—O4WB—Cs188.6 (4)
O12iv—Cs2—O4WAviii134.6 (2)

Symmetry codes: (i) x, −y, −z; (ii) −x+2, −y, z−1/2; (iii) −x+1, −y, z−1/2; (iv) −x+1, y, −z−1/2; (v) −x+3/2, −y−1/2, z−1/2; (vi) x−1/2, −y−1/2, −z; (vii) x−1/2, y−1/2, z; (viii) −x+3/2, y−1/2, −z−1/2; (ix) −x+2, −y, z+1/2; (x) −x+3/2, −y−1/2, z+1/2; (xi) −x+1, −y, z+1/2; (xii) x+1/2, y+1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2357).

References

  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  • Blessing, R. H. (1989). J. Appl. Cryst.22, 396–397.
  • Brayshaw, P. A., Bünzli, J.-C. G., Foidevaux, P., Harrowfield, J. M., Kim, Y. & Sobolev, A. N. (1995). Inorg. Chem.34, 2068–2076.
  • DeTitta, G. T. (1985). J. Appl. Cryst.18, 75–79.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Flack, H. D. & Bernardinelli, G. (1999). Acta Cryst. A55, 908–915. [PubMed]
  • Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst.33, 1143–1148.
  • Murray, G. M., Sarrio, R. M. & Peterson, J. R. (1990). Inorg. Chim. Acta, 176, 233–240.
  • Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
  • Sénéchal, K., Toupet, L., Ledoux, I., Zyss, J., Le Bozec, H. & Maury, O. (2004). Chem. Commun. pp. 2180–2181. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tancrez, N., Feuvrie, C., Ledoux, I., Zyss, J., Toupet, L., Le Bozec, H. & Maury, O. (2005). J. Am. Chem. Soc.127, 13474–13475. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography