Search tips
Search criteria 


Logo of jcinvestThe Journal of Clinical InvestigationCurrent IssueArchiveSubscriptionAbout the Journal
J Clin Invest. 1992 June; 89(6): 1902–1907.
PMCID: PMC295889

A novel point mutation in the human insulin gene giving rise to hyperproinsulinemia (proinsulin Kyoto).


We have identified a 65-yr-old nonobese Japanese man with diabetes mellitus, fasting hyperinsulinemia (150-300 pM), and a reduced fasting C-peptide/insulin molar ratio of 2.5-3.0. Fasting hyperinsulinemia was also found in his son and daughter. Analysis of insulin isolated from the serum of the proband and his son by reverse-phase high performance liquid chromatography revealed a minor peak coeluting with human insulin and a major peak of proinsulin-like materials. The insulin gene of the patient was amplified by the polymerase chain reaction and the products were sequenced. A novel point mutation was identified in which guanine was replaced by thymine. The substitution gives rise to a new HindIII recognition site and results in the amino acid replacement of leucine for arginine at position 65. These results indicate that the amino-acid replacement prevents recognition of the C-peptide-A chain dibasic protease and results in an elevation of proinsulin-like materials in the circulation. Furthermore, in this family the proinsulin-like materials is due to a biosynthetic defect, inherited as an autosomal dominant trait. Rapid detection of this mutation can be accomplished by HindIII restriction enzyme mapping of polymerase chain reaction-generated DNA, which enables us to facilitate the diagnosis and screening.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.3M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Steiner DF, Oyer PE. The biosynthesis of insulin and a probable precursor of insulin by a human islet cell adenoma. Proc Natl Acad Sci U S A. 1967 Feb;57(2):473–480. [PubMed]
  • Horwitz DL, Starr JI, Mako ME, Blackard WG, Rubenstein AH. Proinsulin, insulin, and C-peptide concentrations in human portal and peripheral blood. J Clin Invest. 1975 Jun;55(6):1278–1283. [PMC free article] [PubMed]
  • Heding LG. Specific and direct radioimmunoassay for human proinsulin in serum. Diabetologia. 1977 Sep;13(5):467–474. [PubMed]
  • Rainbow SJ, Woodhead JS, Yue DK, Luzio SD, Hales CN. Measurement of human proinsulin by an indirect two-site immunoradiometric assay. Diabetologia. 1979 Oct;17(4):229–234. [PubMed]
  • Nanjo K, Sanke T, Miyano M, Okai K, Sowa R, Kondo M, Nishimura S, Iwo K, Miyamura K, Given BD, et al. Diabetes due to secretion of a structurally abnormal insulin (insulin Wakayama). Clinical and functional characteristics of [LeuA3] insulin. J Clin Invest. 1986 Feb;77(2):514–519. [PMC free article] [PubMed]
  • Nanjo K, Miyano M, Kondo M, Sanke T, Nishimura S, Miyamura K, Inouye K, Given BD, Chan SJ, Polonsky KS, et al. Insulin Wakayama: familial mutant insulin syndrome in Japan. Diabetologia. 1987 Feb;30(2):87–92. [PubMed]
  • Iwamoto Y, Sakura H, Ishii Y, Yamamoto R, Kumakura S, Sakamoto Y, Matsuda A, Kuzuya T. A new case of abnormal insulinemia with diabetes. Reduced insulin values determined by radioreceptor assay. Diabetes. 1986 Nov;35(11):1237–1242. [PubMed]
  • Haneda M, Chan SJ, Kwok SC, Rubenstein AH, Steiner DF. Studies on mutant human insulin genes: identification and sequence analysis of a gene encoding [SerB24]insulin. Proc Natl Acad Sci U S A. 1983 Oct;80(20):6366–6370. [PubMed]
  • Haneda M, Polonsky KS, Bergenstal RM, Jaspan JB, Shoelson SE, Blix PM, Chan SJ, Kwok SC, Wishner WB, Zeidler A, et al. Familial hyperinsulinemia due to a structurally abnormal insulin. Definition of an emerging new clinical syndrome. N Engl J Med. 1984 May 17;310(20):1288–1294. [PubMed]
  • Shoelson S, Fickova M, Haneda M, Nahum A, Musso G, Kaiser ET, Rubenstein AH, Tager H. Identification of a mutant human insulin predicted to contain a serine-for-phenylalanine substitution. Proc Natl Acad Sci U S A. 1983 Dec;80(24):7390–7394. [PubMed]
  • Kwok SC, Steiner DF, Rubenstein AH, Tager HS. Identification of a point mutation in the human insulin gene giving rise to a structurally abnormal insulin (insulin Chicago). Diabetes. 1983 Sep;32(9):872–875. [PubMed]
  • Gruppuso PA, Gorden P, Kahn CR, Cornblath M, Zeller WP, Schwartz R. Familial hyperproinsulinemia due to a proposed defect in conversion of proinsulin to insulin. N Engl J Med. 1984 Sep 6;311(10):629–634. [PubMed]
  • Carroll RJ, Hammer RE, Chan SJ, Swift HH, Rubenstein AH, Steiner DF. A mutant human proinsulin is secreted from islets of Langerhans in increased amounts via an unregulated pathway. Proc Natl Acad Sci U S A. 1988 Dec;85(23):8943–8947. [PubMed]
  • Burgess TL, Kelly RB. Constitutive and regulated secretion of proteins. Annu Rev Cell Biol. 1987;3:243–293. [PubMed]
  • Gabbay KH, Bergenstal RM, Wolff J, Mako ME, Rubenstein AH. Familial hyperproinsulinemia: partial characterization of circulating proinsulin-like material. Proc Natl Acad Sci U S A. 1979 Jun;76(6):2881–2885. [PubMed]
  • Barbetti F, Raben N, Kadowaki T, Cama A, Accili D, Gabbay KH, Merenich JA, Taylor SI, Roth J. Two unrelated patients with familial hyperproinsulinemia due to a mutation substituting histidine for arginine at position 65 in the proinsulin molecule: identification of the mutation by direct sequencing of genomic deoxyribonucleic acid amplified by polymerase chain reaction. J Clin Endocrinol Metab. 1990 Jul;71(1):164–169. [PubMed]
  • Given BD, Cohen RM, Shoelson SE, Frank BH, Rubenstein AH, Tager HS. Biochemical and clinical implications of proinsulin conversion intermediates. J Clin Invest. 1985 Oct;76(4):1398–1405. [PMC free article] [PubMed]
  • Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988 Jan 29;239(4839):487–491. [PubMed]
  • Bell GI, Pictet RL, Rutter WJ, Cordell B, Tischer E, Goodman HM. Sequence of the human insulin gene. Nature. 1980 Mar 6;284(5751):26–32. [PubMed]
  • Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. [PubMed]
  • Yano H, Seino Y, Inagaki N, Hinokio Y, Yamamoto T, Yasuda K, Masuda K, Someya Y, Imura H. Tissue distribution and species difference of the brain type glucose transporter (GLUT3). Biochem Biophys Res Commun. 1991 Jan 31;174(2):470–477. [PubMed]
  • Shibasaki Y, Kawakami T, Kanazawa Y, Akanuma Y, Takaku F. Posttranslational cleavage of proinsulin is blocked by a point mutation in familial hyperproinsulinemia. J Clin Invest. 1985 Jul;76(1):378–380. [PMC free article] [PubMed]
  • Nanjo K, Sanke T, Kondo M, Nishimura S, Miyano M, Linuma J, Miyamura K, Inouye K, Given BD, Polonsky KS, et al. Mutant insulin syndrome: identification of two families with [LeuA3]insulin and determination of its biological activity. Trans Assoc Am Physicians. 1986;99:132–142. [PubMed]

Articles from The Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation