PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of jcinvestThe Journal of Clinical InvestigationCurrent IssueArchiveSubscriptionAbout the Journal
 
J Clin Invest. 1991 October; 88(4): 1412–1417.
PMCID: PMC295613

An in vivo animal model of gene therapy for leukocyte adhesion deficiency.

Abstract

Leukocyte adhesion deficiency (LAD) is an inherited disorder of leukocyte function that is caused by defects in the CD18 gene and is associated with diminished cell surface expression of CD11/CD18 proteins. We have developed an in vivo model for gene therapy of LAD. Recombinant retroviruses were used to transduce a functional human CD18 gene into murine bone marrow cells which were transplanted into lethally irradiated syngeneic recipients. A reliable flow cytometric assay for human CD18 in transplant recipients was developed based on: (a) the availability of human specific CD18 monoclonal antibodies and (b) the observation that human CD18 can form chimeric heterodimers with murine CD11a on the cell surface. Human CD18 was detected on leukocytes in a substantial number of transplant recipients for at least 6 mo suggesting that the gene had been transduced into stem cells. Expression was demonstrated in several lineages of a variety of hematopoietic tissues, but was consistently highest and most frequent in granulocytes. Murine granulocytes demonstrated appropriate posttranscriptional regulation of human CD18 in response to activation of protein kinase C. No apparent untoward effects of human CD18 expression were noted in transplant recipients. These studies suggest a specific strategy for LAD gene therapy that may be effective and safe.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.1M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Anderson DC, Schmalsteig FC, Finegold MJ, Hughes BJ, Rothlein R, Miller LJ, Kohl S, Tosi MF, Jacobs RL, Waldrop TC, et al. The severe and moderate phenotypes of heritable Mac-1, LFA-1 deficiency: their quantitative definition and relation to leukocyte dysfunction and clinical features. J Infect Dis. 1985 Oct;152(4):668–689. [PubMed]
  • Anderson DC, Springer TA. Leukocyte adhesion deficiency: an inherited defect in the Mac-1, LFA-1, and p150,95 glycoproteins. Annu Rev Med. 1987;38:175–194. [PubMed]
  • Todd RF, 3rd, Freyer DR. The CD11/CD18 leukocyte glycoprotein deficiency. Hematol Oncol Clin North Am. 1988 Mar;2(1):13–31. [PubMed]
  • Springer TA, Thompson WS, Miller LJ, Schmalstieg FC, Anderson DC. Inherited deficiency of the Mac-1, LFA-1, p150,95 glycoprotein family and its molecular basis. J Exp Med. 1984 Dec 1;160(6):1901–1918. [PMC free article] [PubMed]
  • Dana N, Clayton LK, Tennen DG, Pierce MW, Lachmann PJ, Law SA, Arnaout MA. Leukocytes from four patients with complete or partial Leu-CAM deficiency contain the common beta-subunit precursor and beta-subunit messenger RNA. J Clin Invest. 1987 Mar;79(3):1010–1015. [PMC free article] [PubMed]
  • Kishimoto TK, Hollander N, Roberts TM, Anderson DC, Springer TA. Heterogeneous mutations in the beta subunit common to the LFA-1, Mac-1, and p150,95 glycoproteins cause leukocyte adhesion deficiency. Cell. 1987 Jul 17;50(2):193–202. [PubMed]
  • Kishimoto TK, O'Conner K, Springer TA. Leukocyte adhesion deficiency. Aberrant splicing of a conserved integrin sequence causes a moderate deficiency phenotype. J Biol Chem. 1989 Feb 25;264(6):3588–3595. [PubMed]
  • Le Deist F, Blanche S, Keable H, Gaud C, Pham H, Descamp-Latscha B, Wahn V, Griscelli C, Fischer A. Successful HLA nonidentical bone marrow transplantation in three patients with the leukocyte adhesion deficiency. Blood. 1989 Jul;74(1):512–516. [PubMed]
  • Wilson JM, Ping AJ, Krauss JC, Mayo-Bond L, Rogers CE, Anderson DC, Todd RF. Correction of CD18-deficient lymphocytes by retrovirus-mediated gene transfer. Science. 1990 Jun 15;248(4961):1413–1416. [PubMed]
  • Wilson JM, Danos O, Grossman M, Raulet DH, Mulligan RC. Expression of human adenosine deaminase in mice reconstituted with retrovirus-transduced hematopoietic stem cells. Proc Natl Acad Sci U S A. 1990 Jan;87(1):439–443. [PubMed]
  • Aruffo A, Seed B. Molecular cloning of a CD28 cDNA by a high-efficiency COS cell expression system. Proc Natl Acad Sci U S A. 1987 Dec;84(23):8573–8577. [PubMed]
  • Boshart M, Weber F, Jahn G, Dorsch-Häsler K, Fleckenstein B, Schaffner W. A very strong enhancer is located upstream of an immediate early gene of human cytomegalovirus. Cell. 1985 Jun;41(2):521–530. [PubMed]
  • Dana N, Todd RF, 3rd, Pitt J, Springer TA, Arnaout MA. Deficiency of a surface membrane glycoprotein (Mo1) in man. J Clin Invest. 1984 Jan;73(1):153–159. [PMC free article] [PubMed]
  • Wright SD, Rao PE, Van Voorhis WC, Craigmyle LS, Iida K, Talle MA, Westberg EF, Goldstein G, Silverstein SC. Identification of the C3bi receptor of human monocytes and macrophages by using monoclonal antibodies. Proc Natl Acad Sci U S A. 1983 Sep;80(18):5699–5703. [PubMed]
  • Updyke TV, Nicolson GL. Immunoaffinity isolation of membrane antigens with biotinylated monoclonal antibodies and streptavidin-agarose. Methods Enzymol. 1986;121:717–725. [PubMed]
  • Sanchez-Madrid F, Nagy JA, Robbins E, Simon P, Springer TA. A human leukocyte differentiation antigen family with distinct alpha-subunits and a common beta-subunit: the lymphocyte function-associated antigen (LFA-1), the C3bi complement receptor (OKM1/Mac-1), and the p150,95 molecule. J Exp Med. 1983 Dec 1;158(6):1785–1803. [PMC free article] [PubMed]
  • Springer T, Galfrè G, Secher DS, Milstein C. Monoclonal xenogeneic antibodies to murine cell surface antigens: identification of novel leukocyte differentiation antigens. Eur J Immunol. 1978 Aug;8(8):539–551. [PubMed]
  • Holmes KL, Langdon WY, Fredrickson TN, Coffman RL, Hoffman PM, Hartley JW, Morse HC., 3rd Analysis of neoplasms induced by Cas-Br-M MuLV tumor extracts. J Immunol. 1986 Jul 15;137(2):679–688. [PubMed]
  • Coffman RL. Surface antigen expression and immunoglobulin gene rearrangement during mouse pre-B cell development. Immunol Rev. 1982;69:5–23. [PubMed]
  • Miller LJ, Bainton DF, Borregaard N, Springer TA. Stimulated mobilization of monocyte Mac-1 and p150,95 adhesion proteins from an intracellular vesicular compartment to the cell surface. J Clin Invest. 1987 Aug;80(2):535–544. [PMC free article] [PubMed]
  • Arnaout MA, Hakim RM, Todd RF, 3rd, Dana N, Colten HR. Increased expression of an adhesion-promoting surface glycoprotein in the granulocytopenia of hemodialysis. N Engl J Med. 1985 Feb 21;312(8):457–462. [PubMed]
  • Todd RF, 3rd, Arnaout MA, Rosin RE, Crowley CA, Peters WA, Babior BM. Subcellular localization of the large subunit of Mo1 (Mo1 alpha; formerly gp 110), a surface glycoprotein associated with neutrophil adhesion. J Clin Invest. 1984 Oct;74(4):1280–1290. [PMC free article] [PubMed]
  • O'Shea JJ, Brown EJ, Seligmann BE, Metcalf JA, Frank MM, Gallin JI. Evidence for distinct intracellular pools of receptors for C3b and C3bi in human neutrophils. J Immunol. 1985 Apr;134(4):2580–2587. [PubMed]

Articles from The Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation