PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 October 1; 64(Pt 10): m1322–m1323.
Published online 2008 September 27. doi:  10.1107/S1600536808030377
PMCID: PMC2959235

catena-Poly[[(2,2′:6′,2′′-terpyridine-κ3 N,N′,N′′)(tricyano­methanido-κN)nickel(II)]-μ-tricyano­methanido]

Abstract

In the title complex, [Ni(C4N3)2(C15H11N3)]n, each of the two different NiII atoms is coordinated by one 2,2′:6′2′′-terpyridine (terpy) and three tricyano­methanide ligands in a distorted octa­hedral geometry. The NiII atoms are linked to each other, forming an infinite chain parallel to (An external file that holds a picture, illustration, etc.
Object name is e-64-m1322-efi1.jpg10). π–π Stacking inter­actions of terpy mol­ecules between adjacent chains (centroid–centroid distance = 3.785 Å), along with weak inter­molecular C—H(...)N hydrogen bonds involving the uncoordinated terminal N atoms of the tricyanomethanide ions and the terpyridine H atoms, result in the formation of a three-dimensional network structure.

Related literature

For general background, see: Abrahams et al. (2003 [triangle]); Batten & Murray (2003 [triangle]); Batten et al. (1998 [triangle], 2000 [triangle]); Feyerherm et al. (2003 [triangle], 2004 [triangle]); Manson & Schlueter (2004 [triangle]); Manson et al. (1998 [triangle], 2000 [triangle]); Miller & Manson (2001 [triangle]); Yuste et al. (2008 [triangle]). For related structures, see: Baker et al. (1995 [triangle]); Batten et al. (1999 [triangle]); Hoshino et al. (1999 [triangle]); Indumathy et al. (2007 [triangle]); Luo et al. (2005 [triangle]); Potočňák et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1322-scheme1.jpg

Experimental

Crystal data

  • [Ni(C4N3)2(C15H11N3)]
  • M r = 944.24
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1322-efi2.jpg
  • a = 8.410 (3) Å
  • b = 15.581 (5) Å
  • c = 16.816 (5) Å
  • α = 93.762 (4)°
  • β = 90.110 (4)°
  • γ = 97.572 (5)°
  • V = 2179.4 (11) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.92 mm−1
  • T = 293 (2) K
  • 0.20 × 0.15 × 0.15 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.837, T max = 0.874
  • 10952 measured reflections
  • 9204 independent reflections
  • 6799 reflections with I > 2σ(I)
  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.053
  • wR(F 2) = 0.136
  • S = 1.03
  • 9204 reflections
  • 595 parameters
  • H-atom parameters constrained
  • Δρmax = 0.51 e Å−3
  • Δρmin = −0.32 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT (Bruker, 2000 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808030377/dn2372sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808030377/dn2372Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This project was supported by the National Natural Science Foundation of China (grant No. 20571086).

supplementary crystallographic information

Comment

Recently, coordination polymers assembled by tricyanomethanide (tcm) have attracted considerable interest bacause of their novel structure characteristics and fascinating magnetic properties (Batten et al., 2003; Miller et al., 2001; Feyerherm et al., 2003). To our knowledge, most binary tcm complexes display a rutile-like structure (Manson et al., 2000, 1998; Hoshino et al., 1999; Feyerherm et al., 2004), except that a doubly interpenetrated (6,3) sheet was observed in Ag(tcm)2 (Abrahams et al., 2003). To clarify the structure-properties relationship of tcm complexes, diverse co-ligands such as hexamethylenetetramine, 4,4-bipyridyl, 1,2-bi(4-pyridyl)ethane were introduced and the structures as well as magnetic properties of the adjusted complexes have been systematically investigated. Among the Cu(I) or Cd(II) tcm complexes with these co-ligands, numerous structure types range from doubly interpenetrated (4,4) sheet to three-dimensional rutile networks were observed (Batten et al., 2000, 1998). By contrast, modification of the Mn(II)-tcm binary system with 4,4-bipyridyl as co-ligands leads to the formation of a one dimensional chain-like structure (Manson et al., 2004). On the other hand, 2,2':6'2''-terpyridine (terpy) is a novel co-ligand and has three potential nitrogen donor atoms. However, only few tcm complexes with terpy as a co-ligand have ever been reported (Yuste et al., 2008). In order to further study the effect of the nature of co-ligands on the structures and properties of tricyanomethanide complexes, we herein report the synthesis and crystal structure of the new tricyanomethanide complex [Ni(terpy)(C4N3)2]2 (I).

In (I) the asymmetric unit is built up from two nickel ions: Ni1 and Ni2. Both Ni atoms display a slightly distorted octahedral coordination with the three N atoms of the terpyridine molecule and one terminal tcm N atom forming the equatorial plane, whereas two bridging tcm N atoms are located in axial position .

The distances and angles within the two octahedrons are roughly similar within experimental error. The only significant difference appear in the bending at the N atom of terminal tcm ligand located in the equatorial plane. Indeed, the Ni2-N16-C44 angle, 167.5 (3)°, whereas the corresponding Ni1-N7-C20 angle is 177.6 (5)°. The Ni1 and Ni2 atoms are linked trough a tcm bridge and each dinuclear units are further linked trough symetry related tcm bridges to form an infinite chain structure parallel to the (-1 1 0) plane (Fig. 1).

Intermolecular C-H···N hydrogen bonding between the uncoordinated terminal N atoms of the tcm ions and the H atoms of terpyridine groups (Table 1) and π-π stacking interactions involving terpyridine rings between adjacent chains along with (Table 2), result in the formation of a three-dimensional network structure (Fig. 2).

The Ni—N(terpy) distances (1.985 (3) to 2.110 (3) Å) are almost equal to Ni—N(tcm) distances (2.014 (3) to 2.101 (3) Å), and are respectively comparable to the corresponding distances found in nickel-terpyridine (Baker et al., 1995) and nickel-tcm complexes (Luo et al., 2005; Potocnák et al., 2007).

The bond distances and angles within the terpyridine rings are in the normal ranges observed for terpyridine-containing complexes (Indumathy et al., 2007). Each tricyanomethanide moiety is almost planar and the bond distances and angles are in good agreement with those found in other tricyanomethanide complexes (Hoshino et al., 1999; Batten et al., 1999).

Experimental

A 5 ml ethanol solution of terpyridine (0.10 mmol, 23.33 mg) and a 2 ml aqueous pale-green solution of nickel nitrate (0.10 mmol, 29.08 mg) were mixed and stirred for 5 min, the mixed solution became yellow. To the mixture was added a 3 ml ethanol-water solution (EtOH:H2O = 2:1, V:V) of potassium tricyanomethanide (0.20 mmol, 25.83 mg). After stirring for another 5 min, the yellow solution was filtered and the filtrate was slowly evaporated in air. After two weeks, pale-purple block crystals of (I) were isolated in 23% yield. Anal: Calculated for C46H22N18Ni2: C 58.52%, H 2.35%, N 26.70%. Found C 58.68%, H 2.43%, N 26.84%.

Refinement

In (I) the terpyridine H atoms were placed in geometrically idealized positions and constrained to ride on their parent C atoms with C—H distances of 0.93 Å and Uiso(H)=1.2Ueq(C).

Figures

Fig. 1.
A view of the one-dimensional chain in (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted for clarity [symmetry code: (i) x + 1, y + 1, z].
Fig. 2.
The three-dimensional network structure of (I) formed via terpy π-π interactions and hydrogen bonding interactions, viewed along the a axis.

Crystal data

[Ni(C4N3)2(C15H11N3)]Z = 2
Mr = 944.24F(000) = 960
Triclinic, P1Dx = 1.439 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.410 (3) ÅCell parameters from 944 reflections
b = 15.581 (5) Åθ = 2.6–24.5°
c = 16.816 (5) ŵ = 0.92 mm1
α = 93.762 (4)°T = 293 K
β = 90.110 (4)°Block, pale-purple
γ = 97.572 (5)°0.20 × 0.15 × 0.15 mm
V = 2179.4 (11) Å3

Data collection

Bruker SMART CCD area-detector diffractometer9204 independent reflections
Radiation source: fine-focus sealed tube6799 reflections with I > 2σ(I)
graphiteRint = 0.031
[var phi] and ω scansθmax = 27.0°, θmin = 1.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −10→8
Tmin = 0.837, Tmax = 0.874k = −19→19
10952 measured reflectionsl = −21→21

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H-atom parameters constrained
S = 1.03w = 1/[σ2(Fo2) + (0.0597P)2 + 0.2733P] where P = (Fo2 + 2Fc2)/3
9204 reflections(Δ/σ)max = 0.002
595 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = −0.32 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni10.22374 (5)0.63410 (2)0.27013 (2)0.02854 (12)
Ni20.70217 (5)1.13422 (3)0.23620 (2)0.03109 (12)
N10.4308 (3)0.58137 (18)0.23108 (17)0.0379 (6)
N20.2387 (3)0.66731 (17)0.15730 (15)0.0319 (6)
N30.0177 (3)0.69351 (17)0.25830 (16)0.0341 (6)
N40.0978 (4)0.51428 (19)0.22881 (18)0.0425 (7)
N5−0.1568 (4)0.24281 (18)0.19521 (17)0.0426 (7)
N60.2572 (6)0.3427 (3)0.0496 (3)0.125 (2)
N70.2082 (4)0.59875 (18)0.38324 (17)0.0418 (7)
N80.3241 (7)0.4149 (3)0.5555 (2)0.0949 (15)
N90.0357 (5)0.6229 (2)0.6311 (2)0.0722 (11)
N100.3504 (3)0.75359 (18)0.31275 (16)0.0384 (7)
N110.6264 (5)0.9131 (3)0.5073 (2)0.0762 (12)
N120.5724 (4)1.02474 (18)0.28128 (17)0.0432 (7)
N130.9001 (3)1.06682 (18)0.22472 (16)0.0369 (6)
N140.7987 (3)1.15562 (17)0.34463 (16)0.0347 (6)
N150.5437 (4)1.21064 (18)0.29291 (17)0.0414 (7)
N160.5894 (4)1.11062 (19)0.12874 (17)0.0424 (7)
N170.1207 (5)1.1214 (3)0.0126 (2)0.0764 (12)
N180.5484 (5)1.1226 (3)−0.1334 (2)0.0696 (11)
C10.5173 (5)0.5330 (3)0.2712 (2)0.0541 (10)
H10.49050.52310.32380.065*
C20.6450 (6)0.4966 (4)0.2383 (3)0.0775 (15)
H20.70410.46360.26820.093*
C30.6826 (6)0.5102 (4)0.1607 (3)0.0785 (15)
H30.76750.48610.13670.094*
C40.5941 (5)0.5597 (3)0.1187 (3)0.0621 (12)
H40.61910.57000.06600.075*
C50.4680 (4)0.5940 (2)0.1547 (2)0.0407 (8)
C60.3607 (4)0.6445 (2)0.11328 (19)0.0367 (8)
C70.3729 (5)0.6668 (3)0.0341 (2)0.0502 (10)
H70.45710.65210.00240.060*
C80.2584 (5)0.7108 (3)0.0042 (2)0.0543 (10)
H80.26510.7259−0.04840.065*
C90.1326 (4)0.7333 (2)0.0506 (2)0.0459 (9)
H90.05520.76370.03030.055*
C100.1261 (4)0.7091 (2)0.1281 (2)0.0375 (8)
C11−0.0013 (4)0.7247 (2)0.1860 (2)0.0351 (7)
C12−0.1317 (5)0.7642 (3)0.1692 (2)0.0526 (10)
H12−0.14330.78540.11940.063*
C13−0.2460 (5)0.7723 (3)0.2268 (3)0.0673 (13)
H13−0.33480.79970.21630.081*
C14−0.2284 (5)0.7398 (3)0.2996 (3)0.0619 (12)
H14−0.30500.74410.33890.074*
C15−0.0952 (5)0.7010 (2)0.3127 (2)0.0472 (9)
H15−0.08280.67880.36200.057*
C160.0740 (4)0.4459 (2)0.1991 (2)0.0350 (7)
C170.0544 (4)0.3643 (2)0.1586 (2)0.0409 (8)
C18−0.0617 (4)0.2975 (2)0.17997 (19)0.0353 (7)
C190.1645 (6)0.3509 (3)0.0985 (3)0.0687 (14)
C200.2002 (4)0.5758 (2)0.4466 (2)0.0382 (8)
C210.1934 (5)0.5477 (2)0.5238 (2)0.0428 (9)
C220.2664 (6)0.4744 (3)0.5412 (2)0.0597 (11)
C230.1061 (5)0.5892 (2)0.5829 (2)0.0485 (9)
C240.4178 (4)0.8188 (2)0.33652 (19)0.0332 (7)
C250.5722 (5)0.9050 (2)0.4446 (2)0.0463 (9)
C260.5053 (4)0.8968 (2)0.3671 (2)0.0378 (8)
C270.5407 (4)0.9663 (2)0.3185 (2)0.0350 (7)
C280.9457 (5)1.0230 (2)0.1600 (2)0.0485 (9)
H280.88461.02120.11360.058*
C291.0777 (5)0.9805 (3)0.1583 (3)0.0605 (11)
H291.10360.94910.11230.073*
C301.1719 (5)0.9848 (3)0.2259 (3)0.0731 (14)
H301.26360.95730.22600.088*
C311.1276 (5)1.0309 (3)0.2938 (3)0.0671 (13)
H311.18941.03510.34010.081*
C320.9911 (4)1.0703 (2)0.2916 (2)0.0442 (9)
C330.9294 (4)1.1198 (2)0.3613 (2)0.0430 (8)
C340.9940 (5)1.1274 (3)0.4385 (2)0.0647 (12)
H341.08631.10350.45010.078*
C350.9155 (6)1.1716 (3)0.4966 (2)0.0680 (13)
H350.95471.17730.54870.082*
C360.7803 (6)1.2073 (3)0.4785 (2)0.0565 (11)
H360.72771.23670.51820.068*
C370.7217 (4)1.1993 (2)0.4000 (2)0.0386 (8)
C380.5795 (4)1.2319 (2)0.3709 (2)0.0406 (8)
C390.4833 (5)1.2792 (3)0.4179 (3)0.0574 (11)
H390.50971.29500.47100.069*
C400.3456 (6)1.3029 (3)0.3838 (3)0.0734 (14)
H400.27781.33350.41480.088*
C410.3101 (6)1.2817 (3)0.3061 (3)0.0743 (14)
H410.21891.29760.28280.089*
C420.4132 (5)1.2357 (3)0.2622 (3)0.0587 (11)
H420.39001.22160.20840.070*
C430.5134 (4)1.1105 (2)0.0723 (2)0.0392 (8)
C440.4195 (5)1.1110 (2)0.0033 (2)0.0454 (9)
C450.2561 (5)1.1160 (3)0.0093 (2)0.0504 (10)
C460.4922 (5)1.1164 (2)−0.0719 (2)0.0499 (10)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.0306 (2)0.0289 (2)0.0255 (2)0.00083 (17)0.00230 (16)0.00317 (16)
Ni20.0340 (2)0.0308 (2)0.0267 (2)−0.00316 (17)−0.00293 (17)0.00346 (16)
N10.0352 (15)0.0441 (17)0.0344 (15)0.0066 (13)−0.0017 (12)0.0014 (13)
N20.0316 (14)0.0360 (15)0.0277 (14)0.0014 (12)−0.0003 (11)0.0058 (11)
N30.0313 (14)0.0343 (15)0.0368 (15)0.0042 (12)0.0032 (12)0.0033 (12)
N40.0445 (17)0.0367 (17)0.0432 (17)−0.0051 (13)0.0066 (13)0.0017 (13)
N50.0514 (18)0.0373 (16)0.0354 (16)−0.0084 (14)0.0021 (14)0.0037 (13)
N60.121 (4)0.106 (4)0.132 (5)−0.025 (3)0.088 (4)−0.033 (3)
N70.0541 (19)0.0410 (16)0.0310 (16)0.0059 (14)0.0054 (13)0.0086 (13)
N80.155 (5)0.093 (3)0.049 (2)0.056 (3)0.000 (3)0.016 (2)
N90.098 (3)0.065 (2)0.052 (2)0.004 (2)0.029 (2)0.0060 (18)
N100.0433 (17)0.0352 (16)0.0343 (15)−0.0040 (13)−0.0001 (13)0.0020 (12)
N110.088 (3)0.073 (3)0.064 (3)−0.008 (2)−0.028 (2)0.014 (2)
N120.0507 (18)0.0376 (16)0.0369 (16)−0.0125 (14)−0.0061 (14)0.0060 (13)
N130.0350 (15)0.0400 (16)0.0345 (15)0.0005 (12)−0.0042 (12)0.0028 (12)
N140.0371 (15)0.0346 (15)0.0295 (14)−0.0047 (12)−0.0033 (12)−0.0003 (11)
N150.0477 (18)0.0407 (16)0.0359 (16)0.0052 (14)0.0040 (13)0.0050 (13)
N160.0453 (17)0.0475 (17)0.0330 (16)−0.0010 (14)−0.0077 (13)0.0064 (13)
N170.064 (3)0.098 (3)0.070 (3)0.009 (2)−0.010 (2)0.023 (2)
N180.087 (3)0.080 (3)0.040 (2)0.010 (2)0.0002 (19)−0.0033 (18)
C10.054 (2)0.067 (3)0.044 (2)0.020 (2)−0.0013 (19)0.0052 (19)
C20.069 (3)0.110 (4)0.063 (3)0.051 (3)−0.004 (2)0.008 (3)
C30.060 (3)0.116 (4)0.068 (3)0.045 (3)0.012 (2)−0.003 (3)
C40.045 (2)0.097 (3)0.047 (2)0.023 (2)0.0106 (19)0.002 (2)
C50.0359 (18)0.049 (2)0.0357 (19)0.0016 (16)0.0041 (15)−0.0015 (16)
C60.0363 (18)0.0403 (19)0.0322 (17)0.0000 (15)0.0046 (14)0.0036 (14)
C70.050 (2)0.065 (3)0.0334 (19)−0.002 (2)0.0145 (17)0.0046 (18)
C80.066 (3)0.065 (3)0.0304 (19)−0.004 (2)0.0008 (18)0.0132 (18)
C90.044 (2)0.057 (2)0.039 (2)0.0057 (18)−0.0077 (16)0.0151 (17)
C100.0379 (18)0.0385 (18)0.0343 (18)−0.0035 (15)−0.0001 (15)0.0057 (14)
C110.0352 (18)0.0332 (17)0.0367 (18)0.0029 (14)−0.0039 (14)0.0033 (14)
C120.049 (2)0.058 (2)0.055 (2)0.0158 (19)−0.0030 (19)0.0154 (19)
C130.047 (2)0.089 (3)0.075 (3)0.036 (2)0.002 (2)0.017 (3)
C140.043 (2)0.087 (3)0.062 (3)0.031 (2)0.014 (2)0.010 (2)
C150.048 (2)0.054 (2)0.041 (2)0.0088 (18)0.0094 (17)0.0064 (17)
C160.0310 (17)0.0373 (19)0.0356 (18)−0.0018 (14)0.0028 (14)0.0081 (15)
C170.045 (2)0.0344 (18)0.0397 (19)−0.0055 (15)0.0071 (16)−0.0012 (15)
C180.0408 (19)0.0327 (17)0.0304 (17)−0.0012 (15)−0.0020 (14)−0.0004 (14)
C190.073 (3)0.053 (3)0.072 (3)−0.014 (2)0.031 (3)−0.012 (2)
C200.0369 (18)0.0367 (18)0.039 (2)−0.0009 (15)−0.0004 (15)0.0003 (15)
C210.055 (2)0.044 (2)0.0279 (17)−0.0007 (17)0.0034 (16)0.0066 (15)
C220.086 (3)0.066 (3)0.028 (2)0.010 (3)0.003 (2)0.0058 (19)
C230.058 (2)0.047 (2)0.037 (2)−0.0065 (19)0.0036 (18)0.0083 (17)
C240.0309 (17)0.0364 (18)0.0330 (17)0.0052 (14)0.0061 (14)0.0071 (14)
C250.047 (2)0.040 (2)0.050 (2)−0.0037 (17)−0.0137 (18)0.0090 (17)
C260.0402 (19)0.0316 (17)0.0391 (19)−0.0042 (15)−0.0014 (15)0.0028 (14)
C270.0303 (17)0.0349 (18)0.0369 (18)−0.0029 (14)−0.0043 (14)−0.0050 (15)
C280.049 (2)0.052 (2)0.043 (2)0.0051 (18)−0.0011 (17)−0.0005 (18)
C290.054 (3)0.059 (3)0.068 (3)0.011 (2)0.005 (2)−0.009 (2)
C300.049 (3)0.089 (4)0.084 (4)0.028 (2)−0.006 (2)−0.012 (3)
C310.045 (2)0.085 (3)0.073 (3)0.020 (2)−0.018 (2)−0.007 (3)
C320.0366 (19)0.049 (2)0.045 (2)0.0007 (17)−0.0050 (16)0.0018 (17)
C330.042 (2)0.046 (2)0.039 (2)0.0000 (17)−0.0084 (16)0.0027 (16)
C340.063 (3)0.084 (3)0.048 (2)0.013 (2)−0.026 (2)0.000 (2)
C350.080 (3)0.083 (3)0.037 (2)0.004 (3)−0.022 (2)−0.008 (2)
C360.078 (3)0.053 (2)0.033 (2)−0.007 (2)0.003 (2)−0.0044 (17)
C370.046 (2)0.0333 (18)0.0327 (18)−0.0082 (15)0.0027 (15)0.0003 (14)
C380.047 (2)0.0339 (18)0.0391 (19)−0.0024 (16)0.0062 (16)0.0027 (15)
C390.066 (3)0.052 (2)0.052 (2)0.007 (2)0.011 (2)−0.0078 (19)
C400.072 (3)0.070 (3)0.082 (4)0.026 (3)0.019 (3)−0.006 (3)
C410.071 (3)0.086 (4)0.073 (3)0.037 (3)−0.006 (3)−0.003 (3)
C420.063 (3)0.064 (3)0.053 (2)0.023 (2)−0.005 (2)0.002 (2)
C430.049 (2)0.0325 (18)0.0352 (19)0.0032 (16)−0.0038 (16)0.0017 (15)
C440.055 (2)0.047 (2)0.0343 (19)0.0079 (18)−0.0129 (17)0.0031 (16)
C450.058 (3)0.054 (2)0.039 (2)0.006 (2)−0.0147 (19)0.0098 (17)
C460.062 (3)0.049 (2)0.039 (2)0.0087 (19)−0.0144 (19)−0.0011 (17)

Geometric parameters (Å, °)

Ni1—N21.999 (3)C8—H80.9300
Ni1—N72.014 (3)C9—C101.380 (5)
Ni1—N32.085 (3)C9—H90.9300
Ni1—N42.097 (3)C10—C111.482 (5)
Ni1—N102.101 (3)C11—C121.364 (5)
Ni1—N12.110 (3)C12—C131.378 (6)
Ni2—N141.984 (3)C12—H120.9300
Ni2—N162.028 (3)C13—C141.369 (6)
Ni2—N132.085 (3)C13—H130.9300
Ni2—N122.088 (3)C14—C151.365 (5)
Ni2—N5i2.091 (3)C14—H140.9300
Ni2—N152.092 (3)C15—H150.9300
N1—C11.327 (5)C16—C171.392 (5)
N1—C51.344 (4)C17—C181.395 (5)
N2—C101.328 (4)C17—C191.397 (5)
N2—C61.338 (4)C20—C211.395 (5)
N3—C151.331 (4)C21—C231.409 (5)
N3—C111.355 (4)C21—C221.413 (6)
N4—C161.140 (4)C24—C261.401 (4)
N5—C181.132 (4)C25—C261.411 (5)
N5—Ni2ii2.091 (3)C26—C271.400 (5)
N6—C191.146 (5)C28—C291.365 (5)
N7—C201.146 (4)C28—H280.9300
N8—C221.140 (6)C29—C301.377 (6)
N9—C231.145 (5)C29—H290.9300
N10—C241.143 (4)C30—C311.387 (6)
N11—C251.139 (5)C30—H300.9300
N12—C271.141 (4)C31—C321.373 (5)
N13—C281.332 (4)C31—H310.9300
N13—C321.353 (4)C32—C331.491 (5)
N14—C331.335 (5)C33—C341.397 (5)
N14—C371.335 (4)C34—C351.378 (6)
N15—C421.328 (5)C34—H340.9300
N15—C381.355 (4)C35—C361.372 (6)
N16—C431.143 (4)C35—H350.9300
N17—C451.154 (5)C36—C371.400 (5)
N18—C461.142 (5)C36—H360.9300
C1—C21.379 (6)C37—C381.456 (5)
C1—H10.9300C38—C391.380 (5)
C2—C31.368 (6)C39—C401.393 (6)
C2—H20.9300C39—H390.9300
C3—C41.366 (6)C40—C411.350 (7)
C3—H30.9300C40—H400.9300
C4—C51.374 (5)C41—C421.381 (6)
C4—H40.9300C41—H410.9300
C5—C61.474 (5)C42—H420.9300
C6—C71.400 (5)C43—C441.403 (5)
C7—C81.366 (6)C44—C451.391 (6)
C7—H70.9300C44—C461.408 (5)
C8—C91.385 (5)
N2—Ni1—N7179.14 (11)N3—C11—C12121.2 (3)
N2—Ni1—N378.14 (11)N3—C11—C10114.6 (3)
N7—Ni1—N3102.22 (12)C12—C11—C10124.3 (3)
N2—Ni1—N488.50 (11)C11—C12—C13119.2 (4)
N7—Ni1—N490.72 (12)C11—C12—H12120.4
N3—Ni1—N490.48 (12)C13—C12—H12120.4
N2—Ni1—N1092.11 (11)C14—C13—C12119.8 (4)
N7—Ni1—N1088.67 (11)C14—C13—H13120.1
N3—Ni1—N1089.83 (11)C12—C13—H13120.1
N4—Ni1—N10179.36 (12)C15—C14—C13118.1 (4)
N2—Ni1—N178.21 (11)C15—C14—H14120.9
N7—Ni1—N1101.39 (12)C13—C14—H14120.9
N3—Ni1—N1156.10 (11)N3—C15—C14123.1 (4)
N4—Ni1—N185.56 (11)N3—C15—H15118.5
N10—Ni1—N194.38 (11)C14—C15—H15118.5
N14—Ni2—N16176.27 (12)N4—C16—C17175.5 (4)
N14—Ni2—N1378.68 (11)C16—C17—C18122.2 (3)
N16—Ni2—N13103.93 (12)C16—C17—C19116.2 (3)
N14—Ni2—N1285.18 (11)C18—C17—C19121.5 (3)
N16—Ni2—N1292.16 (11)N5—C18—C17178.2 (4)
N13—Ni2—N1288.96 (12)N6—C19—C17177.7 (5)
N14—Ni2—N5i92.12 (11)N7—C20—C21179.0 (4)
N16—Ni2—N5i90.61 (11)C20—C21—C23120.1 (4)
N13—Ni2—N5i88.68 (12)C20—C21—C22119.6 (3)
N12—Ni2—N5i176.72 (12)C23—C21—C22120.2 (3)
N14—Ni2—N1578.53 (12)N8—C22—C21179.4 (6)
N16—Ni2—N1598.84 (12)N9—C23—C21179.7 (5)
N13—Ni2—N15157.21 (11)N10—C24—C26177.6 (4)
N12—Ni2—N1589.09 (12)N11—C25—C26178.8 (4)
N5i—Ni2—N1592.20 (12)C27—C26—C24120.4 (3)
C1—N1—C5118.4 (3)C27—C26—C25118.1 (3)
C1—N1—Ni1127.3 (3)C24—C26—C25121.2 (3)
C5—N1—Ni1114.1 (2)N12—C27—C26177.5 (3)
C10—N2—C6122.4 (3)N13—C28—C29123.2 (4)
C10—N2—Ni1119.2 (2)N13—C28—H28118.4
C6—N2—Ni1118.3 (2)C29—C28—H28118.4
C15—N3—C11118.6 (3)C28—C29—C30119.0 (4)
C15—N3—Ni1126.8 (3)C28—C29—H29120.5
C11—N3—Ni1114.6 (2)C30—C29—H29120.5
C16—N4—Ni1159.6 (3)C29—C30—C31118.8 (4)
C18—N5—Ni2ii169.1 (3)C29—C30—H30120.6
C20—N7—Ni1177.6 (3)C31—C30—H30120.6
C24—N10—Ni1179.2 (3)C32—C31—C30119.0 (4)
C27—N12—Ni2160.4 (3)C32—C31—H31120.5
C28—N13—C32118.1 (3)C30—C31—H31120.5
C28—N13—Ni2127.5 (2)N13—C32—C31121.9 (4)
C32—N13—Ni2114.5 (2)N13—C32—C33114.2 (3)
C33—N14—C37122.5 (3)C31—C32—C33123.9 (4)
C33—N14—Ni2119.0 (2)N14—C33—C34121.0 (4)
C37—N14—Ni2118.3 (2)N14—C33—C32113.6 (3)
C42—N15—C38118.8 (3)C34—C33—C32125.4 (4)
C42—N15—Ni2127.5 (3)C35—C34—C33117.4 (4)
C38—N15—Ni2113.6 (2)C35—C34—H34121.3
C43—N16—Ni2167.5 (3)C33—C34—H34121.3
N1—C1—C2122.9 (4)C36—C35—C34120.8 (4)
N1—C1—H1118.6C36—C35—H35119.6
C2—C1—H1118.6C34—C35—H35119.6
C3—C2—C1118.4 (4)C35—C36—C37119.7 (4)
C3—C2—H2120.8C35—C36—H36120.2
C1—C2—H2120.8C37—C36—H36120.2
C4—C3—C2119.2 (4)N14—C37—C36118.7 (4)
C4—C3—H3120.4N14—C37—C38114.5 (3)
C2—C3—H3120.4C36—C37—C38126.8 (3)
C3—C4—C5119.6 (4)N15—C38—C39121.0 (4)
C3—C4—H4120.2N15—C38—C37114.9 (3)
C5—C4—H4120.2C39—C38—C37124.1 (4)
N1—C5—C4121.5 (4)C38—C39—C40118.5 (4)
N1—C5—C6114.9 (3)C38—C39—H39120.7
C4—C5—C6123.6 (3)C40—C39—H39120.7
N2—C6—C7119.2 (3)C41—C40—C39120.4 (4)
N2—C6—C5114.4 (3)C41—C40—H40119.8
C7—C6—C5126.3 (3)C39—C40—H40119.8
C8—C7—C6118.5 (4)C40—C41—C42118.1 (5)
C8—C7—H7120.7C40—C41—H41121.0
C6—C7—H7120.7C42—C41—H41121.0
C7—C8—C9121.3 (3)N15—C42—C41123.2 (4)
C7—C8—H8119.3N15—C42—H42118.4
C9—C8—H8119.3C41—C42—H42118.4
C10—C9—C8117.6 (4)N16—C43—C44179.5 (4)
C10—C9—H9121.2C45—C44—C43120.2 (3)
C8—C9—H9121.2C45—C44—C46119.0 (3)
N2—C10—C9120.9 (3)C43—C44—C46120.4 (4)
N2—C10—C11113.5 (3)N17—C45—C44178.3 (5)
C9—C10—C11125.6 (3)N18—C46—C44178.0 (5)

Symmetry codes: (i) x+1, y+1, z; (ii) x−1, y−1, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C1—H1···N8iii0.932.613.213 (6)123.
C4—H4···N6iv0.932.593.459 (7)156.
C7—H7···N6iv0.932.553.434 (6)158.
C9—H9···N17v0.932.603.517 (6)167.
C30—H30···N18vi0.932.603.386 (6)143.
C34—H34···N11vii0.932.573.467 (6)162.
C40—H40···N8viii0.932.613.292 (7)130.

Symmetry codes: (iii) −x+1, −y+1, −z+1; (iv) −x+1, −y+1, −z; (v) −x, −y+2, −z; (vi) −x+2, −y+2, −z; (vii) −x+2, −y+2, −z+1; (viii) x, y+1, z.

Table 2 π–π Interaction between some of the terpyridine rings

(Symmetry code: (i) 1+x, y, z)

Ring 1Ring 2iCg1 to Cg2 (Å)Plane to plane (Å)Offset (°)
N1 C1···C5N3 C11···C153.7853.6713.9

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2372).

References

  • Abrahams, B. F., Batten, S. R., Hoskins, B. F. & Robson, R. (2003). Inorg. Chem.42, 2654–2664. [PubMed]
  • Baker, A. T., Craig, D. C. & Rae, A. D. (1995). Aust. J. Chem.48, 1373–1378.
  • Batten, S. R., Hoskins, B. F., Moubaraki, B., Murray, K. S. & Robson, R. (1999). J. Chem. Soc. Dalton Trans. pp. 2977–2986.
  • Batten, S. R., Hoskins, B. F. & Robson, R. (1998). Inorg. Chem.37, 3432–3434.
  • Batten, S. R., Hoskins, B. F. & Robson, R. (2000). Chem. Eur. J.6, 156–161. [PubMed]
  • Batten, S. R. & Murray, K. S. (2003). Coord. Chem. Rev.246, 103–130.
  • Bruker (2000). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Feyerherm, R., Loose, A., Landsgesell, S. & Manson, J. L. (2004). Inorg. Chem.43, 6633–6639. [PubMed]
  • Feyerherm, R., Loose, A. & Manson, J. L. (2003). J. Phys. Condens. Matter, 15, 663–673.
  • Hoshino, H., Iida, K., Kawamoto, T. & Mori, T. (1999). Inorg. Chem.38, 4229–4232.
  • Indumathy, R., Radhika, S., Kanthimathi, M., Weyhermuller, T. & Nair, B. U. (2007). J. Inorg. Biochem.101, 434–443. [PubMed]
  • Luo, J., Shao, Z.-H., Gao, E.-Q., Wang, C.-F., Cai, R.-F. & Zhou, X.-G. (2005). Inorg. Chem. Commun.9, 196–200.
  • Manson, J. L., Campana, C. & Miller, J. S. (1998). J. Chem. Soc. Chem. Commun. pp. 251–252.
  • Manson, J. L., Ressouche, E. & Miller, J. S. (2000). Inorg. Chem.39, 1135–1141. [PubMed]
  • Manson, J. L. & Schlueter, J. A. (2004). Inorg. Chim. Acta, 357, 3975–3979.
  • Miller, J. S. & Manson, J. L. (2001). Acc. Chem. Res.34, 563–570. [PubMed]
  • Potočňák, I., Lancz, G., Růžička, A. & Jäger, L. (2007). Acta Cryst E63, m2072–m2073.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Yuste, C., Armentano, D., Marino, N., Cañadillas-Delgado, L., Delgado, F. S., Ruiz-Pérez, C., Rillema, D. P., Lloret, F. & Julve, M. (2008). J. Chem. Soc. Dalton Trans. pp. 1583–1596. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography