PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 October 1; 64(Pt 10): o2031.
Published online 2008 September 27. doi:  10.1107/S1600536808030717
PMCID: PMC2959232

N-[3-(tert-Butyl­dimethyl­siloxymeth­yl)-5-nitro­phen­yl]acetamide

Abstract

The title compound, C15H24N2O4Si, was prepared by the reaction of (3-acetamido-5-nitro­benz­yl)methanol with tert-butyl­dimethyl­silyl chloride and is a key inter­mediate in the synthesis of novel nonsymmetrical DNA minor groove-binding agents. There are two independent mol­ecules in the structure, which differ primarily in the rotation about the C—O bond next to the Si atom. Two strong N—H(...)O hydrogen bonds align the mol­ecules into a wide ribbon extending approximately parallel to the b axis.

Related literature

For literature related to protecting groups, see: Jarowicki & Kocienski (1998 [triangle]); Kocienski (2004 [triangle]); Schelhaas & Waldmann (1996 [triangle]); Wetter & Oertle (1985 [triangle]); Wuts & Green (2006 [triangle]). For literature related to benzamides as minor groove binders, see: Barker et al. (2008 [triangle]); Gong & Yan (1997 [triangle]). For related literature, see: Crouch (2004 [triangle]); Desiraju & Steiner (1999 [triangle]); Nelson & Crouch (1996 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2031-scheme1.jpg

Experimental

Crystal data

  • C15H24N2O4Si
  • M r = 324.45
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2031-efi1.jpg
  • a = 9.5037 (3) Å
  • b = 10.0713 (3) Å
  • c = 18.1985 (5) Å
  • α = 89.885 (1)°
  • β = 86.009 (1)°
  • γ = 88.888 (1)°
  • V = 1737.31 (9) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.15 mm−1
  • T = 90 (2) K
  • 0.34 × 0.22 × 0.20 mm

Data collection

  • Siemens SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997 [triangle]) T min = 0.878, T max = 0.977
  • 15951 measured reflections
  • 6570 independent reflections
  • 4732 reflections with I > 2σ(I)
  • R int = 0.042

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048
  • wR(F 2) = 0.117
  • S = 1.05
  • 6570 reflections
  • 409 parameters
  • H-atom parameters constrained
  • Δρmax = 0.41 e Å−3
  • Δρmin = −0.31 e Å−3

Data collection: SMART (Bruker, 1995 [triangle]); cell refinement: SAINT (Bruker, 1995 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808030717/fb2117sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808030717/fb2117Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge financial support from the Higher Education Commission of Pakistan and The University of Auckland, New Zealand.

supplementary crystallographic information

Comment

Due to the nucleophilic nature of benzylic hydroxyl groups these are usually protected during multi-step organic synthesis (Barker et al., 2008). Large numbers of protecting groups are reported including a variety of silyl ethers. Among the silyl ethers, the tert-butyldimethylsilyl ether is widely used due to it stability towards oxidative, reductive, and mild acidic and basic conditions (Jarowicki & Kocienski, 1998; Kocienski, 2004; Schelhaas & Waldmann, 1996; Wetter & Oertle, 1985; Wuts & Green, 2006). It can however be easily deprotected to give the parent hydroxyl group efficiently using different fluoride reagents without affecting other functionalities (Crouch, 2004; Nelson & Crouch, 1996). The asymmetric unit contains two independent molecules which differ primarily in the rotation about the C7 - O4 bond. (Torsion angles C1-C7-O4-Si equal to -152.75, -110.21° for molecules A and B respectively). Two strong N-H···O hydrogen bonds (Desiraju & Steiner, 1999; Tab. 1) align the molecules into wide ribbons extending approximately parallel to the b axis. There are four very close intramolecular contacts (C4A-O1A 2.886 (3), C4B-O1B 2.894 (3), C6A-O4A 2.740 (3) and C6B-O4B 2.785 Å).

Experimental

To a solution of (3-acetamido-5-nitrobenzyl)methanol (alternatively 3-acetamido-5-nitrobenzyl alcohol) (150 mg, 0.714 mmol) in dry dimethylformamide (1 ml) under an atmosphere of nitrogen, was added tert-butyldimethylsilyl chloride (129 mg. 0.856 mmol) and imidazole (146 mg, 2.14 mmol) and the mixture stirred at room temperature, under an atmosphere of nitrogen for 2 h. Water (10 ml) was added, and the aqueous solution extracted with dichloromethane (2 × 10 ml). The combined organic extracts were washed with water (20 ml) and brine (20 ml), dried (MgSO4), filtered and the solvent removed in vacuo to afford the crude product, which was purified by flash chromatography (19:1 dichloromethane-methanol) to afford the title compound (214 mg, 93%) as a pale yellow solid, which was recrystallized from ethyl acetate and n-hexane to give a white crystal suitable for single-crystal analysis. (mp 416–417 K). νmax (NaCl)/cm-1 3315, 2929, 1666, 1532. δH (400 MHz, CDCl3) 0.13 (6H, s, OSi(CH3)2), 0.96 (9H, s, OSiC(CH3)2), 2.24 (3H, s, NHCOCH3), 4.79 (2H, s, ArCH2O), 7.56 (1H, s, NH), 7.91 (1H, s, Ar—H), 7.93 (1H, s, Ar—H) and 8.24 (1H, s, Ar—H). δC (100 MHz, CDCl3) -5.4 (CH3, OSi(CH3)2), 18.4 (quat. OSiC(CH3)3), 24.6 (CH3, NHCOCH3), 25.9 (CH3, OSiC(CH3)3), 63.8 (CH2, ArCH2O), 112.9 (CH, Ar—C), 116.2 (CH, Ar—C), 122.4 (CH, Ar—C), 138.8 (quat. Ar—C), 144.6 (quat. Ar—C), 148.6 (quat. Ar—C) and 168.6 (C=O). m/z (CI+) 325 (MH+, 43%), 295 (M+—CH2O, 100) 267 (M+-NHCOCH3, 35), 221 (M+—C2H4N2O3, 32). Found MH+ 325.15862, C15H25N2O4Si requires 325.15836.

Refinement

All the hydrogens were clearly discernible in the difference electron density map. Nevertheless, the hydrogens were placed in calculated positions and refined using the riding model under the conditions:. Caryl-Haryl=0.93, Cmethyl-Hmethyl=0.96, Cmethylene-Hmethylene = 0.97, N-H = 0.86 Å, Uiso(H) = 1.2Ueq(C) except for the methyl hydrogens where Uiso(H) = 1.5Ueq(C).

Figures

Fig. 1.
Structure showing 50% probability displacement ellipsoids for non-hydrogen atoms with hydrogen atoms as arbitary spheres (Burnett & Johnson, 1996). The two molecules differ mainly in the rotation about the C7 - O4 bond.

Crystal data

C15H24N2O4SiZ = 4
Mr = 324.45F(000) = 696
Triclinic, P1Dx = 1.240 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.5037 (3) ÅCell parameters from 7491 reflections
b = 10.0713 (3) Åθ = 2.0–25.7°
c = 18.1985 (5) ŵ = 0.15 mm1
α = 89.885 (1)°T = 90 K
β = 86.009 (1)°Plate, colourless
γ = 88.888 (1)°0.34 × 0.22 × 0.20 mm
V = 1737.31 (9) Å3

Data collection

Siemens SMART CCD diffractometer6570 independent reflections
Radiation source: fine-focus sealed tube4732 reflections with I > 2σ(I)
graphiteRint = 0.042
ω scansθmax = 25.7°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 1997)h = −11→11
Tmin = 0.878, Tmax = 0.977k = −12→12
15951 measured reflectionsl = −22→22

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: difference Fourier map
wR(F2) = 0.117H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + (0.0481P)2 + 0.5796P] where P = (Fo2 + 2Fc2)/3
6570 reflections(Δ/σ)max = 0.001
409 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = −0.31 e Å3
180 constraints

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
SiA−0.17682 (7)0.55743 (6)0.16477 (4)0.02135 (16)
O1A0.24286 (16)0.04298 (15)0.50611 (8)0.0226 (4)
O2A−0.05223 (17)−0.11050 (15)0.34529 (9)0.0266 (4)
O3A−0.22213 (17)−0.00550 (16)0.29506 (9)0.0277 (4)
O4A−0.16983 (18)0.45572 (16)0.23590 (9)0.0289 (4)
N1A0.19067 (19)0.25787 (18)0.47613 (10)0.0198 (4)
H1A0.20940.33870.48640.024*
N2A−0.1138 (2)−0.00728 (18)0.32807 (10)0.0210 (4)
C1A−0.0477 (2)0.3543 (2)0.33345 (12)0.0205 (5)
C2A0.0484 (2)0.3574 (2)0.38736 (12)0.0201 (5)
H2A0.08390.43860.40080.024*
C3A0.0934 (2)0.2417 (2)0.42199 (12)0.0182 (5)
C4A0.0406 (2)0.1201 (2)0.40215 (12)0.0189 (5)
H4A0.06870.04150.42420.023*
C5A−0.0547 (2)0.1205 (2)0.34864 (12)0.0186 (5)
C6A−0.1015 (2)0.2331 (2)0.31340 (12)0.0207 (5)
H6A−0.16640.22800.27760.025*
C7A−0.0922 (3)0.4822 (2)0.29796 (14)0.0293 (6)
H7A1−0.15000.53500.33340.035*
H7A2−0.00940.53280.28260.035*
C8A0.2593 (2)0.1632 (2)0.51459 (12)0.0197 (5)
C9A0.3541 (2)0.2174 (2)0.56920 (13)0.0234 (5)
H9A10.31410.20130.61820.035*
H9A20.36380.31120.56160.035*
H9A30.44510.17440.56270.035*
C10A0.0040 (3)0.5812 (3)0.12128 (17)0.0410 (7)
H10A0.06400.61300.15750.061*
H10B0.00040.64480.08210.061*
H10C0.04090.49800.10190.061*
C11A−0.2521 (3)0.7202 (2)0.19618 (15)0.0353 (6)
H11A−0.34120.70730.22320.053*
H11B−0.26560.77580.15420.053*
H11C−0.18860.76190.22740.053*
C12A−0.2923 (2)0.4702 (2)0.10128 (12)0.0223 (5)
C13A−0.3086 (3)0.5563 (3)0.03232 (14)0.0376 (7)
H13A−0.21690.57630.00990.056*
H13B−0.35810.63740.04610.056*
H13C−0.36080.5088−0.00210.056*
C14A−0.2269 (3)0.3351 (2)0.07771 (15)0.0329 (6)
H14A−0.28870.29070.04670.049*
H14B−0.21360.28200.12060.049*
H14C−0.13750.34820.05110.049*
C15A−0.4387 (2)0.4478 (3)0.14056 (14)0.0290 (6)
H15A−0.49710.40320.10780.043*
H15B−0.48150.53190.15470.043*
H15C−0.42870.39430.18370.043*
SiB0.66924 (7)1.00767 (6)0.83117 (4)0.02233 (17)
O1B0.26630 (16)0.54068 (15)0.49672 (9)0.0252 (4)
O2B0.54486 (18)0.38508 (16)0.66784 (9)0.0296 (4)
O3B0.71294 (17)0.48319 (16)0.71949 (9)0.0279 (4)
O4B0.71134 (16)0.96086 (16)0.74525 (9)0.0245 (4)
N1B0.31186 (19)0.75499 (18)0.52717 (10)0.0190 (4)
H1B0.28920.83590.51750.023*
N2B0.6080 (2)0.48532 (19)0.68401 (10)0.0216 (4)
C1B0.5633 (2)0.8507 (2)0.66133 (13)0.0209 (5)
C2B0.4649 (2)0.8537 (2)0.60912 (12)0.0194 (5)
H2B0.43370.93550.59200.023*
C3B0.4107 (2)0.7380 (2)0.58106 (12)0.0191 (5)
C4B0.4566 (2)0.6150 (2)0.60630 (12)0.0197 (5)
H4B0.42210.53610.58890.024*
C5B0.5557 (2)0.6154 (2)0.65841 (13)0.0205 (5)
C6B0.6107 (2)0.7283 (2)0.68713 (12)0.0211 (5)
H6B0.67690.72300.72240.025*
C7B0.6209 (3)0.9803 (2)0.68756 (13)0.0262 (6)
H7B10.67221.02350.64660.031*
H7B20.54281.03850.70450.031*
C8B0.2475 (2)0.6608 (2)0.48844 (13)0.0206 (5)
C9B0.1529 (2)0.7165 (2)0.43247 (13)0.0229 (5)
H9B10.19640.70230.38390.034*
H9B20.13810.81000.44080.034*
H9B30.06390.67280.43710.034*
C10B0.4914 (3)0.9443 (3)0.86052 (17)0.0406 (7)
H10D0.42420.97660.82740.061*
H10E0.46420.97460.90950.061*
H10F0.49400.84890.85970.061*
C11B0.6654 (3)1.1913 (2)0.83711 (16)0.0387 (7)
H11D0.75451.22480.81790.058*
H11E0.64831.21780.88760.058*
H11F0.59161.22640.80890.058*
C12B0.8116 (3)0.9314 (2)0.88521 (13)0.0264 (6)
C13B0.7726 (3)0.9463 (3)0.96821 (15)0.0454 (8)
H13D0.84600.90720.99530.068*
H13E0.68560.90210.98070.068*
H13F0.76181.03880.98040.068*
C14B0.8295 (3)0.7825 (2)0.86699 (15)0.0333 (6)
H14D0.85740.77190.81560.050*
H14E0.74170.73890.87820.050*
H14F0.90070.74380.89580.050*
C15B0.9528 (3)0.9991 (3)0.86574 (16)0.0354 (6)
H15D1.02530.95690.89220.053*
H15E0.94481.09120.87910.053*
H15F0.97660.99140.81380.053*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
SiA0.0258 (3)0.0145 (3)0.0240 (4)−0.0004 (3)−0.0037 (3)0.0021 (3)
O1A0.0285 (9)0.0141 (8)0.0259 (9)−0.0001 (7)−0.0061 (7)0.0015 (7)
O2A0.0325 (9)0.0144 (8)0.0336 (10)0.0024 (7)−0.0090 (8)−0.0033 (7)
O3A0.0272 (9)0.0239 (9)0.0335 (10)−0.0010 (7)−0.0119 (8)−0.0038 (8)
O4A0.0374 (10)0.0220 (9)0.0297 (10)−0.0085 (8)−0.0177 (8)0.0095 (7)
N1A0.0242 (10)0.0120 (9)0.0239 (10)0.0009 (8)−0.0057 (8)0.0002 (8)
N2A0.0254 (11)0.0149 (10)0.0227 (11)−0.0001 (8)−0.0015 (9)−0.0022 (8)
C1A0.0236 (12)0.0175 (12)0.0203 (12)−0.0015 (10)−0.0004 (10)0.0016 (10)
C2A0.0223 (12)0.0152 (11)0.0225 (12)−0.0009 (9)0.0003 (10)0.0007 (10)
C3A0.0189 (11)0.0165 (11)0.0188 (12)0.0010 (9)−0.0005 (9)0.0000 (9)
C4A0.0200 (11)0.0147 (11)0.0218 (12)0.0012 (9)0.0003 (10)0.0020 (9)
C5A0.0199 (11)0.0156 (11)0.0203 (12)−0.0020 (9)0.0009 (10)−0.0043 (9)
C6A0.0225 (12)0.0201 (12)0.0197 (12)0.0009 (10)−0.0037 (10)−0.0031 (10)
C7A0.0385 (14)0.0200 (13)0.0315 (14)−0.0024 (11)−0.0166 (12)0.0051 (11)
C8A0.0212 (12)0.0177 (12)0.0200 (12)0.0010 (9)−0.0002 (10)0.0031 (9)
C9A0.0278 (13)0.0166 (12)0.0268 (13)−0.0029 (10)−0.0083 (11)0.0038 (10)
C10A0.0344 (15)0.0291 (15)0.059 (2)−0.0062 (12)0.0031 (14)−0.0046 (14)
C11A0.0458 (16)0.0218 (14)0.0384 (16)0.0039 (12)−0.0049 (13)−0.0032 (12)
C12A0.0279 (13)0.0203 (12)0.0192 (12)0.0008 (10)−0.0039 (10)0.0026 (10)
C13A0.0455 (17)0.0416 (17)0.0267 (14)−0.0017 (13)−0.0096 (13)0.0101 (13)
C14A0.0418 (16)0.0252 (14)0.0318 (15)−0.0010 (12)−0.0023 (12)−0.0050 (11)
C15A0.0287 (13)0.0283 (14)0.0308 (14)−0.0022 (11)−0.0075 (11)0.0021 (11)
SiB0.0263 (4)0.0151 (3)0.0256 (4)0.0002 (3)−0.0016 (3)−0.0021 (3)
O1B0.0291 (9)0.0142 (8)0.0332 (10)0.0009 (7)−0.0086 (8)0.0002 (7)
O2B0.0364 (10)0.0172 (9)0.0363 (10)−0.0019 (8)−0.0102 (8)0.0038 (8)
O3B0.0268 (9)0.0247 (9)0.0334 (10)0.0016 (7)−0.0117 (8)0.0056 (8)
O4B0.0281 (9)0.0237 (9)0.0227 (9)0.0006 (7)−0.0085 (7)−0.0033 (7)
N1B0.0227 (10)0.0121 (9)0.0225 (10)0.0023 (8)−0.0049 (8)0.0002 (8)
N2B0.0250 (11)0.0179 (10)0.0220 (10)0.0011 (8)−0.0027 (9)0.0026 (8)
C1B0.0237 (12)0.0167 (12)0.0220 (12)0.0002 (10)0.0006 (10)−0.0009 (10)
C2B0.0218 (12)0.0142 (11)0.0219 (12)0.0024 (9)0.0007 (10)0.0021 (9)
C3B0.0191 (11)0.0175 (12)0.0206 (12)0.0009 (9)−0.0004 (10)0.0001 (10)
C4B0.0213 (12)0.0136 (11)0.0237 (12)−0.0005 (9)0.0015 (10)−0.0009 (9)
C5B0.0223 (12)0.0164 (12)0.0227 (12)0.0021 (9)−0.0006 (10)0.0022 (10)
C6B0.0222 (12)0.0217 (12)0.0191 (12)0.0010 (10)−0.0006 (10)−0.0001 (10)
C7B0.0309 (13)0.0201 (12)0.0286 (14)−0.0012 (10)−0.0095 (11)−0.0005 (10)
C8B0.0200 (12)0.0185 (12)0.0227 (12)0.0010 (10)0.0013 (10)−0.0031 (10)
C9B0.0266 (12)0.0159 (12)0.0265 (13)0.0017 (10)−0.0055 (10)−0.0018 (10)
C10B0.0348 (15)0.0322 (15)0.0533 (19)0.0004 (12)0.0063 (14)−0.0005 (14)
C11B0.0473 (17)0.0226 (14)0.0481 (18)0.0031 (12)−0.0172 (14)−0.0052 (13)
C12B0.0353 (14)0.0226 (13)0.0215 (13)0.0013 (11)−0.0043 (11)−0.0016 (10)
C13B0.069 (2)0.0412 (18)0.0267 (15)0.0057 (15)−0.0072 (14)−0.0018 (13)
C14B0.0413 (16)0.0208 (13)0.0387 (16)0.0056 (12)−0.0108 (13)0.0004 (12)
C15B0.0305 (14)0.0329 (15)0.0439 (17)−0.0011 (12)−0.0106 (12)0.0007 (13)

Geometric parameters (Å, °)

SiA—O4A1.6533 (16)SiB—O4B1.6540 (17)
SiA—C11A1.851 (3)SiB—C11B1.852 (3)
SiA—C10A1.861 (3)SiB—C10B1.862 (3)
SiA—C12A1.879 (2)SiB—C12B1.879 (2)
O1A—C8A1.235 (3)O1B—C8B1.230 (3)
O2A—N2A1.233 (2)O2B—N2B1.231 (2)
O3A—N2A1.228 (2)O3B—N2B1.225 (2)
O4A—C7A1.420 (3)O4B—C7B1.414 (3)
N1A—C8A1.364 (3)N1B—C8B1.362 (3)
N1A—C3A1.409 (3)N1B—C3B1.412 (3)
N1A—H1A0.8600N1B—H1B0.8600
N2A—C5A1.473 (3)N2B—C5B1.478 (3)
C1A—C2A1.387 (3)C1B—C2B1.378 (3)
C1A—C6A1.392 (3)C1B—C6B1.396 (3)
C1A—C7A1.507 (3)C1B—C7B1.515 (3)
C2A—C3A1.398 (3)C2B—C3B1.395 (3)
C2A—H2A0.9300C2B—H2B0.9300
C3A—C4A1.390 (3)C3B—C4B1.393 (3)
C4A—C5A1.375 (3)C4B—C5B1.382 (3)
C4A—H4A0.9300C4B—H4B0.9300
C5A—C6A1.383 (3)C5B—C6B1.379 (3)
C6A—H6A0.9300C6B—H6B0.9300
C7A—H7A10.9700C7B—H7B10.9700
C7A—H7A20.9700C7B—H7B20.9700
C8A—C9A1.498 (3)C8B—C9B1.505 (3)
C9A—H9A10.9600C9B—H9B10.9600
C9A—H9A20.9600C9B—H9B20.9600
C9A—H9A30.9600C9B—H9B30.9600
C10A—H10A0.9600C10B—H10D0.9600
C10A—H10B0.9600C10B—H10E0.9600
C10A—H10C0.9600C10B—H10F0.9600
C11A—H11A0.9600C11B—H11D0.9600
C11A—H11B0.9600C11B—H11E0.9600
C11A—H11C0.9600C11B—H11F0.9600
C12A—C14A1.534 (3)C12B—C15B1.535 (4)
C12A—C13A1.539 (3)C12B—C13B1.537 (4)
C12A—C15A1.540 (3)C12B—C14B1.541 (3)
C13A—H13A0.9600C13B—H13D0.9600
C13A—H13B0.9600C13B—H13E0.9600
C13A—H13C0.9600C13B—H13F0.9600
C14A—H14A0.9600C14B—H14D0.9600
C14A—H14B0.9600C14B—H14E0.9600
C14A—H14C0.9600C14B—H14F0.9600
C15A—H15A0.9600C15B—H15D0.9600
C15A—H15B0.9600C15B—H15E0.9600
C15A—H15C0.9600C15B—H15F0.9600
O4A—SiA—C11A109.65 (11)O4B—SiB—C11B109.84 (11)
O4A—SiA—C10A109.68 (11)O4B—SiB—C10B108.94 (12)
C11A—SiA—C10A109.21 (13)C11B—SiB—C10B109.21 (13)
O4A—SiA—C12A104.02 (9)O4B—SiB—C12B104.37 (10)
C11A—SiA—C12A112.45 (11)C11B—SiB—C12B111.97 (12)
C10A—SiA—C12A111.70 (12)C10B—SiB—C12B112.37 (12)
C7A—O4A—SiA123.43 (15)C7B—O4B—SiB123.18 (15)
C8A—N1A—C3A129.01 (19)C8B—N1B—C3B128.91 (19)
C8A—N1A—H1A115.5C8B—N1B—H1B115.5
C3A—N1A—H1A115.5C3B—N1B—H1B115.5
O3A—N2A—O2A123.41 (19)O3B—N2B—O2B123.62 (18)
O3A—N2A—C5A118.28 (17)O3B—N2B—C5B118.09 (19)
O2A—N2A—C5A118.31 (18)O2B—N2B—C5B118.28 (18)
C2A—C1A—C6A119.3 (2)C2B—C1B—C6B119.2 (2)
C2A—C1A—C7A119.4 (2)C2B—C1B—C7B119.2 (2)
C6A—C1A—C7A121.3 (2)C6B—C1B—C7B121.6 (2)
C1A—C2A—C3A121.7 (2)C1B—C2B—C3B122.1 (2)
C1A—C2A—H2A119.1C1B—C2B—H2B118.9
C3A—C2A—H2A119.1C3B—C2B—H2B118.9
C4A—C3A—C2A119.3 (2)C4B—C3B—C2B119.4 (2)
C4A—C3A—N1A124.29 (19)C4B—C3B—N1B124.2 (2)
C2A—C3A—N1A116.4 (2)C2B—C3B—N1B116.38 (19)
C5A—C4A—C3A117.5 (2)C5B—C4B—C3B117.0 (2)
C5A—C4A—H4A121.3C5B—C4B—H4B121.5
C3A—C4A—H4A121.3C3B—C4B—H4B121.5
C4A—C5A—C6A124.6 (2)C6B—C5B—C4B124.7 (2)
C4A—C5A—N2A118.10 (19)C6B—C5B—N2B117.9 (2)
C6A—C5A—N2A117.30 (19)C4B—C5B—N2B117.5 (2)
C5A—C6A—C1A117.5 (2)C5B—C6B—C1B117.5 (2)
C5A—C6A—H6A121.2C5B—C6B—H6B121.2
C1A—C6A—H6A121.2C1B—C6B—H6B121.2
O4A—C7A—C1A110.39 (19)O4B—C7B—C1B112.15 (19)
O4A—C7A—H7A1109.6O4B—C7B—H7B1109.2
C1A—C7A—H7A1109.6C1B—C7B—H7B1109.2
O4A—C7A—H7A2109.6O4B—C7B—H7B2109.2
C1A—C7A—H7A2109.6C1B—C7B—H7B2109.2
H7A1—C7A—H7A2108.1H7B1—C7B—H7B2107.9
O1A—C8A—N1A122.9 (2)O1B—C8B—N1B123.7 (2)
O1A—C8A—C9A122.75 (19)O1B—C8B—C9B122.3 (2)
N1A—C8A—C9A114.29 (19)N1B—C8B—C9B114.01 (19)
C8A—C9A—H9A1109.5C8B—C9B—H9B1109.5
C8A—C9A—H9A2109.5C8B—C9B—H9B2109.5
H9A1—C9A—H9A2109.5H9B1—C9B—H9B2109.5
C8A—C9A—H9A3109.5C8B—C9B—H9B3109.5
H9A1—C9A—H9A3109.5H9B1—C9B—H9B3109.5
H9A2—C9A—H9A3109.5H9B2—C9B—H9B3109.5
SiA—C10A—H10A109.5SiB—C10B—H10D109.5
SiA—C10A—H10B109.5SiB—C10B—H10E109.5
H10A—C10A—H10B109.5H10D—C10B—H10E109.5
SiA—C10A—H10C109.5SiB—C10B—H10F109.5
H10A—C10A—H10C109.5H10D—C10B—H10F109.5
H10B—C10A—H10C109.5H10E—C10B—H10F109.5
SiA—C11A—H11A109.5SiB—C11B—H11D109.5
SiA—C11A—H11B109.5SiB—C11B—H11E109.5
H11A—C11A—H11B109.5H11D—C11B—H11E109.5
SiA—C11A—H11C109.5SiB—C11B—H11F109.5
H11A—C11A—H11C109.5H11D—C11B—H11F109.5
H11B—C11A—H11C109.5H11E—C11B—H11F109.5
C14A—C12A—C13A109.0 (2)C15B—C12B—C13B109.3 (2)
C14A—C12A—C15A108.7 (2)C15B—C12B—C14B108.4 (2)
C13A—C12A—C15A109.36 (19)C13B—C12B—C14B108.6 (2)
C14A—C12A—SiA110.59 (16)C15B—C12B—SiB110.34 (17)
C13A—C12A—SiA109.21 (17)C13B—C12B—SiB110.11 (18)
C15A—C12A—SiA109.89 (16)C14B—C12B—SiB110.04 (17)
C12A—C13A—H13A109.5C12B—C13B—H13D109.5
C12A—C13A—H13B109.5C12B—C13B—H13E109.5
H13A—C13A—H13B109.5H13D—C13B—H13E109.5
C12A—C13A—H13C109.5C12B—C13B—H13F109.5
H13A—C13A—H13C109.5H13D—C13B—H13F109.5
H13B—C13A—H13C109.5H13E—C13B—H13F109.5
C12A—C14A—H14A109.5C12B—C14B—H14D109.5
C12A—C14A—H14B109.5C12B—C14B—H14E109.5
H14A—C14A—H14B109.5H14D—C14B—H14E109.5
C12A—C14A—H14C109.5C12B—C14B—H14F109.5
H14A—C14A—H14C109.5H14D—C14B—H14F109.5
H14B—C14A—H14C109.5H14E—C14B—H14F109.5
C12A—C15A—H15A109.5C12B—C15B—H15D109.5
C12A—C15A—H15B109.5C12B—C15B—H15E109.5
H15A—C15A—H15B109.5H15D—C15B—H15E109.5
C12A—C15A—H15C109.5C12B—C15B—H15F109.5
H15A—C15A—H15C109.5H15D—C15B—H15F109.5
H15B—C15A—H15C109.5H15E—C15B—H15F109.5

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1A—H1A···O1B0.862.132.982 (2)172.
N1B—H1B···O1Ai0.862.142.991 (2)173.

Symmetry codes: (i) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FB2117).

References

  • Barker, D., Lehmann, A. L., Mai, A., Khan, G. S. & Ng, E. (2008). Tetrahedron Lett.49, 1660–1664.
  • Bruker (1995). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  • Crouch, R. D. (2004). Tetrahedron, 60, 5833–5871.
  • Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond IUCr Monographs on Crystallography 9. New York: Oxford University Press.
  • Gong, B. & Yan, Y. (1997). Biochem. Biophys. Res. Commun.240, 557–560. [PubMed]
  • Jarowicki, K. & Kocienski, P. (1998). J. Chem. Soc. Perkin Trans. 1, pp. 4005–4037.
  • Kocienski, P. J. (2004). Protein Groups, 3rd ed. New York, Stuttgart: Georg Thieme.
  • Nelson, T. D. & Crouch, R. D. (1996). Synthesis, 9, 1031–1069.
  • Schelhaas, M. & Waldmann, H. (1996). Angew. Chem. Int. Ed.35, 2056–2083.
  • Sheldrick, G. M. (1997). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wetter, H. & Oertle, K. (1985). Tetrahedron Lett.26, 5515–5518.
  • Wuts, P. G. & Green, T. W. (2006). Protective Groups in Organic Synthesis, 4th ed. Hoboken: Wiley.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography