PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 October 1; 64(Pt 10): m1304.
Published online 2008 September 20. doi:  10.1107/S1600536808029814
PMCID: PMC2959246

{2,6-Bis[(di-tert-butyl­phosphino)­methyl]­phenyl}chloridonickel(II)

Abstract

In the title compound, [Ni(C24H43P2)Cl], the Ni atom adopts a distorted square-planar geometry, with the P atoms of the 2,6-bis­[(di-tert-butyl­phosphino)meth­yl]phenyl ligand trans to one another. The P—Ni—P plane is twisted out of the plane of the aromatic ring by 21.97 (6)°.

Related literature

For the original synthesis and spectroscopic characterization of the title compound, see: Moulton & Shaw (1976 [triangle]). For the crystallographic characterization of the Pd analogue, see: Kimmich et al. (2002 [triangle]). For crystallographic characterization of the 2,6-bis­[(di-tert-butyl­phosphino)meth­yl]benzene ligand, see: Hollink et al. (2003 [triangle]). For related literature, see: Denney et al. (2006 [triangle]); Keith et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1304-scheme1.jpg

Experimental

Crystal data

  • [Ni(C24H43P2)Cl]
  • M r = 487.68
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1304-efi1.jpg
  • a = 11.3394 (4) Å
  • b = 15.0463 (5) Å
  • c = 15.4184 (5) Å
  • V = 2630.63 (15) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.97 mm−1
  • T = 225 (2) K
  • 0.50 × 0.50 × 0.40 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2004 [triangle]) T min = 0.622, T max = 0.679
  • 84881 measured reflections
  • 10074 independent reflections
  • 8461 reflections with I > 2σ(I)
  • R int = 0.048

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033
  • wR(F 2) = 0.084
  • S = 1.09
  • 10074 reflections
  • 265 parameters
  • H-atom parameters constrained
  • Δρmax = 0.32 e Å−3
  • Δρmin = −0.50 e Å−3
  • Absolute structure: Flack (1983 [triangle]), with 4507 Friedel pairs
  • Flack parameter: 0.006 (7)

Data collection: SMART (Bruker, 2003 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 1999 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2008 [triangle]).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808029814/pv2105sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808029814/pv2105Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Eileen Duesler and Ana Felix (UNM) for the X-ray data collection. Funding was provided by the Natural Sciences and Engineering Research Council of Canada (NSERC PDF to DAD), and the Department of Energy (DE-FG02-06ER15765). The Bruker X-ray diffractometer was purchased via a National Science Foundation CRIF:MU award to the University of New Mexico (CHE-0443580). Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the US Department of Energy under contract No. DE-AC04-94AL85000.

supplementary crystallographic information

Comment

The title compound, (I), was originally prepared by Moulton & Shaw (1976) but its crystal structure was not determined at that time. We have prepared (I) as part of our studies of PCP 'pincer' complexes of divalent late transition metals, which show promise as catalysts for the epoxidation of olefins (Denney et al., 2006; Keith et al., 2006).

In the molecular stucture of (I) (Fig. 1), the nickel adopts a square planar geometry, with the phosphorus atoms trans to one another. The Ni—P bond lengths 2.1921 (4) and 2.1978 (4) Å, are significantly shorter than the corresponding Pd—P bonds [2.3039 (6) and 2.3969 (6) Å] in the analogous palladium complex (Kimmich et al., 2002). Steric hindrance distorts the P—Ni—P bond angle to 169.651 (18)°, while the less constrained C—Ni—Cl angle is much closer to linearity at 176.13 (5)°.

Significant geometrical changes are observed in the 2,6-bis[(di-tert-butylphosphino)methyl]benzene ligand upon binding to nickel. In the free ligand (Hollink et al., 2003), the average P—Cmethylene bond length is 1.870 Å, while in (I), it has decreased to 1.8308 (19) Å (P1—C8) and 1.8341 (18) Å (P2—C7). This bond shortening is accompanied by change in the P—Cmethylene—Cphenyl angle, from 114.5° in the free ligand to 106.23 (12)° (P1—C8—C2) and 106.84 (12)° (P2—C7—C6) in (I).

Experimental

A solution of nickel chloride hexahydrate (0.6 g, 2.5 mmol) dissolved in 2 ml of degassed water was added to a solution of 2,6-bis-[(di-tert-butylphosphino)methyl]benzene (1.02 g, 2.6 mmol) in 10 ml ethanol. The solution was heated to reflux. A golden-yellow precipitate began to form only after 0.5 h. The solution was stirred under gentle reflux overnight. After cooling, the product was collected by filtration and washed with cold ethanol. It was recrystallized from a concentrated solution of pentane at 238 K.

Refinement

Hydrogen atoms were included at geometrically idealized positions with C—H distances 0.94, 0.97 and 0.98 Å, for aryl, methyl and methylene H-atoms in a riding mode on the respective heavy atoms. The isotropic displacement parameters for the hydrogen atoms were fixed at 1.5 and 1.2 times Ueq of the parent methyl and non-methyl C-atoms. An absolute structure was determined (Flack, 1983) employing 4507 Friedel pairs of reflections which were not merged.

Figures

Fig. 1.
View of the title compound showing numbering scheme. Ellipsoids are shown at 50% probability and hydrogen atoms have been removed for clarity.

Crystal data

[Ni(C24H43P2)Cl]F(000) = 1048
Mr = 487.68Dx = 1.231 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 8656 reflections
a = 11.3394 (4) Åθ = 2.2–32.5°
b = 15.0463 (5) ŵ = 0.97 mm1
c = 15.4184 (5) ÅT = 225 K
V = 2630.63 (15) Å3Prism, gold-brown
Z = 40.50 × 0.50 × 0.40 mm

Data collection

Bruker SMART CCD area-detector diffractometer10074 independent reflections
Radiation source: fine-focus sealed tube8461 reflections with I > 2σ(I)
graphiteRint = 0.048
[var phi] and ω scansθmax = 33.2°, θmin = 1.9°
Absorption correction: empirical (using intensity measurements) (SADABS; Bruker, 2004)h = −17→17
Tmin = 0.622, Tmax = 0.679k = −23→23
84881 measured reflectionsl = −23→23

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.084w = 1/[σ2(Fo2) + (0.0439P)2] where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.002
10074 reflectionsΔρmax = 0.32 e Å3
265 parametersΔρmin = −0.50 e Å3
0 restraintsAbsolute structure: Flack (1983), with 4507 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.006 (7)

Special details

Experimental. Yield = 60%. 1H NMR (250 MHz, C6D6) δ 7.00 (t, 1H, 3JHH = 7.4 Hz, Ar-Hpara), 6.84 (d, 2H, 3JHH = 7.4 Hz, Ar-Hmeta), 2.91 (virtual t, 4H, JHP = 6.8 Hz, CH2), 1.40 (virtual t, 36H, JHP = 12.7 Hz, CH3) p.p.m. 13C{1H} NMR (63 MHz, C6D6) δ 155.7 (t, 2JCP = 16.7 Hz, Ar-Cipso), 153.0 (virtual t, JCP = 25.5 Hz, Ar-Cortho), 125.2 (s, Ar-Cpara), 121.8 (virtual t, JCP = 16.7 Hz, Ar-Cmeta), 34.9 (virtual t, JCP = 13.4 Hz, PCH2), 34.3 (virtual t, JCP = 22.7 Hz, PC(CH3)3), 29.8 (s, CH3) p.p.m. 31P{1H} NMR (101 MHz, C6D6) δ 66.9 p.p.m.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni10.536566 (17)0.968358 (13)0.925683 (12)0.02623 (5)
Cl10.60025 (5)1.02689 (4)0.80121 (3)0.04914 (12)
P10.38227 (4)0.90497 (3)0.86644 (3)0.02696 (8)
P20.67658 (4)1.02487 (3)1.00738 (3)0.02786 (8)
C10.48595 (14)0.91031 (10)1.03045 (10)0.0278 (3)
C20.37594 (16)0.86671 (11)1.03569 (11)0.0326 (3)
C30.34528 (18)0.81652 (13)1.10805 (13)0.0405 (4)
H30.27230.78691.10940.049*
C40.4201 (2)0.80982 (13)1.17718 (13)0.0441 (5)
H40.39920.77501.22540.053*
C50.52717 (18)0.85476 (12)1.17589 (11)0.0383 (4)
H50.57800.85161.22400.046*
C60.55930 (16)0.90460 (11)1.10322 (11)0.0327 (3)
C70.67683 (17)0.95101 (13)1.10201 (12)0.0391 (4)
H7A0.74090.90761.09740.047*
H7B0.68790.98541.15540.047*
C80.29202 (16)0.87651 (14)0.96090 (12)0.0382 (4)
H8A0.23450.92360.97270.046*
H8B0.24940.82080.95080.046*
C90.41665 (16)0.79598 (10)0.81364 (12)0.0339 (3)
C100.5097 (2)0.80785 (14)0.74313 (14)0.0488 (5)
H10A0.57840.83710.76740.073*
H10B0.47760.84390.69660.073*
H10C0.53220.75010.72050.073*
C110.3068 (2)0.75117 (14)0.77561 (15)0.0497 (5)
H11A0.27760.78610.72730.075*
H11B0.24630.74710.81990.075*
H11C0.32710.69200.75560.075*
C120.4694 (2)0.73571 (12)0.88360 (14)0.0471 (5)
H12A0.49340.67980.85770.071*
H12B0.41080.72450.92810.071*
H12C0.53740.76460.90930.071*
C130.28236 (17)0.97553 (14)0.79810 (13)0.0422 (4)
C140.15386 (19)0.94355 (18)0.79892 (18)0.0618 (6)
H14A0.10570.98400.76510.093*
H14B0.12520.94200.85820.093*
H14C0.14940.88440.77400.093*
C150.3241 (2)0.98364 (15)0.70379 (13)0.0539 (5)
H15A0.31620.92660.67510.081*
H15B0.40611.00200.70280.081*
H15C0.27641.02750.67380.081*
C160.2868 (3)1.06881 (15)0.83988 (18)0.0642 (7)
H16A0.23281.10810.80980.096*
H16B0.36631.09230.83570.096*
H16C0.26431.06460.90040.096*
C170.83287 (16)1.01907 (13)0.96814 (12)0.0369 (4)
C180.84152 (19)0.92899 (15)0.92080 (17)0.0524 (5)
H18A0.92170.92000.90070.079*
H18B0.78820.92880.87160.079*
H18C0.82010.88150.96040.079*
C190.92396 (18)1.02033 (17)1.04173 (15)0.0514 (5)
H19A1.00201.01031.01800.077*
H19B0.90550.97391.08320.077*
H19C0.92191.07761.07050.077*
C200.63680 (18)1.13804 (12)1.04915 (13)0.0403 (4)
C210.5238 (2)1.12685 (15)1.10274 (17)0.0593 (6)
H21A0.54011.09011.15300.089*
H21B0.46361.09871.06740.089*
H21C0.49621.18471.12170.089*
C220.7314 (2)1.17943 (16)1.10738 (16)0.0585 (6)
H22A0.80201.19071.07350.088*
H22B0.75001.13891.15430.088*
H22C0.70231.23491.13120.088*
C230.6101 (3)1.19968 (14)0.97333 (16)0.0571 (6)
H23A0.57861.25530.99510.086*
H23B0.55271.17190.93540.086*
H23C0.68211.21110.94120.086*
C240.86278 (18)1.09373 (16)0.90427 (14)0.0491 (5)
H24A0.85971.15050.93400.074*
H24B0.80621.09360.85710.074*
H24C0.94141.08440.88120.074*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.02964 (9)0.02516 (9)0.02389 (9)−0.00470 (8)−0.00320 (8)0.00305 (7)
Cl10.0605 (3)0.0569 (3)0.02997 (19)−0.0283 (3)−0.00855 (19)0.0151 (2)
P10.02591 (18)0.02588 (17)0.02911 (19)−0.00090 (15)−0.00127 (15)−0.00323 (15)
P20.03048 (18)0.02878 (18)0.02431 (17)−0.00396 (16)−0.00252 (14)0.00080 (16)
C10.0318 (8)0.0261 (6)0.0256 (7)−0.0007 (6)0.0043 (6)0.0008 (6)
C20.0343 (8)0.0312 (8)0.0321 (8)−0.0005 (7)0.0090 (7)−0.0036 (6)
C30.0416 (10)0.0390 (9)0.0411 (9)−0.0050 (8)0.0187 (8)−0.0025 (8)
C40.0579 (12)0.0399 (9)0.0345 (9)0.0028 (9)0.0192 (9)0.0076 (7)
C50.0465 (10)0.0410 (9)0.0273 (8)0.0087 (8)0.0051 (8)0.0062 (7)
C60.0394 (9)0.0319 (8)0.0268 (7)0.0021 (7)0.0030 (6)0.0027 (6)
C70.0393 (9)0.0472 (10)0.0309 (8)−0.0033 (8)−0.0079 (7)0.0094 (7)
C80.0301 (8)0.0469 (10)0.0377 (9)−0.0050 (7)0.0061 (7)−0.0095 (8)
C90.0396 (9)0.0247 (7)0.0375 (9)−0.0030 (6)0.0075 (7)−0.0057 (6)
C100.0569 (13)0.0432 (10)0.0465 (11)0.0010 (9)0.0210 (9)−0.0067 (8)
C110.0562 (12)0.0374 (10)0.0556 (12)−0.0123 (9)0.0036 (10)−0.0146 (9)
C120.0604 (12)0.0281 (8)0.0529 (11)0.0085 (9)0.0101 (11)0.0009 (7)
C130.0421 (9)0.0404 (9)0.0442 (10)0.0116 (8)−0.0140 (8)−0.0054 (9)
C140.0352 (10)0.0807 (17)0.0696 (15)0.0119 (10)−0.0166 (10)−0.0113 (13)
C150.0648 (14)0.0528 (12)0.0441 (11)0.0079 (11)−0.0195 (10)0.0053 (9)
C160.0812 (18)0.0433 (11)0.0682 (16)0.0299 (12)−0.0268 (14)−0.0098 (11)
C170.0303 (8)0.0426 (9)0.0378 (9)−0.0044 (7)−0.0011 (7)0.0008 (8)
C180.0414 (10)0.0530 (12)0.0627 (13)0.0072 (9)0.0048 (10)−0.0128 (11)
C190.0348 (9)0.0644 (13)0.0551 (12)−0.0068 (9)−0.0094 (9)0.0041 (11)
C200.0479 (11)0.0351 (9)0.0378 (9)−0.0036 (8)0.0014 (8)−0.0089 (7)
C210.0600 (14)0.0528 (12)0.0650 (14)0.0047 (11)0.0205 (12)−0.0166 (11)
C220.0662 (15)0.0557 (13)0.0535 (13)−0.0148 (11)−0.0036 (12)−0.0227 (11)
C230.0776 (17)0.0351 (10)0.0586 (14)0.0104 (11)−0.0019 (13)0.0007 (9)
C240.0399 (10)0.0612 (12)0.0462 (11)−0.0106 (9)0.0041 (8)0.0102 (10)

Geometric parameters (Å, °)

Ni1—C11.9239 (15)C13—C151.534 (3)
Ni1—P12.1921 (4)C13—C141.535 (3)
Ni1—P22.1978 (4)C13—C161.545 (3)
Ni1—Cl12.2317 (5)C14—H14A0.9700
P1—C81.8308 (19)C14—H14B0.9700
P1—C91.8720 (16)C14—H14C0.9700
P1—C131.8763 (18)C15—H15A0.9700
P2—C71.8341 (18)C15—H15B0.9700
P2—C171.8746 (19)C15—H15C0.9700
P2—C201.8756 (19)C16—H16A0.9700
C1—C61.399 (2)C16—H16B0.9700
C1—C21.412 (2)C16—H16C0.9700
C2—C31.391 (2)C17—C241.532 (3)
C2—C81.502 (3)C17—C191.534 (3)
C3—C41.366 (3)C17—C181.543 (3)
C3—H30.9400C18—H18A0.9700
C4—C51.390 (3)C18—H18B0.9700
C4—H40.9400C18—H18C0.9700
C5—C61.397 (2)C19—H19A0.9700
C5—H50.9400C19—H19B0.9700
C6—C71.505 (3)C19—H19C0.9700
C7—H7A0.9800C20—C231.523 (3)
C7—H7B0.9800C20—C221.532 (3)
C8—H8A0.9800C20—C211.534 (3)
C8—H8B0.9800C21—H21A0.9700
C9—C101.525 (3)C21—H21B0.9700
C9—C121.531 (3)C21—H21C0.9700
C9—C111.533 (3)C22—H22A0.9700
C10—H10A0.9700C22—H22B0.9700
C10—H10B0.9700C22—H22C0.9700
C10—H10C0.9700C23—H23A0.9700
C11—H11A0.9700C23—H23B0.9700
C11—H11B0.9700C23—H23C0.9700
C11—H11C0.9700C24—H24A0.9700
C12—H12A0.9700C24—H24B0.9700
C12—H12B0.9700C24—H24C0.9700
C12—H12C0.9700
C1—Ni1—P185.08 (5)C15—C13—C14109.01 (18)
C1—Ni1—P284.83 (5)C15—C13—C16108.2 (2)
P1—Ni1—P2169.651 (18)C14—C13—C16108.22 (19)
C1—Ni1—Cl1176.13 (5)C15—C13—P1113.01 (14)
P1—Ni1—Cl194.109 (18)C14—C13—P1113.03 (17)
P2—Ni1—Cl196.109 (17)C16—C13—P1105.07 (13)
C8—P1—C9104.92 (9)C13—C14—H14A109.5
C8—P1—C13103.98 (9)C13—C14—H14B109.5
C9—P1—C13112.16 (9)H14A—C14—H14B109.5
C8—P1—Ni1102.50 (6)C13—C14—H14C109.5
C9—P1—Ni1113.34 (6)H14A—C14—H14C109.5
C13—P1—Ni1118.02 (7)H14B—C14—H14C109.5
C7—P2—C17103.12 (9)C13—C15—H15A109.5
C7—P2—C20106.10 (9)C13—C15—H15B109.5
C17—P2—C20112.36 (9)H15A—C15—H15B109.5
C7—P2—Ni1102.87 (6)C13—C15—H15C109.5
C17—P2—Ni1118.68 (6)H15A—C15—H15C109.5
C20—P2—Ni1111.98 (7)H15B—C15—H15C109.5
C6—C1—C2116.79 (15)C13—C16—H16A109.5
C6—C1—Ni1121.59 (12)C13—C16—H16B109.5
C2—C1—Ni1121.51 (12)H16A—C16—H16B109.5
C3—C2—C1121.26 (17)C13—C16—H16C109.5
C3—C2—C8120.69 (17)H16A—C16—H16C109.5
C1—C2—C8118.05 (15)H16B—C16—H16C109.5
C4—C3—C2120.70 (18)C24—C17—C19108.50 (16)
C4—C3—H3119.6C24—C17—C18109.02 (17)
C2—C3—H3119.6C19—C17—C18108.54 (18)
C3—C4—C5119.69 (17)C24—C17—P2112.50 (14)
C3—C4—H4120.2C19—C17—P2113.40 (13)
C5—C4—H4120.2C18—C17—P2104.70 (13)
C4—C5—C6120.04 (18)C17—C18—H18A109.5
C4—C5—H5120.0C17—C18—H18B109.5
C6—C5—H5120.0H18A—C18—H18B109.5
C5—C6—C1121.42 (16)C17—C18—H18C109.5
C5—C6—C7119.36 (17)H18A—C18—H18C109.5
C1—C6—C7119.21 (14)H18B—C18—H18C109.5
C6—C7—P2106.84 (12)C17—C19—H19A109.5
C6—C7—H7A110.4C17—C19—H19B109.5
P2—C7—H7A110.4H19A—C19—H19B109.5
C6—C7—H7B110.4C17—C19—H19C109.5
P2—C7—H7B110.4H19A—C19—H19C109.5
H7A—C7—H7B108.6H19B—C19—H19C109.5
C2—C8—P1106.23 (12)C23—C20—C22109.96 (19)
C2—C8—H8A110.5C23—C20—C21108.3 (2)
P1—C8—H8A110.5C22—C20—C21108.32 (18)
C2—C8—H8B110.5C23—C20—P2109.70 (13)
P1—C8—H8B110.5C22—C20—P2113.70 (16)
H8A—C8—H8B108.7C21—C20—P2106.63 (13)
C10—C9—C12107.52 (16)C20—C21—H21A109.5
C10—C9—C11109.93 (16)C20—C21—H21B109.5
C12—C9—C11109.06 (16)H21A—C21—H21B109.5
C10—C9—P1110.57 (12)C20—C21—H21C109.5
C12—C9—P1107.09 (12)H21A—C21—H21C109.5
C11—C9—P1112.49 (13)H21B—C21—H21C109.5
C9—C10—H10A109.5C20—C22—H22A109.5
C9—C10—H10B109.5C20—C22—H22B109.5
H10A—C10—H10B109.5H22A—C22—H22B109.5
C9—C10—H10C109.5C20—C22—H22C109.5
H10A—C10—H10C109.5H22A—C22—H22C109.5
H10B—C10—H10C109.5H22B—C22—H22C109.5
C9—C11—H11A109.5C20—C23—H23A109.5
C9—C11—H11B109.5C20—C23—H23B109.5
H11A—C11—H11B109.5H23A—C23—H23B109.5
C9—C11—H11C109.5C20—C23—H23C109.5
H11A—C11—H11C109.5H23A—C23—H23C109.5
H11B—C11—H11C109.5H23B—C23—H23C109.5
C9—C12—H12A109.5C17—C24—H24A109.5
C9—C12—H12B109.5C17—C24—H24B109.5
H12A—C12—H12B109.5H24A—C24—H24B109.5
C9—C12—H12C109.5C17—C24—H24C109.5
H12A—C12—H12C109.5H24A—C24—H24C109.5
H12B—C12—H12C109.5H24B—C24—H24C109.5

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2105).

References

  • Brandenburg, K. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2003). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2004). SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Denney, M. C., Smythe, N. A., Cetto, K. L., Kemp, R. A. & Goldberg, K. I. (2006). J. Am. Chem. Soc.128, 2508–2509. [PubMed]
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Hollink, E., Stewart, J. C., Wei, P. & Stephan, D. W. (2003). J. Chem. Soc. Dalton Trans. pp. 3968–3974.
  • Keith, J. M., Muller, R. P., Kemp, R. A., Goldberg, K. I., Goddard, W. A. III & Oxgaard, J. (2006). Inorg. Chem.45, 9631–9633. [PubMed]
  • Kimmich, B. F. M., Marshall, W. J., Fagan, P. J., Hauptman, E. & Bullock, R. M. (2002). Inorg. Chim. Acta, 330, 52–58.
  • Moulton, C. J. & Shaw, B. L. (1976). J. Chem. Soc. Dalton Trans. pp. 1020–1024.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2008). publCIF In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography