PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): o273.
Published online 2007 December 18. doi:  10.1107/S1600536807065798
PMCID: PMC2947777

5-[(9H-Fluoren-9-yl­idene)meth­yl]furan-2-carbonitrile

Abstract

The title compound, C19H11NO, is stabilized by one intra­molecular C—H(...)O hydrogen bond. The compound can be synthesized in good yield (49%), by transformation of functional groups [starting with 5-(fluoren-9-ylidenemeth­yl)furan-2-carbaldehyde]. The flourene and furan ring systems are nearly coplanar, with a dihedral angle of 6.36 (7)°.

Related literature

For a related structure, see: Britten et al. (2001 [triangle]). For related literature, see: Allen (2002 [triangle]); Leclerc (2001 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o273-scheme1.jpg

Experimental

Crystal data

  • C19H11NO
  • M r = 269.29
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o273-efi1.jpg
  • a = 15.899 (3) Å
  • b = 5.6109 (11) Å
  • c = 15.664 (3) Å
  • β = 103.69 (3)°
  • V = 1357.6 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 293 K
  • 0.32 × 0.07 × 0.05 mm

Data collection

  • Oxford Diffraction Gemini R CCD diffractometer
  • Absorption correction: analytical (Clark & Reid, 1995 [triangle]) T min = 0.921, T max = 0.987
  • 27628 measured reflections
  • 2746 independent reflections
  • 1524 reflections with I > 2σ(I)
  • R int = 0.043

Refinement

  • R[F 2 > 2σ(F 2)] = 0.062
  • wR(F 2) = 0.179
  • S = 0.94
  • 2746 reflections
  • 190 parameters
  • H-atom parameters constrained
  • Δρmax = 0.24 e Å−3
  • Δρmin = −0.21 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2007 [triangle]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2007 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: DIAMOND (Brandenburg, 1998 [triangle]); software used to prepare material for publication: enCIFer (Allen et al., 2004 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807065798/bx2120sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807065798/bx2120Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Grant Agency of the Slovak Republic (grant Nos. 1/2449/05, 1/4453/07 and APVT-20-007304), as well as Structural Funds, Interreg IIIA for financial support in purchasing the diffractometer.

supplementary crystallographic information

Comment

Our synthetic research efforts have been focused to a set of multi-ring monomer systems based on furan and fluorene. Fluorene containing oligomeres are an important class of electroactive and photoactive materials. These compounds possesses exceptional electrooptical properties for applications in polymer light emitting diodes (PLEDs) and nanocomposite materials with advanced anticorrosive properties (Leclerc, 2001).

In the title compound the O1—C15 [1.359 (2) Å] and O1—C18 [1.381 (2) Å] bond lengths, are in a quite good agreement with similar furan compounds in the Cambridge Structural Database (CSD; Version 5.27, 2006 release; Allen, 2002)2-(1,2,3,5-Diselenadiazol-4-yl)-5-cyanofuran (Britten et al., 2001; CSD refcode YIFHUQ) as representative example. The flourene moiety is almost planar with maximun deviation of 0.030 (2)Å for C13. The flourene and furan rings are nearly coplanar with a dihedral angle of 6.36 (7)°. In the crystal structure the molecular packing is stabilized by intramolecular hydrogen bond (Fig. 1).

Experimental

A solution of 5-fluoren-9-ylidenemethyl-furan-2-carbaldehyde (0.0033 mol, 0.91 g), NH2OH.HCl (0.0039 mol, 0.3 g, 1.12 eq.) in N-Methyl-pyrrolidinone (5.5 ml) was heated at 110 - 115°C. Progress of the reaction was followed by TLC and after 8 h the mixture was poured into H2O (100 ml) and extracted with EtOAc (2 x 50 ml). The combined layers EtOAc were dried (Na2SO4) and the solvent was evaporated in vacuo. Crude product could be purified by collumn chromatography using silikagel Merck 60 in toluene as eluent (40% yield) Rf = 0,51 (toluen). M.p.: 167–169°C.

1H NMR (300 MHz, DMSO – d6, p.p.m.): δ= 6.78 (d, 1H, J = 3.6 Hz), 7.15 (s, 1H), 7.31 - 7.29 (m, 1H), 7.45 - 7.33 (m, 4H), 7.72 - 7.66 (m, 3H), 8.51 (d, 1H, J = 7.65 Hz).

13C-NMR (75 MHz, DMSO – d6, p.p.m.) δ= 109.99, 111.77, 114.62, 119.80, 119.87, 120.33, 123.91, 125.74, 125.82, 127.20, 127.69, 129.69, 129.23, 129.88, 135.25, 138.06, 139.37, 139.62, 141.75, 156.19.

IR (KBr, cm-1): 3136 (w), 3120 (vw), 3053(w), 2221(s, νC[equivalent]N), 1716(s, ν(C=C)), 1633(m), 1611(m), 1600(m, ν(C=C) aromatic), 1494(s, ν(C=C) aromatic), 1469(w), 1448(s), 1354(m), 1297(m), 1290(m), 1274(m, νas (C—O—C)), 1263(m), 1198(w), 1180(m), 1152(m), 1138(w), 1111(m), 1098(w), 1029(s, νs (C—O—C)), 975(m), 966(m), 941(m), 917(m), 882(m), 871(m), 793(νs, γ(CCH)), 781(νs, γ(CCH)), 772(m, γ(CCH)), 737(m, γ(CCH)), 728(νs, γ(CCH)), 724(νs, γ(CCH)), 668(m), 645(m), 625(m), 580(w), 561(w), 524(w), 511(w), 473(m), 455(m), 442(vw), 432(vw), 401(m)

Refinement

H atoms were placed in calculated positions and refined using a riding model, with C—H = 0.93 Å and Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.
The numbering scheme of 5-((9H-fluoren-9-ylidene) methyl) furan-2-carbonitrile. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen-bond interactions are indicated by dashed lines.

Crystal data

C19H11NOF000 = 560
Mr = 269.29Dx = 1.317 Mg m3
Monoclinic, P21/nMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7057 reflections
a = 15.899 (3) Åθ = 3.1–29.1º
b = 5.6109 (11) ŵ = 0.08 mm1
c = 15.664 (3) ÅT = 293 K
β = 103.69 (3)ºBlock, yellow
V = 1357.6 (5) Å30.32 × 0.07 × 0.05 mm
Z = 4

Data collection

Oxford Diffraction Gemini R CCD diffractometer2746 independent reflections
Radiation source: fine-focus sealed tube1524 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.043
T = 293 Kθmax = 26.4º
Rotation method data acquisition using ω and phi scansθmin = 4.2º
Absorption correction: analytical(Clark & Reid, 1995)h = −19→19
Tmin = 0.921, Tmax = 0.987k = −7→7
27628 measured reflectionsl = −19→19

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.062H-atom parameters constrained
wR(F2) = 0.179  w = 1/[σ2(Fo2) + (0.121P)2] where P = (Fo2 + 2Fc2)/3
S = 0.94(Δ/σ)max < 0.001
2746 reflectionsΔρmax = 0.24 e Å3
190 parametersΔρmin = −0.21 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Experimental. face-indexed (CrysAlis RED; Oxford Diffraction, 2007)
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.17033 (14)0.6172 (3)0.88196 (13)0.0544 (5)
C20.23065 (15)0.6471 (4)0.96102 (15)0.0680 (6)
H2A0.22590.77390.99780.082*
C30.29834 (16)0.4852 (4)0.98462 (15)0.0737 (7)
H3A0.33850.50461.03800.088*
C40.30765 (16)0.2974 (4)0.93141 (16)0.0741 (7)
H4A0.35370.19190.94840.089*
C50.24829 (15)0.2672 (4)0.85303 (15)0.0651 (6)
H5A0.25360.14000.81660.078*
C60.17991 (13)0.4280 (3)0.82809 (13)0.0538 (5)
C70.10829 (13)0.4398 (3)0.75032 (13)0.0521 (5)
C80.08974 (15)0.2931 (4)0.67850 (14)0.0602 (6)
H8A0.12480.16260.67470.072*
C90.01799 (15)0.3426 (4)0.61169 (14)0.0660 (6)
H9A0.00440.24360.56270.079*
C10−0.03397 (15)0.5382 (4)0.61677 (14)0.0686 (6)
H10A−0.08180.56850.57090.082*
C11−0.01619 (14)0.6875 (4)0.68787 (13)0.0605 (6)
H11A−0.05120.81880.69040.073*
C120.05522 (13)0.6391 (3)0.75621 (12)0.0518 (5)
C130.09090 (13)0.7573 (3)0.84099 (13)0.0532 (5)
C140.06414 (15)0.9425 (3)0.88210 (14)0.0599 (6)
H14A0.10130.97250.93650.072*
C15−0.00743 (14)1.1057 (3)0.86312 (14)0.0577 (6)
C16−0.02863 (18)1.2789 (4)0.91496 (15)0.0737 (7)
H16A0.00171.31390.97200.088*
C17−0.10323 (17)1.3964 (4)0.86887 (16)0.0732 (7)
H17A−0.13141.52270.88860.088*
C18−0.12551 (15)1.2896 (4)0.79073 (16)0.0647 (6)
C19−0.19420 (18)1.3303 (4)0.7165 (2)0.0743 (7)
N1−0.25096 (16)1.3660 (4)0.65689 (17)0.0953 (7)
O1−0.06784 (9)1.1091 (2)0.78554 (9)0.0624 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0575 (13)0.0541 (11)0.0489 (12)−0.0072 (10)0.0075 (10)0.0027 (9)
C20.0730 (15)0.0716 (13)0.0545 (13)−0.0084 (12)0.0054 (12)−0.0022 (11)
C30.0701 (15)0.0820 (15)0.0601 (14)−0.0014 (13)−0.0021 (12)0.0087 (13)
C40.0673 (16)0.0750 (15)0.0735 (16)0.0064 (12)0.0036 (13)0.0144 (13)
C50.0609 (14)0.0672 (13)0.0650 (14)0.0063 (11)0.0102 (12)0.0039 (10)
C60.0540 (12)0.0550 (11)0.0524 (12)−0.0026 (9)0.0126 (10)0.0015 (9)
C70.0565 (12)0.0515 (11)0.0487 (11)−0.0040 (9)0.0130 (10)0.0011 (9)
C80.0649 (14)0.0590 (12)0.0572 (13)−0.0001 (10)0.0156 (11)−0.0064 (10)
C90.0745 (15)0.0676 (13)0.0534 (13)−0.0045 (12)0.0101 (12)−0.0116 (10)
C100.0710 (15)0.0762 (14)0.0521 (13)0.0013 (12)0.0015 (11)−0.0044 (11)
C110.0613 (14)0.0601 (12)0.0542 (13)0.0058 (10)0.0020 (11)−0.0042 (10)
C120.0540 (12)0.0518 (11)0.0485 (11)−0.0052 (9)0.0099 (10)0.0009 (9)
C130.0578 (13)0.0519 (10)0.0478 (11)−0.0054 (9)0.0083 (10)−0.0021 (9)
C140.0685 (14)0.0564 (12)0.0536 (12)−0.0046 (10)0.0119 (11)−0.0030 (9)
C150.0656 (14)0.0555 (11)0.0526 (12)−0.0046 (10)0.0154 (11)−0.0029 (9)
C160.0938 (19)0.0651 (13)0.0619 (14)0.0079 (13)0.0179 (13)−0.0055 (11)
C170.0869 (18)0.0621 (13)0.0746 (16)0.0074 (12)0.0272 (14)−0.0099 (11)
C180.0620 (14)0.0586 (12)0.0759 (16)0.0016 (10)0.0211 (13)−0.0007 (11)
C190.0684 (17)0.0674 (14)0.0895 (19)0.0048 (12)0.0233 (15)−0.0074 (13)
N10.0808 (16)0.0981 (16)0.0986 (18)0.0118 (13)0.0047 (15)−0.0131 (13)
O10.0625 (10)0.0616 (9)0.0637 (10)0.0017 (7)0.0162 (8)−0.0079 (7)

Geometric parameters (Å, °)

C1—C21.386 (3)C10—C111.368 (3)
C1—C61.386 (3)C10—H10A0.9300
C1—C131.497 (3)C11—C121.390 (3)
C2—C31.390 (3)C11—H11A0.9300
C2—H2A0.9300C12—C131.473 (3)
C3—C41.373 (3)C13—C141.344 (3)
C3—H3A0.9300C14—C151.436 (3)
C4—C51.370 (3)C14—H14A0.9300
C4—H4A0.9300C15—O11.359 (2)
C5—C61.396 (3)C15—C161.359 (3)
C5—H5A0.9300C16—C171.399 (3)
C6—C71.459 (3)C16—H16A0.9300
C7—C81.369 (3)C17—C181.333 (3)
C7—C121.417 (3)C17—H17A0.9300
C8—C91.381 (3)C18—O11.381 (2)
C8—H8A0.9300C18—C191.413 (4)
C9—C101.387 (3)C19—N11.152 (3)
C9—H9A0.9300
C2—C1—C6119.0 (2)C11—C10—H10A119.3
C2—C1—C13130.90 (19)C9—C10—H10A119.3
C6—C1—C13110.13 (18)C10—C11—C12118.7 (2)
C1—C2—C3119.1 (2)C10—C11—H11A120.6
C1—C2—H2A120.4C12—C11—H11A120.6
C3—C2—H2A120.4C11—C12—C7119.62 (18)
C4—C3—C2121.9 (2)C11—C12—C13132.57 (18)
C4—C3—H3A119.1C7—C12—C13107.81 (17)
C2—C3—H3A119.1C14—C13—C12133.0 (2)
C5—C4—C3119.2 (2)C14—C13—C1122.10 (19)
C5—C4—H4A120.4C12—C13—C1104.83 (17)
C3—C4—H4A120.4C13—C14—C15136.0 (2)
C4—C5—C6119.8 (2)C13—C14—H14A112.0
C4—C5—H5A120.1C15—C14—H14A112.0
C6—C5—H5A120.1O1—C15—C16107.54 (19)
C1—C6—C5121.0 (2)O1—C15—C14123.50 (18)
C1—C6—C7107.29 (17)C16—C15—C14129.0 (2)
C5—C6—C7131.70 (19)C15—C16—C17109.2 (2)
C8—C7—C12120.82 (19)C15—C16—H16A125.4
C8—C7—C6129.27 (19)C17—C16—H16A125.4
C12—C7—C6109.90 (17)C18—C17—C16105.7 (2)
C7—C8—C9118.7 (2)C18—C17—H17A127.1
C7—C8—H8A120.6C16—C17—H17A127.1
C9—C8—H8A120.6C17—C18—O1110.3 (2)
C8—C9—C10120.78 (19)C17—C18—C19132.0 (2)
C8—C9—H9A119.6O1—C18—C19117.7 (2)
C10—C9—H9A119.6N1—C19—C18178.7 (3)
C11—C10—C9121.3 (2)C15—O1—C18107.23 (16)
C6—C1—C2—C3−0.8 (3)C8—C7—C12—C13178.99 (18)
C13—C1—C2—C3178.4 (2)C6—C7—C12—C13−1.8 (2)
C1—C2—C3—C40.6 (3)C11—C12—C13—C143.9 (4)
C2—C3—C4—C5−0.5 (4)C7—C12—C13—C14−175.5 (2)
C3—C4—C5—C60.5 (3)C11—C12—C13—C1−178.4 (2)
C2—C1—C6—C50.9 (3)C7—C12—C13—C12.1 (2)
C13—C1—C6—C5−178.45 (18)C2—C1—C13—C14−3.0 (3)
C2—C1—C6—C7−179.96 (18)C6—C1—C13—C14176.26 (18)
C13—C1—C6—C70.7 (2)C2—C1—C13—C12179.0 (2)
C4—C5—C6—C1−0.8 (3)C6—C1—C13—C12−1.7 (2)
C4—C5—C6—C7−179.6 (2)C12—C13—C14—C15−1.0 (4)
C1—C6—C7—C8179.8 (2)C1—C13—C14—C15−178.4 (2)
C5—C6—C7—C8−1.2 (4)C13—C14—C15—O1−4.3 (4)
C1—C6—C7—C120.7 (2)C13—C14—C15—C16175.6 (2)
C5—C6—C7—C12179.7 (2)O1—C15—C16—C17−0.8 (3)
C12—C7—C8—C9−0.1 (3)C14—C15—C16—C17179.3 (2)
C6—C7—C8—C9−179.15 (19)C15—C16—C17—C180.5 (3)
C7—C8—C9—C100.5 (3)C16—C17—C18—O10.0 (3)
C8—C9—C10—C11−0.2 (3)C16—C17—C18—C19−179.5 (2)
C9—C10—C11—C12−0.5 (3)C16—C15—O1—C180.8 (2)
C10—C11—C12—C70.8 (3)C14—C15—O1—C18−179.31 (19)
C10—C11—C12—C13−178.6 (2)C17—C18—O1—C15−0.5 (2)
C8—C7—C12—C11−0.5 (3)C19—C18—O1—C15179.08 (19)
C6—C7—C12—C11178.63 (17)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C11—H11A···O10.932.273.034 (3)140

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2120).

References

  • Allen, F. H. (2002). Acta Cryst. B58, 380–388. [PubMed]
  • Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst.37, 335–338.
  • Brandenburg, K. (1998). DIAMOND University of Bonn, Germany.
  • Britten, J. F., Clements, O. P., Cordes, A. W., Haddon, R. C., Oakley, R. T. & Richardson, J. F. (2001). Inorg. Chem.40, 6820–6824. [PubMed]
  • Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.
  • Leclerc, M. (2001). J. Polym. Sci. Part A Polym. Chem.39, 2867–2873.
  • Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
  • Sheldrick, G. M. (1997). SHELXL97 and SHELXS97 University of Göttingen, Germany.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography