PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 October 1; 64(Pt 10): o1939–o1940.
Published online 2008 September 13. doi:  10.1107/S1600536808029097
PMCID: PMC2959234

8-Ethyl-2-hydr­oxy-2-methyl-4-morpholinoethyl-1-thia-4-aza­spiro­[4.5]decan-3-one

Abstract

Mol­ecules of the title spiro­[4.5]decane derivative, C17H30N2O3S, are linked by paired O—H(...)N hydrogen bonds into centrosymmetric R 2 2(16) dimers and these dimers are linked into a three-dimensional framework structure by C—H(...)O interactions.

Related literature

For background on the applications of thia­zolidines, see: Babaoğlu et al. (2003 [triangle]); Pfahl et al. (2003 [triangle]); Sayyed et al. (2006 [triangle]); Sharma et al. (2006 [triangle]). For related structures, see: Akkurt et al. (2007 [triangle]); Akkurt et al. (2008a [triangle],b [triangle],c [triangle]). For ring puckering parameters, see: Cremer & Pople (1975 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1939-scheme1.jpg

Experimental

Crystal data

  • C17H30N2O3S
  • M r = 342.50
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1939-efi2.jpg
  • a = 8.1878 (4) Å
  • b = 10.2241 (5) Å
  • c = 12.2188 (6) Å
  • α = 79.901 (4)°
  • β = 73.796 (4)°
  • γ = 67.674 (4)°
  • V = 905.83 (8) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.20 mm−1
  • T = 296 K
  • 0.55 × 0.38 × 0.27 mm

Data collection

  • STOE IPDS II diffractometer
  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002 [triangle]) T min = 0.900, T max = 0.949
  • 18506 measured reflections
  • 3717 independent reflections
  • 3297 reflections with I > 2σ(I)
  • R int = 0.055

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035
  • wR(F 2) = 0.092
  • S = 1.03
  • 3717 reflections
  • 208 parameters
  • H-atom parameters constrained
  • Δρmax = 0.25 e Å−3
  • Δρmin = −0.16 e Å−3

Data collection: X-AREA (Stoe & Cie, 2002 [triangle]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002 [triangle]); program(s) used to solve structure: SIR97 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808029097/hb2794sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808029097/hb2794Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for use of the Stoe IPDS II diffractometer (purchased under grant F.279 of the University Research Fund). This work was supported by The Research Fund of İstanbul University (project Nos 177/15012004 and UDP-730/05052006).

supplementary crystallographic information

Comment

Thiazolidinone derivatives have been shown to possess antibacterial (Sayyed et al., 2006), antimicrobial (Sharma et al., 2006) and antimycobacterial (Babaoğlu et al., 2003) activities. There have also been several reports on the anticancer properties of compounds bearing this ring system (Pfahl et al., 2003). In view of above considerations, we have synthesized the title spiro[4.5]decane derivative, (I), and we report here its crystal structure. This molecule is chiral: in the arbitrarily chosen asymmetric molecule, C1 has R configuration, but crystal symmetry generates a racemic mixture.

The values of the geometric parameters of the molecule shown in Fig. 1 are in their normal ranges and similar to those in the related compounds, 8-methyl-4-morpholinoethyl-1-thia-4-azaspiro[4.5]decan-3-one (Akkurt et al., 2008b) and 2,8-dimethyl-4-morpholinoethyl-1-thia-4-azaspiro[4.5] decan-3-one (Akkurt et al., 2008c).

In the crystal, the molecules of (I) are linked by paired O—H···N hydrogen bonds into centrosymmetric R22(16) dimers and these dimers are linked into a three-dimensional framework structure by a combination of three independent C—H···O hydrogen bonds (Table 1). The thiazole ring (C1–C3/S1/N1) has an envelope conformation on S1 [puckering parameters (Cremer & Pople, 1975): Q(2) = 0.2032 (12) Å, [var phi](2) = 6.1 (4) °]. The cyclohexane ring (C3–C8) and morpholine ring (C13–C16/N2/O2) adopt chair conformations [puckering parameters: QT = 0.565 (2) Å, θ = 177.6 (2) °, [var phi] = 73 (4) °, and QT = 0.570 (2) Å, θ = 0.40 (17) °, [var phi] = 101 (16) °, respectively].

Experimental

A mixture of morpholinoethylamin (5 mmol), 4-ethyl cyclohexanone (5 mmol) and α-mercaptopropionic acid (20 mmol) in dry benzene (20 ml) was refluxed for 18 h using a Dean–Starkwater separator. Excess solvent was evaporated in vacuo. The residue was taken up in chloroform. The chloroform layer was triturated with saturated NaHCO3 solution (2×) before drying over sodium sulfate and concentrated under reduced pressure to dryness. The crude product was triturated with diethyl ether several times and recrystallized from ethanol to yield colourless prisms of (I).

Refinement

All H atoms were placed geometrically (C—H = 0.96–0.98 Å, O—H = 0.82 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C, O).

Figures

Fig. 1.
The molecular structure of (I). Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
Fig. 2.
View of the hydrogen-bonded dimer in (I), forming a intermolecular R22(16) ring. For clarity, H atoms not involved in hydrogen bonds have been omitted.

Crystal data

C17H30N2O3SZ = 2
Mr = 342.50F(000) = 372
Triclinic, P1Dx = 1.256 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.1878 (4) ÅCell parameters from 28660 reflections
b = 10.2241 (5) Åθ = 2.2–27.4°
c = 12.2188 (6) ŵ = 0.20 mm1
α = 79.901 (4)°T = 296 K
β = 73.796 (4)°Block, colourless
γ = 67.674 (4)°0.55 × 0.38 × 0.27 mm
V = 905.83 (8) Å3

Data collection

STOE IPDS II diffractometer3717 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus3297 reflections with I > 2σ(I)
plane graphiteRint = 0.055
Detector resolution: 6.67 pixels mm-1θmax = 26.5°, θmin = 2.7°
ω scansh = −10→10
Absorption correction: integration (X-RED32; Stoe & Cie, 2002)k = −12→12
Tmin = 0.900, Tmax = 0.949l = −15→15
18506 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.03w = 1/[σ2(Fo2) + (0.0459P)2 + 0.1334P] where P = (Fo2 + 2Fc2)/3
3717 reflections(Δ/σ)max < 0.001
208 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = −0.16 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.35630 (5)0.26913 (4)0.21446 (3)0.0484 (1)
O10.18488 (14)0.24461 (12)0.54122 (9)0.0578 (4)
O20.74392 (17)0.18404 (13)0.83355 (9)0.0631 (4)
O30.08914 (13)0.18609 (10)0.34973 (9)0.0505 (3)
N10.43113 (15)0.26810 (11)0.40883 (9)0.0402 (3)
N20.68062 (14)0.09805 (10)0.64605 (9)0.0379 (3)
C10.17113 (18)0.28560 (13)0.34309 (12)0.0432 (4)
C20.26212 (18)0.26248 (13)0.44208 (11)0.0421 (4)
C30.51348 (17)0.28899 (13)0.28697 (10)0.0380 (3)
C40.5285 (2)0.43629 (13)0.25620 (12)0.0453 (4)
C50.6216 (2)0.45605 (14)0.13129 (12)0.0492 (4)
C60.80738 (19)0.34126 (15)0.09591 (12)0.0459 (4)
C70.78779 (19)0.19575 (14)0.12536 (12)0.0461 (4)
C80.70039 (18)0.17493 (13)0.25161 (11)0.0425 (4)
C90.8933 (2)0.36576 (18)−0.02995 (13)0.0564 (5)
C101.0855 (3)0.2653 (2)−0.06975 (18)0.0795 (7)
C110.52301 (19)0.26419 (13)0.49686 (11)0.0433 (4)
C120.61041 (19)0.11222 (13)0.54526 (11)0.0422 (4)
C130.53767 (18)0.14089 (15)0.74933 (11)0.0463 (4)
C140.6216 (2)0.11142 (18)0.85005 (12)0.0582 (5)
C150.8845 (2)0.14204 (18)0.73395 (14)0.0568 (5)
C160.80961 (18)0.17138 (14)0.62963 (12)0.0440 (4)
C170.0219 (2)0.43050 (16)0.34677 (16)0.0596 (5)
H30.166100.106200.348000.0760*
H4A0.407900.507700.271600.0540*
H4B0.596600.449800.304100.0540*
H5A0.636200.547800.117300.0590*
H5B0.544300.456000.083900.0590*
H60.886300.346900.140800.0550*
H7A0.714000.186300.079500.0550*
H7B0.906600.122600.106900.0550*
H8A0.778900.177400.297200.0510*
H8B0.688100.082400.267100.0510*
H9A0.818500.35680−0.075400.0680*
H9B0.893100.46220−0.044300.0680*
H10A1.086900.16960−0.058600.0950*
H10B1.161600.27450−0.026500.0950*
H10C1.130100.28800−0.149400.0950*
H11A0.436000.320100.558300.0520*
H11B0.615900.306200.464400.0520*
H12A0.521100.066000.564600.0510*
H12B0.709500.061600.485600.0510*
H13A0.455900.088700.762100.0560*
H13B0.468100.241200.740300.0560*
H14A0.526600.140800.918400.0700*
H14B0.685600.010300.861200.0700*
H15A0.952600.041500.743800.0680*
H15B0.967200.192900.723500.0680*
H16A0.749000.272600.616200.0530*
H16B0.907900.138800.563400.0530*
H17A−0.030000.447900.281900.0720*
H17B0.072000.502100.344900.0720*
H17C−0.070500.433100.415800.0720*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0492 (2)0.0609 (2)0.0430 (2)−0.0225 (2)−0.0195 (1)−0.0021 (1)
O10.0516 (6)0.0715 (7)0.0478 (6)−0.0221 (5)−0.0079 (5)−0.0035 (5)
O20.0749 (7)0.0766 (7)0.0507 (6)−0.0302 (6)−0.0222 (5)−0.0163 (5)
O30.0399 (5)0.0454 (5)0.0692 (6)−0.0137 (4)−0.0166 (5)−0.0089 (4)
N10.0419 (5)0.0422 (5)0.0398 (5)−0.0146 (4)−0.0161 (4)−0.0012 (4)
N20.0394 (5)0.0387 (5)0.0373 (5)−0.0119 (4)−0.0133 (4)−0.0046 (4)
C10.0391 (6)0.0411 (6)0.0511 (7)−0.0110 (5)−0.0166 (5)−0.0048 (5)
C20.0411 (6)0.0375 (6)0.0459 (7)−0.0094 (5)−0.0131 (5)−0.0042 (5)
C30.0402 (6)0.0366 (6)0.0392 (6)−0.0115 (5)−0.0158 (5)−0.0019 (5)
C40.0513 (7)0.0353 (6)0.0488 (7)−0.0124 (5)−0.0145 (6)−0.0040 (5)
C50.0584 (8)0.0385 (7)0.0504 (7)−0.0177 (6)−0.0146 (6)0.0020 (5)
C60.0472 (7)0.0516 (7)0.0448 (7)−0.0209 (6)−0.0153 (6)−0.0028 (5)
C70.0462 (7)0.0424 (7)0.0467 (7)−0.0100 (6)−0.0131 (6)−0.0051 (5)
C80.0428 (7)0.0362 (6)0.0467 (7)−0.0097 (5)−0.0150 (5)−0.0009 (5)
C90.0596 (9)0.0649 (9)0.0487 (8)−0.0294 (8)−0.0101 (7)−0.0015 (7)
C100.0607 (10)0.0973 (14)0.0711 (12)−0.0298 (10)0.0037 (9)−0.0090 (10)
C110.0521 (7)0.0410 (6)0.0429 (7)−0.0155 (6)−0.0216 (6)−0.0030 (5)
C120.0495 (7)0.0392 (6)0.0417 (6)−0.0123 (5)−0.0192 (6)−0.0059 (5)
C130.0437 (7)0.0516 (7)0.0431 (7)−0.0171 (6)−0.0075 (6)−0.0058 (5)
C140.0662 (9)0.0691 (10)0.0389 (7)−0.0239 (8)−0.0104 (7)−0.0058 (6)
C150.0512 (8)0.0691 (10)0.0597 (9)−0.0224 (7)−0.0249 (7)−0.0069 (7)
C160.0411 (6)0.0489 (7)0.0451 (7)−0.0175 (6)−0.0114 (5)−0.0050 (5)
C170.0541 (8)0.0448 (8)0.0783 (11)−0.0033 (6)−0.0299 (8)−0.0094 (7)

Geometric parameters (Å, °)

S1—C11.8347 (15)C5—H5A0.9700
S1—C31.8386 (15)C5—H5B0.9700
O1—C21.2179 (17)C6—H60.9800
O2—C141.412 (2)C7—H7A0.9700
O2—C151.420 (2)C7—H7B0.9700
O3—C11.3971 (18)C8—H8A0.9700
O3—H30.8200C8—H8B0.9700
N1—C21.350 (2)C9—H9A0.9700
N1—C111.4623 (19)C9—H9B0.9700
N1—C31.4680 (16)C10—H10A0.9600
N2—C121.4620 (18)C10—H10B0.9600
N2—C161.466 (2)C10—H10C0.9600
N2—C131.4609 (18)C11—H11A0.9700
C1—C171.519 (2)C11—H11B0.9700
C1—C21.531 (2)C12—H12A0.9700
C3—C41.5300 (18)C12—H12B0.9700
C3—C81.5299 (19)C13—H13A0.9700
C4—C51.520 (2)C13—H13B0.9700
C5—C61.527 (2)C14—H14A0.9700
C6—C91.522 (2)C14—H14B0.9700
C6—C71.526 (2)C15—H15A0.9700
C7—C81.5237 (19)C15—H15B0.9700
C9—C101.513 (3)C16—H16A0.9700
C11—C121.5314 (18)C16—H16B0.9700
C13—C141.504 (2)C17—H17A0.9600
C15—C161.501 (2)C17—H17B0.9600
C4—H4A0.9700C17—H17C0.9600
C4—H4B0.9700
C1—S1—C394.89 (6)C8—C7—H7B109.00
C14—O2—C15110.20 (12)H7A—C7—H7B108.00
C1—O3—H3109.00C3—C8—H8A109.00
C2—N1—C3120.17 (12)C3—C8—H8B109.00
C3—N1—C11121.19 (12)C7—C8—H8A109.00
C2—N1—C11118.47 (11)C7—C8—H8B109.00
C12—N2—C13113.18 (12)H8A—C8—H8B108.00
C13—N2—C16109.95 (11)C6—C9—H9A109.00
C12—N2—C16113.51 (11)C6—C9—H9B109.00
S1—C1—C2104.46 (10)C10—C9—H9A109.00
S1—C1—C17113.16 (10)C10—C9—H9B109.00
O3—C1—C2112.49 (11)H9A—C9—H9B108.00
O3—C1—C17106.76 (13)C9—C10—H10A109.00
C2—C1—C17109.29 (12)C9—C10—H10B109.00
S1—C1—O3110.80 (9)C9—C10—H10C109.00
O1—C2—N1124.16 (14)H10A—C10—H10B109.00
N1—C2—C1113.68 (11)H10A—C10—H10C109.00
O1—C2—C1122.14 (14)H10B—C10—H10C109.00
S1—C3—N1103.71 (10)N1—C11—H11A109.00
S1—C3—C4110.66 (10)N1—C11—H11B109.00
N1—C3—C4111.72 (10)C12—C11—H11A109.00
N1—C3—C8111.49 (10)C12—C11—H11B109.00
S1—C3—C8109.19 (9)H11A—C11—H11B108.00
C4—C3—C8109.91 (12)N2—C12—H12A108.00
C3—C4—C5111.93 (11)N2—C12—H12B108.00
C4—C5—C6113.29 (12)C11—C12—H12A108.00
C5—C6—C7109.26 (13)C11—C12—H12B108.00
C5—C6—C9110.96 (12)H12A—C12—H12B107.00
C7—C6—C9112.66 (12)N2—C13—H13A110.00
C6—C7—C8111.36 (11)N2—C13—H13B110.00
C3—C8—C7112.03 (11)C14—C13—H13A110.00
C6—C9—C10114.58 (14)C14—C13—H13B110.00
N1—C11—C12111.58 (11)H13A—C13—H13B108.00
N2—C12—C11115.86 (11)O2—C14—H14A109.00
N2—C13—C14109.49 (13)O2—C14—H14B109.00
O2—C14—C13111.30 (12)C13—C14—H14A109.00
O2—C15—C16111.43 (14)C13—C14—H14B109.00
N2—C16—C15109.68 (12)H14A—C14—H14B108.00
C3—C4—H4A109.00O2—C15—H15A109.00
C3—C4—H4B109.00O2—C15—H15B109.00
C5—C4—H4A109.00C16—C15—H15A109.00
C5—C4—H4B109.00C16—C15—H15B109.00
H4A—C4—H4B108.00H15A—C15—H15B108.00
C4—C5—H5A109.00N2—C16—H16A110.00
C4—C5—H5B109.00N2—C16—H16B110.00
C6—C5—H5A109.00C15—C16—H16A110.00
C6—C5—H5B109.00C15—C16—H16B110.00
H5A—C5—H5B108.00H16A—C16—H16B108.00
C5—C6—H6108.00C1—C17—H17A109.00
C7—C6—H6108.00C1—C17—H17B109.00
C9—C6—H6108.00C1—C17—H17C109.00
C6—C7—H7A109.00H17A—C17—H17B109.00
C6—C7—H7B109.00H17A—C17—H17C110.00
C8—C7—H7A109.00H17B—C17—H17C109.00
C3—S1—C1—O3−137.43 (10)C12—N2—C16—C15−175.82 (11)
C3—S1—C1—C2−16.07 (9)C17—C1—C2—O170.12 (17)
C3—S1—C1—C17102.70 (12)C17—C1—C2—N1−108.05 (14)
C1—S1—C3—N114.83 (9)S1—C1—C2—N113.31 (13)
C1—S1—C3—C4−105.10 (10)S1—C1—C2—O1−168.51 (11)
C1—S1—C3—C8133.79 (9)O3—C1—C2—N1133.56 (12)
C14—O2—C15—C1658.82 (17)O3—C1—C2—O1−48.27 (17)
C15—O2—C14—C13−59.22 (17)C4—C3—C8—C7−55.31 (15)
C11—N1—C3—C4−65.77 (16)N1—C3—C8—C7−179.75 (12)
C2—N1—C11—C1281.87 (15)S1—C3—C4—C5−67.62 (15)
C11—N1—C2—O1−5.22 (19)N1—C3—C4—C5177.37 (13)
C3—N1—C2—C1−2.34 (16)S1—C3—C8—C766.25 (13)
C2—N1—C3—C4109.35 (14)C8—C3—C4—C553.06 (16)
C3—N1—C11—C12−102.93 (14)C3—C4—C5—C6−54.41 (18)
C11—N1—C3—C857.65 (15)C4—C5—C6—C754.72 (17)
C11—N1—C2—C1172.91 (10)C4—C5—C6—C9179.53 (13)
C3—N1—C2—O1179.53 (12)C5—C6—C7—C8−55.82 (16)
C11—N1—C3—S1175.01 (9)C5—C6—C9—C10174.32 (15)
C2—N1—C3—C8−127.23 (13)C7—C6—C9—C10−62.8 (2)
C2—N1—C3—S1−9.86 (13)C9—C6—C7—C8−179.64 (13)
C13—N2—C16—C1556.27 (14)C6—C7—C8—C357.90 (17)
C12—N2—C13—C14175.30 (11)N1—C11—C12—N2−170.62 (12)
C16—N2—C13—C14−56.60 (14)N2—C13—C14—O258.47 (16)
C13—N2—C12—C1171.56 (15)O2—C15—C16—N2−57.46 (16)
C16—N2—C12—C11−54.67 (16)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H3···N2i0.821.992.7994 (14)171
C9—H9A···O2ii0.972.573.418 (2)146
C15—H15B···O1iii0.972.553.249 (2)129

Symmetry codes: (i) −x+1, −y, −z+1; (ii) x, y, z−1; (iii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2794).

References

  • Akkurt, M., Yalçın, Ş. P., Gürsoy, E., Güzeldemirci, N. U. & Büyükgüngör, O. (2007). Acta Cryst. E63, o3103.
  • Akkurt, M., Yalçın, Ş. P., Güzeldemirci, N. U. & Büyükgüngör, O. (2008a). Acta Cryst. E64, o810–o811. [PMC free article] [PubMed]
  • Akkurt, M., Yalçın, Ş. P., Klip, N. T. & Büyükgüngör, O. (2008b). Acta Cryst. E64, o1572–o1573. [PMC free article] [PubMed]
  • Akkurt, M., Yalçın, Ş. P., Klip, N. T. & Büyükgüngör, O. (2008c). Acta Cryst. E64, o1574–o1575. [PMC free article] [PubMed]
  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  • Babaoğlu, K., Page, M. A., Jones, V. C., McNeil, M. R., Dong, C., Naismith, J. H. & Lee, R. E. (2003). Bioorg. Med. Chem. Lett.13, 3227–3230. [PubMed]
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Pfahl, M., Al-Shamma, H. A., Fanjul, A. N., Pleynet, D. P. M., Bao, H., Spruce, L. W., Cow, C. N., Tachdjian, C., Zapt, J. W. & Wiemann, T. R. (2003). Patent WO 2003/050 098, Int. Appl. No. PCT/US2002/039 178.
  • Sayyed, M., Mokle, S., Bokhare, M., Mankar, A., Surwase, S., Bhusare, S. & Vilohute, Y. (2006). Arkivoc ii, 187–197.
  • Sharma, R., Nagda, D. P. & Talesara, G. L. (2006). Arkivoc, i, 1–12.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Stoe & Cie (2002). X-AREA and X-RED32 Stoe & Cie, Darmstadt, Germany.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography