Search tips
Search criteria 


Logo of neurotherwww.springer.comThis journalToc AlertsSubmit OnlineOpen Choice
Neurotherapeutics. 2010 October; 7(4): 413–423.
PMCID: PMC2948546

Astrocytes and therapeutics for Parkinson’s disease


Astrocytes play direct, active, and critical roles in mediating neuronal survival and function in various neurodegenerative disorders. This role of astrocytes is well illustrated in amyotrophic lateral sclerosis (ALS), in which the removal of glutamate from the extracellular space by astrocytes confers neuroprotection, whereas astrocytic release of soluble toxic molecules promotes neurodegeneration. In recent years, this context-dependent dual role of astrocytes has also been documented in experimental models of Parkinson’s disease. The present review addresses these studies and some potential mechanisms by which astrocytes may influence the neurodegenerative processes in Parkinson’s disease, and in particular examines how astrocytes confer neuroprotection either through the removal of toxic molecules from the extracellular space or through the release of trophic factors and antioxidant molecules. In contrast, under pathological conditions, astrocytes release proinflammatory cytokines and other toxic molecules that are detrimental to dopaminergic neurons. These emerging roles of astrocytes in the pathogenesis of Parkinson’s disease constitute an exciting development with promising novel therapeutic targets.

Key Words: Parkinson’s disease, astrocytes, neurodegeneration, dopamine, glial-neuronal interactions, neurodegenerative diseases


1. Dauer W, Przedborski S. Parkinson’s disease: mechanisms and models. Neuron. 2003;39:889–909. [PubMed]
2. Lees AJ, Hardy J, Revesz T. Parkinson’s disease [Erratum in: Lancet 2009;374:684] Lancet. 2009;373:2055–2066. [PubMed]
3. Krusz JC, Koller WC, Ziegler DK. Historical review: abnormal movements associated with epidemic encephalitis lethargica. Mov Disord. 1987;2:137–141. [PubMed]
4. Calne DB, Lees AJ. Late progression of post-encephalitic Parkinson’s syndrome. Can J Neurol Sci. 1988;15:135–138. [PubMed]
5. Langston JW, Ballard P, Irwin I. Chronic parkinsonism in humans due to a product of meperidine-analog synthesis. Science. 1983;219:979–980. [PubMed]
6. Olanow CW. Manganese-induced parkinsonism and Parkinson’s disease. Ann N Y Acad Sci. 2004;1012:209–223. [PubMed]
7. Tanner CM. Epidemiology of Parkinson’s disease. Neurol Clin. 1992;10:317–329. [PubMed]
8. Liou HH, Tsai MC, Chen CJ, et al. Environmental risk factors and Parkinson’s disease: a case-control study in Taiwan. Neurology. 1997;48:1583–1588. [PubMed]
9. Hertzman C, Wiens M, Bowering D, Snow B, Calne D. Parkinson’s disease: a case-control study of occupational and environmental risk factors. Am J Ind Med. 1990;17:349–355. [PubMed]
10. Ritz BR, Manthripragada AD, Costello S, et al. Dopamine transporter genetic variants and pesticides in Parkinson’s disease. Environ Health Perspect. 2009;117:964–969. [PMC free article] [PubMed]
11. Gatto NM, Cockburn M, Bronstein J, Manthripragada AD, Ritz B. Well-water consumption and Parkinson’s disease in rural California. Environ Health Perspect. 2009;117:1912–1918. [PMC free article] [PubMed]
12. Gupta A, Dawson VL, Dawson TM. What causes cell death in Parkinson’s disease? Ann Neurol. 2008;64(Suppl 2):S3–S15. [PMC free article] [PubMed]
13. Hardy J, Lewis P, Revesz T, Lees A, Paisan-Ruiz C. The genetics of Parkinson’s syndromes: a critical review. Curr Opin Genet Dev. 2009;19:254–265. [PubMed]
14. Przedborski S. Neuroinflammation and Parkinson’s disease. Handb Clin Neurol. 2007;83:535–551. [PubMed]
15. Hirsch EC, Hunot S. Neuroinflammation in Parkinson’s disease: a target for neuroprotection? Lancet Neurol. 2009;8:382–397. [PubMed]
16. Sherwood CC, Stimpson CD, Raghanti MA, et al. Evolution of increased glia-neuron ratios in the human frontal cortex. Proc Natl Acad Sci U S A. 2006;103:13606–13611. [PubMed]
17. Mena MA, Garcia de Yébenes J. Glial cells as players in parkinsonism: the “good,” the “bad,” and the “mysterious” glia. Neuroscientist. 2008;14:544–560. [PubMed]
18. Heneka MT, Rodríguez JJ, Verkhratsky A. Neuroglia in neurodegeneration. Brain Res Rev. 2010;63:189–211. [PubMed]
19. Richter C. Reactive oxygen and DNA damage in mitochondria. Mutat Res. 1992;275:249–255. [PubMed]
20. Beal MF. Oxidatively modified proteins in aging and disease. Free Radie Biol Med. 2002;32:797–803. [PubMed]
21. Malkus KA, Tsika E, Ischiropoulos H. Oxidative modifications, mitochondrial dysfunction, and impaired protein degradation in Parkinson’s disease: how neurons are lost in the Bermuda triangle. Mol Neurodegener. 2009;4:24–24. [PMC free article] [PubMed]
22. Ballatori N, Krance SM, Notenboom S, Shi S, Tieu K, Hammond CL. Glutathione dysregulation and the etiology and progression of human diseases. Biol Chem. 2009;390:191–214. [PMC free article] [PubMed]
23. Rice ME, Russo-Menna I. Differential compartmentalization of brain ascorbate and glutathione between neurons and glia. Neuroscience. 1998;82:1213–1223. [PubMed]
24. Bolanos JP, Heales SJ, Land JM, Clark JB. Effect of peroxynitrite on the mitochondrial respiratory chain: differential susceptibility of neurones and astrocytes in primary culture. J Neurochem. 1995;64:1965–1972. [PubMed]
25. Gegg ME, Beltran B, Salas-Pino S, et al. Differential effect of nitric oxide on glutathione metabolism and mitochondrial function in astrocytes and neurones: implications for neuroprotection/neurodegeneration? J Neurochem. 2003;86:228–237. [PubMed]
26. Hirrlinger J, Schulz JB, Dringen R. Glutathione release from cultured brain cells: multidrug resistance protein 1 mediates the release of GSH from rat astroglial cells. J Neurosci Res. 2002;69:318–326. [PubMed]
27. Hirrlinger J, König J, Dringen R. Expression of mRNAs of multidrug resistance proteins (Mrps) in cultured rat astrocytes, oligodendrocytes, microglial cells and neurones. J Neurochem. 2002;82:716–719. [PubMed]
28. Zeevalk GD, Razmpour R, Bernard LP. Glutathione and Parkinson’s disease: is this the elephant in the room? Biomed Pharmacother. 2008;62:236–249. [PubMed]
29. Sian J, Dexter DT, Lees AJ, et al. Alterations in glutathione levels in Parkinson’s disease and other neurodegenerative disorders affecting basal ganglia. Ann Neurol. 1994;36:348–355. [PubMed]
30. Pearce RK, Owen A, Daniel S, Jenner P, Marsden CD. Alterations in the distribution of glutathione in the substantia nigra in Parkinson’s disease. J Neural Transm. 1997;104:661–677. [PubMed]
31. Solano RM, Casarejos MJ, Menéndez-Cuervo J, et al. Glial dysfunction in parkin null mice: effects of aging. J Neurosci. 2008;28:598–611. [PubMed]
32. Toffa S, Kunikowska GM, Zeng BY, Jenner P, Marsden CD. Glutathione depletion in rat brain does not cause nigrostriatal pathway degeneration. J Neural Transm. 1997;104:67–75. [PubMed]
33. Zeevalk GD, Bernard LP, Sinha C, Ehrhart J, Nicklas WJ. Excitotoxicity and oxidative stress during inhibition of energy metabolism. Dev Neurosci. 1998;20:444–453. [PubMed]
34. Whitworth AJ, Theodore DA, Greene JC, Benes H, Wes PD, Pallanck LJ. Increased glutathione S-transferase activity rescues dopaminergic neuron loss in a Drosophila model of Parkinson’s disease. Proc Natl Acad Sci U S A. 2005;102:8024–8029. [PubMed]
35. Trinh K, Moore K, Wes PD, et al. Induction of the phase II detoxification pathway suppresses neuron loss in Drosophila models of Parkinson’s disease. J Neurosci. 2008;28:465–472. [PubMed]
36. Hauser RA, Lyons KE, McClain T, Carter S, Perlmutter D. Randomized, double-blind, pilot evaluation of intravenous glutathione in Parkinson’s disease. Mov Disord. 2009;24:979–983. [PubMed]
37. Cornford EM, Braun LD, Crane PD, Oldendorf WH. Blood-brain barrier restriction of peptides and the low uptake of enkephalins. Endocrinology. 1978;103:1297–1303. [PubMed]
38. Kannan R, Kuhlenkamp JE, Jeandidier E, Trinh H, Ookhtens M, Kaplowitz N. Evidence for carrier-mediated transport of glutathione across the blood-brain barrier in the rat. J Clin Invest. 1990;85:2009–2013. [PMC free article] [PubMed]
39. McLellan LI, Lewis AD, Hall DJ, Ansell JD, Wolf CR. Uptake and distribution of N-acetylcysteine, in mice: tissue-specific effects on glutathione concentrations. Carcinogenesis. 1995;16:2099–2106. [PubMed]
40. Itoh K, Chiba T, Takahashi S, et al. An Nrf2/smail Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun. 1997;236:313–322. [PubMed]
41. Vargas MR, Johnson JA. The Nrf2-ARE cytoprotective pathway in astrocytes. Expert Rev Mol Med. 2009;11:e17–e17. [PubMed]
42. Nguyen T, Nioi P, Pickett CB. The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J Biol Chem. 2009;284:13291–13295. [PMC free article] [PubMed]
43. Lee JM, Calkins MJ, Chan K, Kan YW, Johnson JA. Identification of the NF-E2-related factor-2-dependent genes conferring protection against oxidative stress in primary cortical astrocytes using oligonucleotide microarray analysis. J Biol Chem. 2003;278:12029–12038. [PubMed]
44. Kraft AD, Johnson DA, Johnson JA. Nuclear factor E2-related factor 2-dependent antioxidant response element activation by tert-butylhydroquinone and sulforaphane occurring preferentially in astrocytes conditions neurons against oxidative insult. J Neurosci. 2004;24:1101–1112. [PubMed]
45. Shih AY, Johnson DA, Wong G, et al. Coordinate regulation of glutathione biosynthesis and release by Nrf2-expressing glia potently protects neurons from oxidative stress. J Neurosci. 2003;23:3394–3406. [PubMed]
46. Chen PC, Vargas MR, Pani AK, et al. Nrf2-mediated neuroprotection in the MPTP mouse model of Parkinson’s disease: Critical role for the astrocyte. Proc Natl Acad Sci U S A. 2009;106:2933–2938. [PubMed]
47. Clements CM, McNally RS, Conti BJ, Mak TW, Ting JP. DJ-1, a cancer- and Parkinson’s disease-associated protein, stabilizes the antioxidant transcriptional master regulator Nrf2. Proc Natl Acad Sci U S A. 2006;103:15091–15096. [PubMed]
48. Hague S, Rogaeva E, Hernandez D, et al. Early-onset Parkinson’s disease caused by a compound heterozygous DJ-1 mutation. Ann Neurol. 2003;54:271–274. [PubMed]
49. Bonifati V, Rizzu P, Van Baren MJ, et al. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science. 2003;299:256–259. [PubMed]
50. Bandopadhyay R, Kingsbury AE, Cookson MR, et al. The expression of DJ-1 (PARK7) in normal human CNS and idiopathic Parkinson’s disease. Brain. 2004;127:420–430. [PubMed]
51. Waak J, Weber SS, Waldenmaier A, et al. Regulation of astrocyte inflammatory responses by the Parkinson’s disease-associated gene DJ-1. FASEB J. 2009;23:2478–2489. [PubMed]
52. Grothe C, Timmer M. The physiological and pharmacological role of basic fibroblast growth factor in the dopaminergic nigrostriatal system. Brain Res Rev. 2007;54:80–91. [PubMed]
53. Lin LF, Doherty DH, Lile JD, Bektesh S, Collins F. GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science. 1993;260:1130–1132. [PubMed]
54. Saavedra A, Baltazar G, Santos P, Carvalho CM, Duarte EP. Selective injury to dopaminergic neurons up-regulates GDNF in substantia nigra postnatal cell cultures: role of neuron-glia crosstalk. Neurobiol Dis. 2006;23:533–542. [PubMed]
55. Petrova PS, Raibekas A, Pevsner J, et al. Discovering novel phenotype-selective neurotrophic factors to treat neurodegenerative diseases. Prog Brain Res. 2004;146:168–183. [PubMed]
56. Deierborg T, Soulet D, Roybon L, Hall V, Brundin P. Emerging restorative treatments for Parkinson’s disease. Prog Neurobiol. 2008;85:407–432. [PubMed]
57. Nutt JG, Burchiel KJ, Comelia CL, ICV GDNF Study Group et al. Randomized, double-blind trial of glial cell line-derived neurotrophic factor (GDNF) in PD. Neurology. 2003;60:69–73. [PubMed]
58. Lang AE, Gill S, Patel NK, et al. Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease [Erratum in: Ann Neurol 2006;60:747] Ann Neurol. 2006;59:459–466. [PubMed]
59. Salvatore MF, Ai Y, Fischer B, et al. Point source concentration of GDNF may explain failure of phase II clinical trial. Exp Neurol. 2006;202:497–505. [PubMed]
60. Voutilainen MH, Back S, Pörsti E, et al. Mesencephalic astrocytederived neurotrophic factor is neurorestorative in rat model of Parkinson’s disease. J Neurosci. 2009;29:9651–9659. [PubMed]
61. Abeliovich A, Schmitz Y, Farinas I, et al. Mice lacking α-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron. 2000;25:239–252. [PubMed]
62. Polymeropoulos MH, Lavedan C, Leroy E, et al. Mutation in the a-synuclein gene identified in families with Parkinson’s disease. Science. 1997;276:2045–2047. [PubMed]
63. Krüger R, Kuhn W, Müller T, et al. Ala30Pro mutation in the gene encoding α-synuclein in Parkinson’s disease. Nat Genet. 1998;18:107–108. [PubMed]
64. Zarranz JJ, Alegre J, Gómez-Esteban JC, et al. The new mutation, E46K, of α-synucleiu causes Parkinson and Lewy body dementia. Ann Neurol. 2004;55:164–173. [PubMed]
65. Singleton AB, Fairer M, Johnson J, et al. α-Synuclein locus triplication causes Parkinson’s disease. Science. 2003;302:841–841. [PubMed]
66. Weinreb PH, Zhen W, Poon AW, Conway KA, Lansbury PT. NACP, a protein implicated in Alzheimer’s disease, and learning, is natively unfolded. Biochemistry. 1996;35:13709–13715. [PubMed]
67. Savitt JM, Dawson VL, Dawson TM. Diagnosis and treatment of Parkinson disease: molecules to medicine. J Clin Invest. 2006;116:1744–1754. [PMC free article] [PubMed]
68. Li JY, Englund E, Holton JL, et al. Lewy bodies in grafted neurons in subjects with Parkinson’s disease suggest host-to-graft disease propagation. Nat Med. 2008;14:501–503. [PubMed]
69. Kordower JH, Chu Y, Hauser RA, Freeman TB, Olanow CW. Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson’s disease. Nat Med. 2008;14:504–506. [PubMed]
70. Mendez I, Viñuela A, Astradsson A, et al. Dopamine neurons implanted into people with Parkinson’s disease, survive without pathology for 14 years. Nat Med. 2008;14:507–509. [PMC free article] [PubMed]
71. Brandin P, Li JY, Holton JL, Lindvall O, Revesz T. Research in motion: the enigma of Parkinson’s disease pathology spread. Nat Rev Neurosci. 2008;9:741–745. [PubMed]
72. Desplats P, Lee HJ, Bae EJ, et al. Inclusion formation and neuronal cell death through neuron-to-neuron transmission of α-synuclein [Erratum in: Proc Natl Acad Sci U S A 2009; 106: 17606] Proc Natl Acad Sci U S A. 2009;106:13010–13015. [PubMed]
73. Lee HJ, Suk JE, Patrick C, et al. Direct transfer of a-synuclein from neuron to astroglia causes inflammatory responses in synucleinopathies. J Biol Chem. 2010;285:9262–9272. [PMC free article] [PubMed]
74. Brundin P, Li JY, Holtou JL, Lindvall O, Revesz T. Research in motion: the enigma of Parkinson’s disease pathology spread. Nat Rev Neurosci. 2008;9:741–745. [PubMed]
75. Olanow CW, Prusiner SB. Is Parkinson’s disease a prion disorder? Proc Natl Acad Sci U S A. 2009;106:12571–12572. [PubMed]
76. Chu Y, Kordower JH. Age-associated increases of α-synuclein in monkeys and humans are associated with nigrostriatal dopamine depletion: Is this the target for Parkinson’s disease? Neurobiol Dis. 2007;25:134–149. [PubMed]
77. Koistinaho M, Lin S, Wu X, et al. Apolipoprotein E promotes astrocyte colocalization and degradation of deposited amyloid-beta peptides. Nat Med. 2004;10:719–726. [PubMed]
78. Wyss-Coray T, Loike JD, Brionne TC, et al. Adult mouse astrocytes degrade amyloid-beta in vitro and in situ. Nat Med. 2003;9:453–457. [PubMed]
79. Langsten JW, Irwin I. MPTP: current concepts and controversies. Clin Neuropharmacol. 1986;9:485–507. [PubMed]
80. Heikkila RE, Sieber BA, Manzino L, Sonsalla PK. Some features of the nigrostriatal dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in the mouse. Mol Chem Neuropathol. 1989;10:171–183. [PubMed]
81. Christine CW, Langston JW, Turner RS, Starr PA. The neuro-physiology and effect of deep brain stimulation in a patient with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism. J Neurosurg. 2009;110:234–238. [PMC free article] [PubMed]
82. Cui M, Aras R, Christian WV, et al. The organic cation transporter-3 is a pivotal modulator of neurodegeneration in the nigrostriatal dopaminergic pathway. Proc Natl Acad Sci U S A. 2009;106:8043–8048. [PubMed]
83. Javitch JA, D’Amato RJ, Strittmatter SM, Snyder SH. Parkinsonism-inducing neurotoxin, N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine: uptake of the metabolite N-methyl-4-phenylpyridine by dopamine neurons explain selective toxicity. Proc Natl Acad Sci USA. 1985;82:2173–2177. [PubMed]
84. Mayer RA, Kindt MV, Heikkila RE. Prevention of the nigrostriatal toxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine by inhibitors of 3,4-dihydroxyphenylethylmine transport. J Neurochem. 1986;47:1073–1079. [PubMed]
85. Namura I, Douillet P, Sun CJ, Pert A, Cohen RM, Chiueh CC. MPP+ (1-methyl-4-phenylpyridine) is a neurotoxin to dopamine-, norepinephrine- and serotonin-containing neurons. Eur J Pharmacol. 1987;136:31–37. [PubMed]
86. McNaught KS, Carrupt PA, Altomare C, et al. Isoquinoline derivatives as endogenous neurotoxins in the aetiology of Parkinson’s disease. Biochem Pharmacol. 1998;56:921–933. [PubMed]
87. Mahy N, Andrés N, Andrade C, Saura J. Age-related changes of MAO-A and -B distribution in human and mouse brain. Neurobiology (Bp) 2000;8:47–54. [PubMed]
88. Fowler CJ, Wiberg A, Orelaud L, Marcusson J, Winblad B. The effect of age on the activity and molecular properties of human brain monoamine oxidase. J Neural Transm. 1980;49:1–20. [PubMed]
89. Mandel S, Grunblatt E, Riederer P, Youdim MB. Genes and oxidative stress in parkinsonism: cDNA microarray studies. Adv Neurol. 2003;91:123–132. [PubMed]
90. Mallajosyula JK, Kaur D, Chinta SJ, et al. MAO-B elevation in mouse brain astrocytes results in Parkinson’s pathology. PLoS One. 2008;3:e1616–e1616. [PMC free article] [PubMed]
91. Fowler JS, Volkow ND, Wang GJ, et al. Inhibition of monoamine oxidase B in the brains of smokers. Nature. 1996;379:733–736. [PubMed]
92. Saccone NL, Rice JP, Rochberg N, et al. Genome screen for platelet monoamine oxidase (MAO) activity. Am J Med Genet. 1999;88:517–521. [PubMed]
93. Parkinson Study Group Effects of tocopherol and deprenyl on the progression of disability in early Parkinson’s disease. N Engl J Med. 1993;328:176–183. [PubMed]
94. Shoulson I, Oakes D, Fahn S, et al. Impact of sustained deprenyl (selegiline) in levodopa-treated Parkinson’s disease: a randomized placebo-controlled extension of the deprenyl and tocopherol antioxidative therapy of parkinsonism trial. Ann Neurol. 2002;51:604–612. [PubMed]
95. Parkinson Study Group Mortality in DATATOP: a multicenter trial in early Parkinson’s disease. Ann Neurol. 1998;43:318–325. [PubMed]
96. Olanow CW. Rationale for considering that propargylamines might be neuroprotective in Parkinson’s disease. Neurology. 2006;66(Suppl 4):S69–S79. [PubMed]
97. Wakabayashi K, Hayashi S, Yoshimoto M, Kudo H, Takahashi H. NACP/α-synuclein-positive filamentous inclusions in astrocytes and oligodendrocytes of Parkinson’s disease brains. Acta Neuropathol. 2000;99:14–20. [PubMed]
98. Saijo K, Winner B, Carson CT, et al. A Nurrl/CoREST pathway in microglia and astrocytes protects dopaminergic neurons from inflammation-induced death. Cell. 2009;137:47–59. [PMC free article] [PubMed]
99. Kadkhodaei B, Ito T, Joodmardi E, et al. Nurrl is required for maintenance of maturing and adult midbrain dopamine neurons. J Neurosci. 2009;29:15923–15932. [PubMed]
100. Zetterstrom RH, Solomin L, Jansson L, Hoffer BJ, Olson L, Perlmann T. Dopamine neuron agenesis in Nurrl-deficient mice. Science. 1997;276:248–250. [PubMed]
101. Jankovic J, Chen S, Le WD. The role of Nurrl in the development of dopaminergic neurons and Parkinson’s disease. Prog Neurobiol. 2005;77:128–138. [PubMed]
102. Le WD, Xu P, Jankovic J, et al. Mutations in NR4A2 associated with familial Parkinson disease [Erratum in: Nat Genet 2003;33: 214] Nat Genet. 2003;33:85–89. [PubMed]
103. Grimes DA, Han F, Panisset M, et al. Translated mutation in the Nurrl gene as a cause for Parkinson’s disease. Mov Disord. 2006;21:906–909. [PubMed]
104. Jacobsen KX, MacDonald H, Lemonde S, et al. A Nurrl point mutant, implicated in Parkinson’s disease, uncouples ERK1/2-dependent regulation of tyrosine hydroxylase transcription. Neurobiol Dis. 2008;29:117–122. [PubMed]
105. Dubois C, Hengerer B, Mattes H. Identification of a potent agonist of the orphan nuclear receptor Nurrl. ChemMedChem. 2006;1:955–958. [PubMed]
106. Abbracchio MP, Burnstock G, Verkhratsky A, Zimmermann H. Purinergic signalling in the nervous system: an overview. Trends Neurosci. 2009;32:19–29. [PubMed]
107. Boison D, Chen JF, Fredholm BB. Adenosine signaling and function in glial cells. Cell Death Differ. 2010;17:1071–1082. [PMC free article] [PubMed]
108. Rosin DL, Robeva A, Woodard RL, Guyenet PG, Linden J. Immunohistochemical localization of adenosine A2A receptors in the rat central nervous system. J Comp Neurol. 1998;401:163–186. [PubMed]
109. Schiffmann SN, Jacobs O, Vanderhaeghen JJ. Striatal restricted adenosine A2 receptor (RDC8) is expressed by enkephalin but not by substance P neurons: an in situ hybridization histochemistry study. J Neurochem. 1991;57:1062–1067. [PubMed]
110. Schwarzschild MA, Agnati L, Fuxe K, Chen JF, Morelli M. Targeting adenosine A2A receptors in Parkinson’s disease. Trends Neurosci. 2006;29:647–654. [PubMed]
111. Verkhratsky A, Krishtal OA, Burnstock G. Purinoceptors on neuroglia. Mol Neurobiol. 2009;39:190–208. [PubMed]
112. Pinna A, Fenu S, Morelli M. Motor stimulant effects of the adenosine A2A receptor antagonist SCH 58261 do not develop tolerance after repeated treatments in 6-hydroxydopamine-lesioned rats. Synapse. 2001;39:233–238. [PubMed]
113. Kanda T, Jackson MJ, Smith LA, et al. Adenosine A2A antagonist: a novel antiparkinsonian agent that does not provoke dyskinesia in parkinsonian monkeys. Ann Neurol. 1998;43:507–513. [PubMed]
114. Morelli M, Carta AR, Jenner P. Adenosine A2A receptors and Parkinson’s disease. Handb Exp Pharmacol. 2009;193:589–615. [PubMed]
115. Pinna A. Novel investigational adenosine A2A receptor antagonists for Parkinson’s disease. Expert Opin Investig Drugs. 2009;18:1619–1631. [PubMed]
116. Jenner P, Mori A, Hauser R, Morelli M, Fredholm BB, Chen JF. Adenosine, adenosine A2A antagonists, and Parkinson’s disease. Parkinsonism Relat Disord. 2009;15:406–413. [PubMed]
117. Ross GW, Abbott RD, Petrovitch H, et al. Association of coffee and caffeine intake with the risk of Parkinson disease. JAMA. 2000;283:2674–2679. [PubMed]
118. Ascherio A, Zhang SM, Hernán MA, et al. Prospective study of caffeine consumption and risk of Parkinson’s disease in men and women. Ann Neurol. 2001;50:56–63. [PubMed]
119. Chen JF, Xu K, Petzer JP, et al. Neuroprotection by caffeine and A2A adenosine receptor inactivation in a model of Parkinson’s disease. J Neurosci. 2001;21:RC143–RC143. [PubMed]
120. Ikeda K, Kurokawa M, Aoyama S, Kuwana Y. Neuroprotection by adenosine A2A receptor blockade in experimental models of Parkinson’s disease. J Neurochem. 2002;80:262–270. [PubMed]
121. Pierri M, Vaudano E, Sager T, Englund U. KW-6002 protects from MPTP induced dopaminergic toxicity in the mouse. Neuropharmacology. 2005;48:517–524. [PubMed]
122. Anderson CM, Bergher JP, Swanson RA. ATP-induced ATP release from astrocytes. J Neurochem. 2004;88:246–256. [PubMed]
123. Bowser DN, Khakh BS. Vesicular ATP is the predominant cause of intercellular calcium waves in astrocytes. J Gen Physiol. 2007;129:485–491. [PMC free article] [PubMed]
124. Dawson TM, Ko HS, Dawson VL. Genetic animal models of Parkinson’s disease. Neuron. 2010;66:646–661. [PMC free article] [PubMed]

Articles from Neurotherapeutics are provided here courtesy of Springer