PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 October 1; 64(Pt 10): m1241.
Published online 2008 September 6. doi:  10.1107/S1600536808027815
PMCID: PMC2959240

(E)-1-Ferrocenyl-3-(3-nitro­phen­yl)prop-2-en-1-one

Abstract

In the title compound, [Fe(C5H5)(C14H10NO3)], one cyclo­penta­diene ring is substituted and one is unsubstituted. The two rings are almost parallel and are eclipsed and ordered. The conjugated substituent is slightly twisted with respect to the cyclo­penta­diene ring. The crystal structure contains four inter­molecular C—H(...)O hydrogen-bonds in the range 3.324 (3)–3.539 (3) Å and one π(aryl ring)–π (Cp ring) stacking inter­action with a ring–centroid distance of 3.894 (2) Å.

Related literature

For related literature, see: Allen et al. (1987 [triangle]); Bernstein et al. (1995 [triangle]); Harrison et al. (2006 [triangle]); Kealy & Pauson (1951 [triangle]); Liang et al. (1998 [triangle]); Liu et al. (2001 [triangle], 2003 [triangle], 2008 [triangle]); Mrisra & Tenari (1973 [triangle]); Shi et al. (2004 [triangle]). Yarishkin et al. (2008 [triangle]); Zhai et al. (1999 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1241-scheme1.jpg

Experimental

Crystal data

  • [Fe(C5H5)(C14H10NO3)]
  • M r = 361.17
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1241-efi1.jpg
  • a = 5.8691 (7) Å
  • b = 10.8636 (12) Å
  • c = 12.6193 (14) Å
  • α = 77.038 (2)°
  • β = 81.562 (2)°
  • γ = 83.565 (2)°
  • V = 772.99 (15) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.99 mm−1
  • T = 296 (2) K
  • 0.30 × 0.30 × 0.20 mm

Data collection

  • Bruker SMART 1000 CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2007 [triangle]) T min = 0.755, T max = 0.826
  • 5617 measured reflections
  • 2686 independent reflections
  • 2462 reflections with I > 2σ(I)
  • R int = 0.058

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043
  • wR(F 2) = 0.116
  • S = 1.10
  • 2686 reflections
  • 217 parameters
  • H-atom parameters constrained
  • Δρmax = 0.73 e Å−3
  • Δρmin = −0.52 e Å−3

Data collection: SMART (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808027815/om2257sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808027815/om2257Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We gratefully acknowledge the support of the National Natural Science Foundation of China (No. 20572091) and the Natural Science Foundation of Yangzhou University (No. 2006XJJ03).

supplementary crystallographic information

Comment

α, β-unsaturated ketones are important as intermediates in many addition reactions and they are also used widely in synthesizing of spice and medicament and materials (Mrisra et al., 1973; Zhai et al.,1999; Liu et al., 2001, 2003; Yarishkin et al., 2008). Since the discovery of ferrocene (Kealy & Pauson, 1951), ferrocene has played an important role in the development of electronic structures of organometallic compounds and materials chemistry. A considerable number of ferrocene derivatives have been prepared directly or indirectly from ferrocene and their properties have been extensively studied. As part of our search for new biological active compounds (Liang et al., 1998; Shi et al., 2004; Liu et al., 2008), we report herein the synthesis and crystal structure of the tltle compound.

The molecule of the title compound exists as the most stable configuration of (E)-isomer (Scheme 1, Fig.1, Table 1). The Cps ring is connected to the phenyl group through the C6—C7=C8—C9—C10 chain with the C=C bond length being 1.330 (3) Å and the three single Csp2—Csp2 bond lengths ranging from 1.472 (3) to 1.477 (3) Å, which are the same with the result of our early works (Liu et al., 2008). This rang compares well with the statistical values for such bond lengths in conjugated C=C—C(=O)—C system [1.464 (18) Å] and for Csp2—Caryl bonds (lower quartile 1.472 Å) (Allen et al., 1987). The C9=O3 and C4—N1 bond distances are 1.226 (3) and 1.473 (3) Å, The Cp and Cps rings are nearly parallel [dihedral angle 0.99 (11)°]. The dihedral angle between the benzene ring and Cps ring is 6.6 (10)°, which is in agreement with the literature (Harrison et al., 2006). The nitro group is well ordered and makes a dihedral angle of 4.57 (3)° with respect to the benzene ring.

In its packing structure, along b axis two neighboring molecules are linked into R22(12)R22(12)R22(12) (Bernstein et al., 1995) dimer by two pairs of C14–H14(Cps)···O2(nitro) and C7–H7···O3=C inter-molecular hydrogen-bonds and the two neighboring dimers are linked into R22(10) ladder-shape by two C3–H3(aryl)···O1(nitro) inter-molecular hydrogen-bonds, thus forming cross edge-fused R22(10)R22(12)R22(12)R22(12) sheet (Fig. 2, Table 2). At same time, along c axis the two neighboring dimers linked into R44(16) chains and the neighboring chains above and below are assemble into a block via π(aryl ring)···π(Cp ring) inter-molecular stacking interactions (the corresponding ring-centroid separation is 3.894 (2) Å) (Fig. 3). All of the above mentioned inter-molecular hydrogen-bonds link the molecules into a three-dimensional structure of considerable complexity.

Experimental

Acetylferrocene (1.98 g, 0.01 mol) in ethanol (25 ml) was mixed with 3-nitrobenzaldehyde (1.51 g, 0.01 mol) in ethanol (25 ml) and the mixture was treated with an aqueous solution (20 ml) of potassium hydroxide (20 ml, 5%). The resulting mixture was stirred well and left for 24 h, and the solid product was collected by filtration and dried. Crystals of the product were obtained from ethanol recrystallization (yield 80%; m.p. 463 K). Analysis, found (calculated) for C19H15O3NFe (%): C 63.16 (63.29), H 4.16 (4.12), N 3.88 (3.65).

Refinement

After their location in a difference map, all H atom were fixed geomerically at ideal positions and allowed to ride on the parent C atom.with C—H distances of 0.93 Å(CH) or 0.98 Å (ferrocenyl), and with Uiso(H) values of 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of the title compound, showing 50% probability displacement ellipsoids.
Fig. 2.
Part of the crystal structure of the title compound, showing the formation of a R22(10)R22(12)R22(12)R22(12) hydrogen bonded chain along a axis, which is built by three C—H···O inter-molecular hydrogen bonds (dashed lines). ...
Fig. 3.
Part of the crystal structure of the title compound, showing the formation of a hydrogen bonded R44(16) chain via C—H···O and pi (aryl ring)···pi (Cps ring) inter-molecular hydrogen bonds (dashed ...

Crystal data

[Fe(C5H5)(C14H10NO3)]Z = 2
Mr = 361.17F(000) = 372
Triclinic, P1Dx = 1.552 Mg m3
Hall symbol: -p 1Melting point: 463 K
a = 5.8691 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.8636 (12) ÅCell parameters from 4689 reflections
c = 12.6193 (14) Åθ = 2.3–27.5°
α = 77.038 (2)°µ = 0.99 mm1
β = 81.562 (2)°T = 296 K
γ = 83.565 (2)°Block, red
V = 772.99 (15) Å30.30 × 0.30 × 0.20 mm

Data collection

Bruker SMART 1000 CCD diffractometer2686 independent reflections
Radiation source: fine-focus sealed tube2462 reflections with I > 2σ(I)
graphiteRint = 0.058
ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Bruker,2007)h = −6→6
Tmin = 0.755, Tmax = 0.826k = −12→12
5617 measured reflectionsl = −15→15

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.10w = 1/[σ2(Fo2) + (0.0764P)2 + 0.0618P] where P = (Fo2 + 2Fc2)/3
2686 reflections(Δ/σ)max = 0.001
217 parametersΔρmax = 0.73 e Å3
0 restraintsΔρmin = −0.52 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Fe10.23081 (5)0.97010 (3)0.73142 (2)0.02174 (17)
O1−0.2073 (4)0.3484 (2)1.52513 (15)0.0494 (6)
O20.1462 (3)0.3394 (2)1.44848 (15)0.0441 (5)
O30.5123 (3)0.67292 (17)0.89307 (14)0.0349 (4)
N1−0.0581 (4)0.37596 (19)1.44662 (16)0.0315 (5)
C1−0.2608 (4)0.6133 (2)1.1575 (2)0.0279 (5)
H1A−0.30720.66581.09410.033*
C2−0.4195 (5)0.5856 (2)1.2499 (2)0.0307 (6)
H2−0.57110.62101.24820.037*
C3−0.3572 (4)0.5063 (2)1.3449 (2)0.0295 (6)
H3−0.46500.48671.40670.035*
C4−0.1309 (5)0.4573 (2)1.34520 (18)0.0265 (5)
C50.0351 (4)0.4822 (2)1.25377 (18)0.0238 (5)
H50.18600.44591.25610.029*
C6−0.0307 (4)0.5631 (2)1.15843 (18)0.0237 (5)
C70.1479 (4)0.5950 (2)1.06407 (18)0.0254 (5)
H70.29180.54991.06830.030*
C80.1221 (4)0.6825 (2)0.97330 (19)0.0286 (5)
H8−0.01980.72940.96730.034*
C90.3099 (4)0.7080 (2)0.88167 (19)0.0248 (5)
C100.2434 (4)0.7779 (2)0.77460 (18)0.0227 (5)
C110.0152 (4)0.8290 (2)0.74917 (19)0.0246 (5)
H11−0.12200.81880.79630.030*
C120.0394 (4)0.8981 (2)0.63821 (19)0.0271 (5)
H12−0.08030.94110.60030.033*
C130.2780 (4)0.8900 (2)0.59541 (19)0.0279 (5)
H130.34060.92670.52480.033*
C140.4033 (4)0.8164 (2)0.67886 (18)0.0232 (5)
H140.56230.79650.67250.028*
C150.3201 (6)1.0342 (3)0.8590 (2)0.0383 (6)
H150.36040.98380.92450.046*
C160.0932 (5)1.0845 (2)0.8380 (2)0.0344 (6)
H16−0.04101.07320.88720.041*
C170.1083 (5)1.1552 (2)0.7285 (2)0.0351 (6)
H17−0.01511.19790.69320.042*
C180.3411 (5)1.1497 (2)0.6821 (2)0.0369 (6)
H180.39821.18870.61120.044*
C190.4750 (5)1.0740 (3)0.7625 (3)0.0379 (6)
H190.63401.05440.75350.046*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Fe10.0215 (2)0.0200 (2)0.0219 (2)−0.00606 (15)−0.00413 (15)0.00257 (15)
O10.0496 (13)0.0551 (13)0.0287 (10)0.0023 (10)0.0098 (9)0.0095 (9)
O20.0332 (11)0.0566 (12)0.0347 (10)−0.0037 (9)−0.0080 (8)0.0091 (9)
O30.0232 (10)0.0366 (10)0.0364 (10)−0.0013 (7)−0.0054 (7)0.0103 (8)
N10.0347 (13)0.0308 (11)0.0270 (11)−0.0051 (9)−0.0042 (9)−0.0007 (9)
C10.0252 (13)0.0266 (12)0.0314 (12)−0.0070 (10)−0.0082 (10)0.0001 (10)
C20.0280 (14)0.0303 (13)0.0347 (13)−0.0055 (10)−0.0041 (10)−0.0074 (10)
C30.0285 (14)0.0316 (13)0.0292 (13)−0.0116 (10)0.0027 (10)−0.0081 (10)
C40.0356 (14)0.0225 (12)0.0221 (12)−0.0110 (10)−0.0032 (10)−0.0020 (9)
C50.0210 (12)0.0210 (11)0.0293 (12)−0.0056 (9)−0.0045 (9)−0.0022 (9)
C60.0274 (13)0.0198 (11)0.0243 (12)−0.0091 (9)−0.0034 (9)−0.0022 (9)
C70.0223 (12)0.0244 (12)0.0288 (12)−0.0054 (9)−0.0061 (9)−0.0010 (9)
C80.0288 (13)0.0246 (12)0.0280 (12)0.0003 (10)−0.0028 (10)0.0020 (9)
C90.0257 (13)0.0176 (11)0.0286 (12)−0.0038 (9)−0.0047 (9)0.0022 (9)
C100.0244 (12)0.0165 (11)0.0255 (12)−0.0059 (9)−0.0039 (9)0.0014 (9)
C110.0223 (12)0.0251 (12)0.0257 (12)−0.0112 (9)−0.0035 (9)0.0010 (9)
C120.0247 (13)0.0309 (13)0.0260 (12)−0.0071 (10)−0.0115 (9)0.0014 (10)
C130.0311 (14)0.0314 (13)0.0214 (11)−0.0115 (11)−0.0042 (9)−0.0010 (9)
C140.0177 (11)0.0234 (12)0.0281 (12)−0.0048 (9)−0.0029 (9)−0.0034 (9)
C150.0526 (18)0.0329 (14)0.0337 (14)−0.0073 (12)−0.0183 (12)−0.0059 (11)
C160.0327 (15)0.0327 (14)0.0396 (14)−0.0087 (11)0.0029 (11)−0.0133 (11)
C170.0388 (16)0.0217 (12)0.0444 (15)−0.0004 (11)−0.0100 (12)−0.0042 (11)
C180.0478 (18)0.0217 (12)0.0399 (15)−0.0153 (12)0.0001 (12)−0.0013 (11)
C190.0288 (15)0.0307 (14)0.0603 (18)−0.0083 (11)−0.0126 (12)−0.0149 (13)

Geometric parameters (Å, °)

Fe1—C102.032 (2)C7—C81.330 (3)
Fe1—C142.043 (2)C7—H70.9300
Fe1—C152.045 (3)C8—C91.476 (3)
Fe1—C112.049 (2)C8—H80.9300
Fe1—C192.052 (3)C9—C101.477 (3)
Fe1—C172.052 (2)C10—C141.430 (3)
Fe1—C162.053 (3)C10—C111.443 (3)
Fe1—C182.058 (2)C11—C121.428 (3)
Fe1—C122.063 (2)C11—H110.9300
Fe1—C132.063 (2)C12—C131.426 (4)
O1—N11.228 (3)C12—H120.9300
O2—N11.222 (3)C13—C141.417 (3)
O3—C91.226 (3)C13—H130.9300
N1—C41.473 (3)C14—H140.9300
C1—C21.380 (4)C15—C161.421 (4)
C1—C61.399 (3)C15—C191.422 (4)
C1—H1A0.9300C15—H150.9300
C2—C31.380 (4)C16—C171.418 (4)
C2—H20.9300C16—H160.9300
C3—C41.375 (4)C17—C181.406 (4)
C3—H30.9300C17—H170.9300
C4—C51.394 (3)C18—C191.428 (4)
C5—C61.398 (3)C18—H180.9300
C5—H50.9300C19—H190.9300
C6—C71.472 (3)
C10—Fe1—C1441.07 (9)C8—C7—H7117.1
C10—Fe1—C15107.72 (10)C6—C7—H7117.1
C14—Fe1—C15122.37 (11)C7—C8—C9122.6 (2)
C10—Fe1—C1141.42 (9)C7—C8—H8118.7
C14—Fe1—C1169.09 (9)C9—C8—H8118.7
C15—Fe1—C11124.25 (11)O3—C9—C8121.9 (2)
C10—Fe1—C19123.33 (11)O3—C9—C10121.0 (2)
C14—Fe1—C19107.08 (10)C8—C9—C10117.0 (2)
C15—Fe1—C1940.62 (12)C14—C10—C11107.73 (19)
C11—Fe1—C19160.64 (12)C14—C10—C9124.5 (2)
C11—Fe1—C19160.64 (12)C11—C10—C9127.6 (2)
C10—Fe1—C17158.56 (11)C14—C10—Fe169.87 (12)
C14—Fe1—C17159.17 (11)C11—C10—Fe169.92 (12)
C15—Fe1—C1767.99 (11)C9—C10—Fe1121.58 (16)
C11—Fe1—C17122.28 (11)C12—C11—C10107.3 (2)
C19—Fe1—C1768.03 (11)C12—C11—Fe170.20 (13)
C10—Fe1—C16122.67 (10)C10—C11—Fe168.66 (13)
C14—Fe1—C16158.58 (11)C12—C11—H11126.4
C15—Fe1—C1640.57 (12)C10—C11—H11126.4
C11—Fe1—C16107.96 (10)Fe1—C11—H11126.3
C19—Fe1—C1668.28 (11)C13—C12—C11108.4 (2)
C17—Fe1—C1640.42 (11)C13—C12—Fe169.79 (13)
C10—Fe1—C18159.88 (12)C11—C12—Fe169.17 (13)
C14—Fe1—C18123.21 (10)C13—C12—H12125.8
C15—Fe1—C1868.05 (11)C11—C12—H12125.8
C11—Fe1—C18157.27 (11)Fe1—C12—H12126.8
C19—Fe1—C1840.67 (11)C14—C13—C12108.3 (2)
C17—Fe1—C1840.00 (12)C14—C13—Fe169.06 (13)
C16—Fe1—C1867.80 (11)C12—C13—Fe169.78 (14)
C10—Fe1—C1268.75 (9)C14—C13—H13125.9
C14—Fe1—C1268.24 (9)C12—C13—H13125.9
C15—Fe1—C12160.72 (12)Fe1—C13—H13126.9
C11—Fe1—C1240.63 (9)C13—C14—C10108.3 (2)
C19—Fe1—C12157.21 (12)C13—C14—Fe170.58 (14)
C17—Fe1—C12107.96 (11)C10—C14—Fe169.06 (13)
C16—Fe1—C12124.19 (11)C13—C14—H14125.8
C18—Fe1—C12121.83 (11)C10—C14—H14125.8
C10—Fe1—C1368.58 (9)Fe1—C14—H14126.1
C14—Fe1—C1340.36 (9)C16—C15—C19108.3 (2)
C15—Fe1—C13157.63 (12)C16—C15—Fe169.99 (15)
C11—Fe1—C1368.50 (9)C19—C15—Fe169.93 (15)
C19—Fe1—C13121.64 (11)C16—C15—H15125.9
C17—Fe1—C13123.54 (10)C19—C15—H15125.9
C16—Fe1—C13160.01 (12)Fe1—C15—H15125.8
C18—Fe1—C13107.41 (10)C17—C16—C15107.6 (2)
C12—Fe1—C1340.43 (10)C17—C16—Fe169.78 (14)
O2—N1—O1123.4 (2)C15—C16—Fe169.44 (15)
O2—N1—C4118.67 (19)C17—C16—H16126.2
O1—N1—C4117.9 (2)C15—C16—H16126.2
C2—C1—C6120.6 (2)Fe1—C16—H16126.2
C2—C1—H1A119.7C18—C17—C16108.6 (2)
C6—C1—H1A119.7C18—C17—Fe170.23 (15)
C1—C2—C3121.2 (2)C16—C17—Fe169.80 (14)
C1—C2—H2119.4C18—C17—H17125.7
C3—C2—H2119.4C16—C17—H17125.7
C4—C3—C2117.9 (2)Fe1—C17—H17125.8
C4—C3—H3121.0C17—C18—C19108.2 (2)
C2—C3—H3121.0C17—C18—Fe169.77 (15)
C3—C4—C5122.9 (2)C19—C18—Fe169.42 (14)
C3—C4—N1119.0 (2)C17—C18—H18125.9
C5—C4—N1118.1 (2)C19—C18—H18125.9
C4—C5—C6118.4 (2)Fe1—C18—H18126.5
C4—C5—H5120.8C15—C19—C18107.3 (2)
C6—C5—H5120.8C15—C19—Fe169.45 (15)
C5—C6—C1119.0 (2)C18—C19—Fe169.91 (15)
C5—C6—C7118.3 (2)C15—C19—H19126.3
C1—C6—C7122.7 (2)C18—C19—H19126.3
C8—C7—C6125.9 (2)Fe1—C19—H19125.9
C6—C1—C2—C3−1.1 (4)Fe1—C10—C14—C13−59.89 (16)
C1—C2—C3—C41.0 (4)C11—C10—C14—Fe159.92 (15)
C2—C3—C4—C5−1.3 (4)C9—C10—C14—Fe1−115.1 (2)
C2—C3—C4—N1177.9 (2)C10—Fe1—C14—C13119.44 (19)
O2—N1—C4—C3−175.3 (2)C15—Fe1—C14—C13−160.87 (15)
O1—N1—C4—C34.8 (3)C11—Fe1—C14—C1381.01 (15)
O2—N1—C4—C53.9 (3)C19—Fe1—C14—C13−119.07 (15)
O1—N1—C4—C5−176.0 (2)C17—Fe1—C14—C13−46.1 (3)
C3—C4—C5—C61.6 (4)C16—Fe1—C14—C13167.0 (2)
N1—C4—C5—C6−177.6 (2)C18—Fe1—C14—C13−77.42 (17)
C4—C5—C6—C1−1.6 (3)C12—Fe1—C14—C1337.25 (14)
C4—C5—C6—C7176.6 (2)C15—Fe1—C14—C1079.69 (17)
C2—C1—C6—C51.4 (3)C11—Fe1—C14—C10−38.43 (13)
C2—C1—C6—C7−176.7 (2)C19—Fe1—C14—C10121.49 (15)
C5—C6—C7—C8−170.6 (2)C17—Fe1—C14—C10−165.6 (3)
C1—C6—C7—C87.4 (4)C16—Fe1—C14—C1047.6 (3)
C6—C7—C8—C9−179.5 (2)C18—Fe1—C14—C10163.14 (15)
C7—C8—C9—O3−17.4 (4)C12—Fe1—C14—C10−82.19 (15)
C7—C8—C9—C10162.4 (2)C13—Fe1—C14—C10−119.44 (19)
O3—C9—C10—C14−3.6 (4)C10—Fe1—C15—C16−119.89 (16)
C8—C9—C10—C14176.6 (2)C14—Fe1—C15—C16−162.62 (15)
O3—C9—C10—C11−177.7 (2)C11—Fe1—C15—C16−77.19 (18)
C8—C9—C10—C112.5 (3)C19—Fe1—C15—C16119.2 (2)
O3—C9—C10—Fe1−89.7 (3)C17—Fe1—C15—C1637.75 (16)
C8—C9—C10—Fe190.5 (2)C18—Fe1—C15—C1681.04 (17)
C15—Fe1—C10—C14−119.28 (16)C12—Fe1—C15—C16−43.7 (3)
C11—Fe1—C10—C14118.65 (19)C13—Fe1—C15—C16163.5 (2)
C19—Fe1—C10—C14−77.32 (17)C10—Fe1—C15—C19120.91 (16)
C17—Fe1—C10—C14166.0 (2)C14—Fe1—C15—C1978.17 (18)
C16—Fe1—C10—C14−161.33 (14)C11—Fe1—C15—C19163.61 (16)
C18—Fe1—C10—C14−44.9 (3)C17—Fe1—C15—C19−81.45 (17)
C12—Fe1—C10—C1480.84 (15)C16—Fe1—C15—C19−119.2 (2)
C13—Fe1—C10—C1437.29 (13)C18—Fe1—C15—C19−38.16 (16)
C14—Fe1—C10—C11−118.65 (19)C12—Fe1—C15—C19−162.9 (3)
C15—Fe1—C10—C11122.08 (15)C13—Fe1—C15—C1944.3 (3)
C19—Fe1—C10—C11164.03 (15)C19—C15—C16—C170.1 (3)
C17—Fe1—C10—C1147.3 (3)Fe1—C15—C16—C17−59.56 (18)
C16—Fe1—C10—C1180.02 (17)C19—C15—C16—Fe159.69 (18)
C18—Fe1—C10—C11−163.5 (3)C10—Fe1—C16—C17−162.26 (15)
C12—Fe1—C10—C11−37.81 (13)C14—Fe1—C16—C17162.6 (2)
C13—Fe1—C10—C11−81.36 (14)C15—Fe1—C16—C17118.9 (2)
C14—Fe1—C10—C9118.8 (2)C11—Fe1—C16—C17−119.03 (16)
C15—Fe1—C10—C9−0.4 (2)C19—Fe1—C16—C1781.17 (18)
C11—Fe1—C10—C9−122.5 (2)C18—Fe1—C16—C1737.17 (17)
C19—Fe1—C10—C941.5 (2)C12—Fe1—C16—C17−77.12 (18)
C17—Fe1—C10—C9−75.2 (3)C13—Fe1—C16—C17−42.7 (3)
C16—Fe1—C10—C9−42.5 (2)C10—Fe1—C16—C1578.85 (18)
C18—Fe1—C10—C974.0 (3)C14—Fe1—C16—C1543.7 (3)
C12—Fe1—C10—C9−160.3 (2)C11—Fe1—C16—C15122.08 (16)
C13—Fe1—C10—C9156.1 (2)C19—Fe1—C16—C15−37.71 (17)
C14—C10—C11—C12−0.1 (3)C17—Fe1—C16—C15−118.9 (2)
C9—C10—C11—C12174.8 (2)C18—Fe1—C16—C15−81.72 (18)
Fe1—C10—C11—C1259.84 (16)C12—Fe1—C16—C15163.99 (15)
C14—C10—C11—Fe1−59.89 (15)C13—Fe1—C16—C15−161.6 (3)
C9—C10—C11—Fe1115.0 (2)C15—C16—C17—C18−0.4 (3)
C10—Fe1—C11—C12−118.7 (2)Fe1—C16—C17—C18−59.75 (19)
C14—Fe1—C11—C12−80.56 (15)C15—C16—C17—Fe159.35 (18)
C15—Fe1—C11—C12163.76 (15)C10—Fe1—C17—C18164.1 (2)
C19—Fe1—C11—C12−162.6 (3)C14—Fe1—C17—C18−42.6 (4)
C17—Fe1—C11—C1279.85 (17)C15—Fe1—C17—C1881.63 (19)
C16—Fe1—C11—C12121.96 (16)C11—Fe1—C17—C18−160.80 (16)
C18—Fe1—C11—C1246.7 (3)C19—Fe1—C17—C1837.66 (17)
C13—Fe1—C11—C12−37.13 (15)C16—Fe1—C17—C18119.5 (2)
C14—Fe1—C11—C1038.12 (13)C12—Fe1—C17—C18−118.44 (17)
C15—Fe1—C11—C10−77.56 (17)C13—Fe1—C17—C18−76.6 (2)
C19—Fe1—C11—C10−43.9 (4)C10—Fe1—C17—C1644.6 (3)
C17—Fe1—C11—C10−161.47 (14)C14—Fe1—C17—C16−162.1 (3)
C16—Fe1—C11—C10−119.37 (15)C15—Fe1—C17—C16−37.89 (17)
C18—Fe1—C11—C10165.4 (2)C11—Fe1—C17—C1679.68 (18)
C12—Fe1—C11—C10118.7 (2)C19—Fe1—C17—C16−81.86 (18)
C13—Fe1—C11—C1081.55 (14)C18—Fe1—C17—C16−119.5 (2)
C10—C11—C12—C130.1 (3)C12—Fe1—C17—C16122.04 (16)
Fe1—C11—C12—C1358.92 (17)C13—Fe1—C17—C16163.86 (15)
C10—C11—C12—Fe1−58.86 (16)C16—C17—C18—C190.5 (3)
C10—Fe1—C12—C13−81.49 (15)Fe1—C17—C18—C19−58.97 (18)
C14—Fe1—C12—C13−37.19 (14)C16—C17—C18—Fe159.49 (18)
C15—Fe1—C12—C13−164.4 (3)C10—Fe1—C18—C17−163.1 (2)
C11—Fe1—C12—C13−120.0 (2)C14—Fe1—C18—C17163.30 (15)
C19—Fe1—C12—C1345.1 (3)C15—Fe1—C18—C17−81.48 (19)
C17—Fe1—C12—C13121.01 (15)C11—Fe1—C18—C1746.0 (3)
C16—Fe1—C12—C13162.65 (15)C19—Fe1—C18—C17−119.6 (2)
C18—Fe1—C12—C1379.31 (17)C16—Fe1—C18—C17−37.54 (16)
C10—Fe1—C12—C1138.52 (14)C12—Fe1—C18—C1779.91 (19)
C14—Fe1—C12—C1182.82 (15)C13—Fe1—C18—C17121.81 (17)
C15—Fe1—C12—C11−44.4 (3)C10—Fe1—C18—C19−43.5 (3)
C19—Fe1—C12—C11165.2 (2)C14—Fe1—C18—C19−77.11 (19)
C17—Fe1—C12—C11−118.97 (16)C15—Fe1—C18—C1938.12 (17)
C16—Fe1—C12—C11−77.34 (18)C11—Fe1—C18—C19165.6 (2)
C18—Fe1—C12—C11−160.68 (15)C17—Fe1—C18—C19119.6 (2)
C13—Fe1—C12—C11120.0 (2)C16—Fe1—C18—C1982.05 (18)
C11—C12—C13—C140.0 (3)C12—Fe1—C18—C19−160.50 (16)
Fe1—C12—C13—C1458.49 (17)C13—Fe1—C18—C19−118.59 (17)
C11—C12—C13—Fe1−58.54 (17)C16—C15—C19—C180.2 (3)
C10—Fe1—C13—C14−37.93 (13)Fe1—C15—C19—C1859.91 (18)
C15—Fe1—C13—C1446.6 (3)C16—C15—C19—Fe1−59.73 (19)
C11—Fe1—C13—C14−82.59 (14)C17—C18—C19—C15−0.4 (3)
C19—Fe1—C13—C1478.92 (17)Fe1—C18—C19—C15−59.62 (18)
C17—Fe1—C13—C14162.10 (14)C17—C18—C19—Fe159.19 (19)
C16—Fe1—C13—C14−166.1 (3)C10—Fe1—C19—C15−78.03 (18)
C18—Fe1—C13—C14121.15 (15)C14—Fe1—C19—C15−120.14 (16)
C12—Fe1—C13—C14−119.9 (2)C11—Fe1—C19—C15−44.7 (4)
C10—Fe1—C13—C1281.97 (15)C17—Fe1—C19—C1581.36 (18)
C14—Fe1—C13—C12119.9 (2)C16—Fe1—C19—C1537.66 (16)
C15—Fe1—C13—C12166.5 (2)C18—Fe1—C19—C15118.4 (2)
C11—Fe1—C13—C1237.30 (14)C12—Fe1—C19—C15165.5 (2)
C19—Fe1—C13—C12−161.19 (15)C13—Fe1—C19—C15−161.82 (15)
C17—Fe1—C13—C12−78.01 (17)C10—Fe1—C19—C18163.54 (15)
C16—Fe1—C13—C12−46.2 (3)C14—Fe1—C19—C18121.43 (16)
C18—Fe1—C13—C12−118.96 (15)C15—Fe1—C19—C18−118.4 (2)
C12—C13—C14—C100.0 (3)C11—Fe1—C19—C18−163.2 (3)
Fe1—C13—C14—C1058.95 (16)C17—Fe1—C19—C18−37.07 (17)
C12—C13—C14—Fe1−58.94 (17)C16—Fe1—C19—C18−80.76 (17)
C11—C10—C14—C130.0 (3)C12—Fe1—C19—C1847.1 (3)
C9—C10—C14—C13−175.0 (2)C13—Fe1—C19—C1879.76 (18)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C7—H7···O3i0.932.543.324 (3)143.
C14—H14···O2i0.932.673.377 (3)134.
C3—H3···O1ii0.932.663.278 (3)124.
C17—H17···O1iii0.932.683.539 (3)154.

Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) −x−1, −y+1, −z+3; (iii) x, y+1, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2257).

References

  • Allen, F. H., Kennard, O., Waston, D. G., Brammer, L., Orpen, G. A. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2007). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Harrison, W. T. A., Yathirajan, H. S., Anilkumar, H. G., Sarojini, B. K. & Narayana, B. (2006). Acta Cryst. E62, o3251–o3253.
  • Kealy, T. J. & Pauson, P. L. (1951). Nature (London), 168, 1039–1040.
  • Liang, Y.-M., Chen, B.-H., Jin, H.-W., Ma, Y.-X. & Liu, Y.-H. (1998). Synth. React. Inorg. Met.-Org. Chem.28, 803–810.
  • Liu, Y.-H., Liu, J.-F., Jian, P.-M. & Liu, X.-L. (2008). Acta Cryst. E64, m1001–m1002. [PMC free article] [PubMed]
  • Liu, M., Wilairat, P., Croft, S. L., Tan, A. L. C. & Go, M.-L. (2003). Bioorg. Med. Chem.11, 2729–2738. [PubMed]
  • Liu, M., Wilairat, P. & Go, M. L. (2001). J. Med. Chem.44, 4443–4452. [PubMed]
  • Mrisra, S. S. & Tenari, R. S. (1973). J. Indian Chem. Soc.50, 68–70.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shi, Y. C., Yang, H.-M., Song, H.-B. & Liu, Y.-H. (2004). Polyhedron, 23, 1541–1546.
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Yarishkin, O. V., Ryu, H. W., Park, J. Y., Yang, M. S., Hong, S. G. & Park, K. H. (2008). Bioorg. Med. Chem. Lett.18, 137–140. [PubMed]
  • Zhai, L., Chen, M., Blom, J., Theander, T. G., Christensen, S. B. & Kharazmi, A. (1999). Antimicrob. Agents Chemother.43, 793–803. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography