Search tips
Search criteria 


Logo of nihpaAbout Author manuscriptsSubmit a manuscriptHHS Public Access; Author Manuscript; Accepted for publication in peer reviewed journal;
J Neurosci. Author manuscript; available in PMC 2010 September 6.
Published in final edited form as:
PMCID: PMC2933517

GABA-A receptor-mediated signaling alters the structure of spontaneous activity in the developing retina


Ambient GABA modulates firing patterns in adult neural circuits by tonically activating extrasynaptic GABA-A receptors. Here, we demonstrate that during a developmental period when activation of GABA-A receptors causes membrane depolarization, tonic activation of GABA-A receptors blocks all spontaneous activity recorded in retinal ganglion cells (RGCs) and starburst amacrine cells (SACs). Bath application of the GABA-A receptor agonist muscimol blocked spontaneous correlated increases in intracellular calcium concentration and compound postsynaptic currents in RGCs associated with retinal waves. In addition, GABA-A receptor agonists activated a tonic current in RGCs that significantly reduced their excitability. Using a transgenic mouse in which GFP is expressed under the mGluR2 promoter to target recordings from SACs, we found that GABA-A receptor agonists blocked compound postsynaptic currents and also activated a tonic current. GABA-A receptor antagonists reduced the holding current in SACs but not RGCs, indicating that ambient levels of GABA tonically activate GABA-A receptors in SACs. GABA-A receptor antagonists did not block retinal waves but did alter the frequency and correlation structure of spontaneous RGC firing. Interestingly, the drug aminophylline, a general adenosine receptor antagonist used to block retinal waves, induced a tonic GABA-A receptor antagonist-sensitive current in outside-out patches excised from RGCs, indicating aminophylline exerts its action on retinal waves by direct activation of GABA-A receptors. These findings have implications for how various neuroactive drugs and neurohormones known to modulate extrasynaptic GABA-A receptors may influence spontaneous firing patterns that are critical for the establishment of adult neural circuits.

Keywords: Spontaneous activity, Retinal waves, retinal ganglion cell, starburst amacrine cell, aminophylline


GABA-A receptor-mediated signaling in neural networks can be divided into two modes. The first mode, termed “phasic”, corresponds to fast activation of synaptic GABA-A receptors. The second mode, termed “tonic”, corresponds to persistent activation of high-affinity extrasynaptic GABA-A receptors by ambient levels of GABA (for reviews, see Semyanov et al., 2004; Farrant and Nusser, 2005). Tonic activation of GABA-A receptors is a powerful regulator of network excitability because it causes a persistent increase in the resting conductance of cells (Mitchell and Silver, 2003; Semyanov et al., 2003; Chadderton et al., 2004). Extrasynaptic GABA-A receptors are modulated by alcohol, neurosteroids, and anesthetics and therefore represent a clinically relevant modulator of network activity (Farrant and Nusser, 2005; Mody, 2005).

The role of tonic GABA-A receptor activation in developing neural circuits is much less well-understood. At early stages of neural circuit development, intracellular chloride concentrations in neurons are high and therefore activation of GABA-A receptors leads to chloride efflux, which is depolarizing. The depolarizing action of GABA is a critical component of spontaneous periodic activity in the hippocampus, cortex, and spinal cord (Leinekugel et al., 1997; Garaschuk et al., 1998; O’Donovan, 1999; Ben-Ari, 2001) and is critical for several aspects of circuit development (Rivera et al., 1999; Ben-Ari, 2002; Payne et al., 2003; Ben-Ari et al., 2004; Tozuka et al., 2005). Tonic activation of GABA-A receptors precedes phasic activation in early circuit development (for reviews, see Owens and Kriegstein, 2002; Represa and Ben-Ari, 2005), and may play a critical role in synaptogenesis during development (Demarque et al., 2002; Liu et al., 2006). In developing hippocampus, tonic activation of GABA-A receptors increases the excitability of pyramidal cells (Marchionni et al.,2007), potentially contributing to network excitability at early stages of development.

Here we explore the role of GABA signaling in controlling network excitability in the developing retina, which exhibits highly correlated spontaneous activity called retinal waves. Retinal waves are detected from one week before birth to two weeks after birth in mice and rats, and they play a critical role in the establishment of normal circuits throughout the developing visual system (for reviews, see Wong, 1999; Torborg and Feller, 2005; Huberman, 2007). In this study, we focus on retinal waves that occur between birth (P0) and postnatal day 7 (P7) in mice and rats, which propagate through a network of interconnected cholinergic interneurons, the starburst amacrine cells (Zheng et al., 2006). At these ages, RGCs (Feller et al., 1996) and starburst amacrine cells (Syed et al., 2004b) receive barrages of GABAergic inputs, and activation of GABA-A receptors is depolarizing in RGCs (Fischer et al., 1998; Stellwagen et al., 1999; Johnson et al., 2003; Zhang et al., 2006).

We demonstrate that tonic activation of GABA-A receptors blocks retinal waves by reducing the excitability of starburst amacrine cells and RGCs. We also show that endogenous activation of GABA-A receptors serves to de-correlate RGC firing. Last, we demonstrate that aminophylline, a drug we previously reported to block retinal waves by blocking adenosine receptors, acts through tonic activation of GABA-A receptors.



The University of California San Diego Institutional Animal Care and Use Committee approved all procedures. Newborn rats (Sprague-Dawley, P1-P7), mice (c57B6/J, P0-P7), and transgenic mice (C57BL/6J-TgN(grm2-IL2RA/GFP)1, P5-P7) in which the fusion protein IL2RA-GFP is expressed under the mGluR2 promoter were used (Watanabe et al., 1998; Soda et al., 2003). For these studies, we do not take advantage of the IL2RA, which allows for immunotoxin-mediated selective ablation of starburst amacrine cells (Yoshida et al., 2001).

Retinal preparation

Retinas were isolated as described previously (Bansal et al., 2000). Briefly, animals were anesthetized with halothane and decapitated. Retinas were isolated in artificial cerebrospinal fluid (ACSF) containing (in mM): 119.0 NaCl, 26.2 NaHCO3, 11 glucose, 2.5 KCl, 1.0 K2HPO4, 2.5 CaCl2 and 1.3 MgCl2. Retinas were cut into thirds and mounted, ganglion cell side up, onto filter paper. These whole mount preparations were kept at 32°C in ACSF or culture media bubbled with 95% O2/5% CO2 until use (1-8 hours). During experiments, all preparations were superfused continuously with oxygenated ACSF warmed to 32°-34°C.


Whole-cell patch-clamp recordings were made from visualized RGCs (40× water-immersion objective; Olympus Optical). Borosilicate glass pipettes (Garner Glass Co., Claremont, CA) were pulled (PP-830, Narishige) to a tip resistance of ~5 MΩ when filled with a pipette solution containing (in mM): 98.3 K-gluconate (or KCl), 40 HEPES, 1.7 KCl, 0.6 EGTA, 5 MgCl2, 2 Na2ATP, and 0.3 Na-GTP; pH was adjusted to 7.25 with KOH. In Figure 5, either the pipette solution or ACSF was modified to yield a specific ion concentration. In these cases, equivalent amounts of KCl replaced K-gluconate in the pipette solution and K+ replaced Na+ in ACSF, respectively. For whole-cell voltage clamp, the current responses to pharmacological manipulations were recorded at a holding potential of − 60 mV, or with other protocols as indicated in the figure legends. The holding potentials were off-line corrected for the liquid junction potential of each set of solutions (Neher, 1992). Data were filtered at 1 kHz and digitized at 5 kHz. For whole-cell current clamp, the membrane potential changes were monitored with no current injected unless otherwise indicated. In successful recordings, seals >1 GΩ were obtained in 30 s or less. The ratios of access resistance to input resistance were 5- 15% before and after drug application. In some cases, voltage-clamped outside-out patches were excised from the somas of RGCs. Gigaohm seals were obtained by moving the pipette away from the soma immediately after break-in. Recordings were made using Axopatch 200B or Multiclamp 700A patch-clamp amplifiers and data were acquired to and analyzed on a Pentium-based PC using PClamp software (Molecular Devices).

Figure 5
Aminophylline blocks retinal waves by tonic activation of GABA-A receptors


Ca2+ imaging was performed with a video-based intensified SIT camera system as described previously (Bansal et al., 2000). The Ca2+ indicator fura-2 AM (Molecular Probes, Eugene, OR) was loaded by a standard protocol (Bansal et al., 2000; Colicos et al., 2004) for 2-8 hr before the imaging experiments.


All pharmacological agents were purchased from Tocris Biosciences (Ellisville, MO) or Sigma-Aldrich (St. Louis, MO). Aminophylline was dissolved directly in ACSF at its working concentrations; all other drugs were prepared as concentrated stock solutions. Stocks were stored at −20°C and diluted at or above 1:1000 in ACSF on the day of the experiment.

Pulsed applications of aminophylline-containing solutions were delivered through a glass pipette of approximately 2 μm tip diameter. The pipette was positioned less than 20 microns from outside-out patches and the puffing solution was delivered with an ejected pressure of about 10 psi using a PV830 Pneumatic PicoPump (World Precision Instruments, Sarasota, FL). To maintain a constant pH value in the puffing solution, aminophylline was previously dissolved in an external solution containing (in mM): 5 KCl, 123 NaCl, 3 CaCl2, 2 MgCl2, 10 glucose and 10 HEPES, pH 7.3 with NaOH. Pulsed application of the control external solution did not induce any detectable currents.

Nonstationary noise analysis

Peak-scaled nonstationary noise analysis was used to estimate the conductance of extrasynaptic GABA-A receptors recorded in outside out patches excised from RGCs. Methods similar to those used for synaptic GABA-A receptor responses were used (De Koninck and Mody, 1994). The average binned variance (σ2) was plotted against the amplitude of the current (I) and fit with σ2 = b+iI-I2/N to give estimates of single channel current (i), the number of channels open at the peak (N) and baseline variance (b).


We conducted immunofluorescence experiments to determine the expression pattern of GFP in transgenic mice expressing GFP under the mGluR2 promoter (Figure 3A). Eyeballs prepared from P7 mice were fixed overnight in 4% paraformaldehyde in PBS at 4°C. Eyecups were cryoprotected in 30% sucrose with 0.1% sodium azide at 4°C, frozen in OCT compound (Ted Pella) and cut into 30 μm sections with a cryostat. Sections were washed in 1× PBS, blocked for nonspecific binding with 2% normal donkey serum, 2% bovine serum albumin (BSA) and 0.3% TritonX-100 in 1× PBS for 1 hour at room temperature, then incubated overnight with the primary antibody against choline acetyltransferase (ChAT,1:200, Chemicon AB144P, Temecula, CA). Sections were then incubated for 1 hour in block solution at room temperature with the appropriate affinity-purified secondary antibody conjugated to Alexa 488 (1:500, Molecular Probes, Eugene, OR). To measure nonspecific binding of the secondary antibody, the primary antibody was omitted. After processing, sections were rinsed in PBS and mounted in Vectashield (Vector Labs, Burlingame, CA). Images were acquired with a CCD camera (Optronics, Goleta, CA) attached to an upright microscope (Zeiss Axioskop 2; Thornwood, NY) with a 10× objective (numerical aperture, 0.45). Digital images were processed in Adobe Photoshop (Adobe Systems, Inc.; San Jose, CA) to enhance color and contrast.

Figure 3
Tonic activation of GABA-A receptors in starburst amacrine cells

Multielectrode array recording

After enucleation, the eyes were transferred to buffered Ames medium. The lens and vitreous were removed from the eyecup, and the retinal pigment epithelium was detached from the retina. The isolated retinas were placed ganglion cell side down onto a flat, hexagonal array of 61 extracellular electrodes spaced 60 μm apart from each other, with a total diameter of 480 μm (Litke et al., 2003). While on the array, the retinas were superfused with Ames solution bubbled with 95% O2 and 5% CO2 and maintained at 35° C, pH 7.4. Voltage traces from the individual electrodes were bandpass filtered from 80 Hz – 2 kHz, and digitized with a temporal resolution of 0.05 msec (Meister et al., 1994) and then stored for off-line analysis. Spikes were segregated into single units using a semi-automated procedure based on principal component analysis of spike waveforms (modified for 61 electrodes from Litke et al., 2004), and the presence of a refractory period was verified in the spike trains from each unit. Spikes recorded on multiple electrodes were identified by temporal coincidence; only spikes from the electrode with the most clearly defined cluster were analyzed further.

We computed several measures of spiking properties for each single unit recorded as well as for the whole electrode. The average firing rate was calculated by summing the total number of spikes for each 30-min recording, and then dividing by the length of the recording. The firing rate as a function of time was computed by counting the spikes in successive time bins and dividing these counts by the bin width. The duration of bursts (defined as a minimum of 3 spikes firing at 2 Hz) and the interburst interval were computed by averaging over each 30-min recording for an individual electrode or a single unit. The correlation index was calculated as previously described (Wong et al., 1993; Torborg et al., 2005). Briefly, the correlation index measures the factor by which the firing rate of cell B (or the firing rate recorded on electrode B) increases over its mean value within ±100ms of a spike from a reference cell (or a reference electrode) A:

Correlation Index=NAB(0.1s,+0.1s).TNA(0,T).NB(0,T).(0.2s)

where NAB(−0.1s,0.1s) is the number of spike pairs from cells A and B that are separated by no more than ±100ms, T is the total recording time, NA(0,T) is the total number of spikes in cell A, and NB(0,T) is the total number of spikes in cell B. Cells were considered to be at the position of the electrode on which they had been recorded.


Differences between means of different groups were evaluated for statistical significance with the Student’s test for two groups. For imaging experiments, (Figures 1B and E), statistical significance was assayed with a one-way ANOVA followed by the Newman-Keuls post-hoc test to compare each condition to control. Throughout the figures, significance is represented with asterisks with the following notation: *p<0.05, **p<0.01, and ***p<0.001.

Figure 1
GABA-A receptor agonists block waves and induce a tonic current in both mice and rats


Tonic activation of GABA-A receptors blocked spontaneous activity in RGCs and induced a shunting conductance

We first investigated whether tonic activation of GABA-A receptors modulated retinal waves as assayed by imaging of the fluorescent calcium indicator fura-2AM (Figure 1A) in both rats and mice. We found that bath application of the GABA-A receptor agonist muscimol (25-100 μM) completely blocked spontaneous calcium transients (Figure 1Ai, n = 7 retinas). To determine the effect of different levels of GABA-A receptor activation on retinal waves we performed calcium imaging while applying different concentrations of muscimol. Wave frequency decreased as the concentration of muscimol increased. A significant decrease in frequency was observed with application of 10nM muscimol, and waves were completely blocked by 500nM muscimol (Figure 1Aii).

Why does tonic activation of GABA-A receptors block retinal waves? The reversal potential of GABA-A receptor-mediated chloride currents in RGCs is estimated to be −40 mV at P3 and hyperpolarizes to −60 mV by P7 (Zhang et al., 2006). Hence at ages younger than P6, activation of GABA-A receptors causes a chloride efflux that depolarizes retinal neurons (Zhang et al., 2006). Indeed, in contrast to what we have observed in the retina, in developing hippocampus tonic activation of GABA-A receptors increases the excitability of the network (Marchionni et al., 2007). Consistent with this depolarizing action, we found that bath application of muscimol caused a variable transient decrease in baseline fluorescence corresponding to an increase in intracellular calcium concentration, suggesting that activation of GABA-A receptors led to a tonic depolarization of retinal neurons (example trace shown in Figure 1Ai, inset).

One possible reason that GABA agonists block retinal waves is that tonic activation of GABA-A receptors activates a resting conductance that reduces the excitability of retinal neurons by acting as a shunt. To test this hypothesis, we conducted whole cell voltage clamp experiments from RGCs (Figure 1B). The pipette solution for these recordings contained a high concentration of KCl (ECl = −4 mV), so that GABA-A receptor-mediated currents at −60 mV were inward. Bath application of muscimol blocked the compound postsynaptic currents (PSCs) associated with retinal waves, confirming the imaging results. In addition, muscimol activated a tonic current, which we measured as the change in baseline holding current (Figure 1Bi). Within the first 30 seconds after muscimol application, there was a large transient increase in holding current that became a sustained inward current. Amplitude distributions of sustained holding current were fit by Gaussians (Figure 1Bii) to yield the mean amplitude of muscimol-induced tonic current (see Tables Tables11 and and22 for summary data). This increase in the resting conductance was accompanied by an increase in the current variance, consistent with an increase in the number of open GABA-A receptor channels (Kaneda et al., 1995; Brickley et al., 1996). Note we found no significant difference between the magnitudes of tonic currents in rat and mouse RGCs.

Summary of changes in holding current, RMS noise and resting conductance in rat RGCs under different conditions. Measurements were conducted using whole cell voltage clamp recording with Vh=−60 mV and using an internal solution with a calculated ...
Summary of changes in holding current and resting conductance in mouse RGCs and SACs using the same conditions as Table 1.

To estimate the concentration of ambient GABA capable of modulating wave frequency, we bath applied varying concentrations of GABA (Figure 1C). Wave frequency decreased as the concentration of exogenous GABA increased, with a significant decrease from control observed at 500nM and a complete blockade of retinal waves obtained with 10 μM GABA. These results indicate that tonic activation of GABA receptors modulates wave frequency.

To determine how tonic inhibition affects the excitability of RGCs, we counted the number of action potentials fired by RGCs in response to depolarizing current steps of increasing amplitude in the presence and absence of muscimol (Figure 2A). Muscimol (100μM) decreased the firing rate at all amplitudes of injected current compared to control (Figure 2B), suggesting tonic activation of GABA-A receptors reduces the excitability of developing rat RGCs.

Figure 2
Tonic activation of GABA-A receptors reduces RGC excitability

Increasing the resting conductance (i.e. decreasing the input resistance) produces a shunt, which is predicted to cause a slope change in the relationship between the input current and the membrane potential. However, several studies, both theoretical and experimental, have indicated that for several classes of neurons an increase in the resting inhibitory conductance causes a linear shift rather than a slope change in the current-voltage relationship (Brickley et al., 1996; Chance et al., 2002). To determine the effects of tonic inhibitory conductance on RGCs, we plotted membrane potential vs. the injected current in control conditions and in the presence of muscimol. We found that activation of a tonic GABA-A receptor-mediated conductance significantly altered the current-voltage relationship (Figure 2C). These findings suggest that the large GABA-A receptor-induced conductance change observed in RGCs dramatically reduces the excitability of RGCs by shunting excitatory conductances. This shunt is likely to clamp the membrane at the depolarized reversal potential of GABA-A receptors, which is estimated to be −40mV at this age (Zhang et al, 2006), and therefore may also reduce excitability by inactivating voltage-gated sodium channels.

Endogenous tonic activation of GABA-A receptors on SACs but not RGCs

We have demonstrated that tonic activation of GABA-A receptors blocks all compound PSCs recorded in RGCs (Figure 1Bi), indicating that GABA-A agonists must also be functioning presynaptic to RGCs. At this stage of development, RGCs receive cholinergic compound PSCs during retinal waves (Feller et al., 1996; Zhou, 1998). Only one class of cells in the retina, the starburst amacrine cell, releases acetylcholine (ACh) (Zhou, 2001). Starburst amacrine cells undergo spontaneous depolarizations (Zheng et al., 2006) and release both ACh and GABA onto neighboring starburst amacrine cells and onto RGCs during retinal waves (Syed et al., 2004b; Zheng et al., 2006).

To determine the effect of GABA-A agonists on the cells presynaptic to RGCs, we recorded from SACs. To identify SACs, we used a transgenic mouse in which the expression of a fusion protein of the human interleukin 2α subunit and green fluorescent protein (GFP) is driven by the metabotropic glutamate receptor subtype 2 (mGluR2) promoter (Watanabe et al., 1998; Soda et al., 2003). Previously, this transgenic mouse line has been used to target an immunotoxin to starburst amacrine cells (Yoshida et al., 2001). Early postnatal mGluR2-GFP mice exhibited GFP expression uniquely in starburst amacrine cells, enabling targeted recording from these cells (Figures 3A and 3B).

Whole-cell voltage-clamp recordings from SACs revealed wave-associated compound PSCs, as has been previously reported in ferret (Butts et al., 1999) and rabbit (Zhou, 1998; Zheng et al., 2006)(Figure 3C). Bath application of muscimol induced a significant shift in holding current, an increase in noise, and a dramatic change in conductance, similar to those observed in RGCs (Figure 3C).

SACs express the δ subunit of GABA-A receptors (Greferath et al., 1993), a subunit found in the extrasynaptic GABA-A receptors that mediate tonic inhibition in cerebellum and hippocampus (Mody, 2001; Farrant and Nusser, 2005). To determine whether δ-containing GABA-A receptors mediate tonic inhibition in SACs, we bath applied 4,5,6,7-tetrahydroisoxazolo[5,4-c]-pyridin-3-ol (THIP, 10 μM), a GABA-A receptor agonist that preferentially activates δ subunit-containing GABA-A receptors. THIP induced a tonic current in SACs but not in RGCs (Figure 3D and Table 2), suggesting a fundamental difference in GABA-A receptor composition underlying tonic GABA-A receptor-mediated conductances in SACs and RGCs. In contrast to exogenous GABA and muscimol application, which induced both a transient and sustained current, THIP only induced a sustained current, suggesting that SACs may have two distinct types of GABA-A receptors.

Retinal waves are modulated by submicromolar concentrations of GABA (Figure 1C), comparable to the levels of ambient GABA found in the brain, which are estimated to be approximately 1 μM (Jensen et al., 2003). (To our knowledge, the ambient level of GABA in the retina is not known.) To determine whether endogenous activation of GABA-A receptors modulated spontaneous firing patterns in the acutely isolated retina, we monitored the effects of the GABA-A receptor antagonist gabazine on several features of spontaneous activity. We found no effects on the holding current, resting conductance (Tables (Tables11 and and2)2) or excitability of RGCs (data not shown). However, bath application of gabazine did reduce the input conductance of SACs (Figure 3E and Table 2), suggesting that ambient levels of GABA activate GABA-A receptors on SACS, thereby modulating SAC excitability.

Endogenous activation of GABA-A receptors alters correlation structure of spontaneous firing patterns

GABA-A receptor antagonists do not block retinal waves, nor do they alter the global spatial and temporal properties of waves as assayed with calcium imaging (Stellwagen et al., 1999; Catsicas and Mobbs, 2001; Sernagor et al., 2003; Syed et al., 2004b; but see Fischer et al., 1998). To determine the effects of endogenous GABA signaling on the detailed spontaneous firing properties of RGCs, we used a multielectrode array, which allowed us to record extracellularly from many RGCs simultaneously (Meister et al., 1991; Wong et al., 1993; McLaughlin et al., 2003). At P4-P6, retinal neurons fire spontaneous periodic bursts of action potentials that are correlated with action potentials from neighboring cells. We observed similar correlated increases in firing rate in control solutions and in the presence of gabazine, indicating that retinal waves persist when GABA-A signaling is blocked (Figure 4A). The smaller size peaks in the absence of gabazine reflect a smaller fraction of electrodes on which spikes were recorded compared to the larger peaks (Figure 4B), suggesting the presence of waves in control conditions that extend over a smaller part of the array. We found a significant increase in the spatial correlation of spontaneous firing of pairs of RGCs at all distances in the presence of gabazine as assayed by the correlation index (Figure 4B, Tables Tables33 and and4).4). In addition, we found a significant increase in the interburst interval (control: 46.57±7.22 sec, gabazine: 74.77±15.37 sec, ***p<0.001, n=145 and 150 electrodes, from 5 retinas) and a small but significant increase in burst duration (control: 3.60±0.98, gabazine: 5.03±1.80, ***p<0.001). Furthermore, an increase in interburst interval measured on a given electrode tended to be correlated with an increase of burst duration on the same electrode (Figure 4D). We found no difference in the average firing rate or the mean firing rate during bursts (data not shown). Similar results were obtained using isolated single units instead of whole electrodes (data not shown).

Figure 4
Blockade of endogenous GABA-A receptor activity alters the structure of spontaneous firing patterns
Summary of the correlation index under control conditions, in gabazine, and after washout for the example retina in Figure 4Ci. For each inter-electrode distance, the value of n refers to the number of electrode pairs separated by this distance. The set ...
Correlation index under control conditions and in gabazine, averaged over 5 retinas. For each inter-electrode distance, the value of n refers to the number of electrode pairs separated by this distance. The set of distances is determined by the geometry ...

From these results we conclude that activation of GABA-A receptors modulates both spatial and temporal properties of retinal waves. Since gabazine blocks both extrasynaptic and synaptic GABA-A receptors, these experiments do not distinguish between the effects of activation of GABA-A receptors by ambient GABA and synaptically released GABA.

Aminophylline blocks retinal waves by direct activation of GABA-A receptors and not by blockade of adenosine receptors

Previously, we and others have reported that bath application of aminophylline blocks retinal waves (Singer et al., 2001; Syed et al., 2004b). The primary action of aminophylline in the nervous system is as an adenosine receptor antagonist (Gulati et al., 2005). Therefore, we concluded from these experiments that adenosine secretion played a critical role in retinal wave generation (Stellwagen et al., 1999; Singer et al., 2001; Syed et al., 2004b). Here we report that aminophylline blocks retinal waves not by blockade of adenosine receptors but rather by direct activation of GABA-A receptors.

We conducted several experiments that implicate aminophylline as a GABA-A receptor agonist. First, using calcium imaging, we found that the blockade of retinal waves by aminophylline (500 μM) was prevented by bath application of the GABA-A receptor antagonist gabazine (5 μM) (Figure 5A, wave frequency: 0.69 ± 0.2 min−1 in control and 0.58 ± 0.1 min−1 in the presence of aminophylline and gabazine, n = 6, p = 0.55). Second, aminophylline reproduced all of the changes observed in muscimol, including the resting conductance change, increased holding current, increased noise, compound PSC blockade in both RGCs (compare Figure Figure5B5B with with1C)1C) and SACs (compare Figure Figure5D5D with Figure 3C), as well as the reduction in RGC excitability described in Figure 2 (data not shown). The effects of aminophylline on the resting conductance of SACs and RGCs are summarized in Tables Tables11 and and2.2. Third, short application of aminophylline (puff duration 200 msec) induced a gabazine-sensitive inward current in outside-out patches excised from RGC somas (Figure 5C, peak current was −36 ±16 pA, n = 7). Nonstationary noise analysis was used to estimate that a short application of aminophylline activated channels with a mean single channel conductance of 4.4 ± 0.5 pS (n = 4), consistent with activation of a GABA-A receptor-mediated conductance. Fourth, by conducting ion substitution experiments, we confirmed that the increase in resting conductance was mediated by a chloride- but not by a potassium-permeable channel (Figure 6A) or a sodium-permeable channel (data not shown). Taken together, here we demonstrate for the first time that aminophylline at high concentration serves as a direct agonist for GABA-A receptors.

Figure 6
Aminophylline effects are not reproduced by specific adenosine receptor antagonists

To confirm that aminophylline is not exerting its effect on retinal waves by blocking adenosine receptors, we measured the dose-response relationship of aminophylline on the amplitude of the tonic conductance and wave frequency and compared these results to those obtained with adenosine receptor antagonists (Figures 6B and C). We found that at low concentrations, aminophylline closed a potassium conductance in RGCs, likely through closing of an A1-adenosine receptor-mediated GIRK channel in RGCs (Ben Clark and Eric Newman, SFN Abstract, 2005, Wetherington and Lambert, 2002) ). RGC input conductance was not changed in the intermediate concentrations (2-20 μM) of aminophylline. However, at high concentrations (200 or 500 μM) of aminophylline, the input conductance was significantly increased.

We tested the effect of specific adenosine receptor antagonists on conductance in RGCs (Figure 6B). The adenosine A1 receptor antagonist DPCPX (1,3-dipropyl-8-cyclopentylxanthine, 1 μM) slightly (but not significantly) decreased the input conductance compared to control. Further reversal potential measurement indicated that the DPCPX-modulated current reversed at EK (data not shown), suggesting K+ flux was reduced in the presence of DPCPX. The DPCPX-mediated reduction in K+ flux is similar to the effect seen with low concentrations of aminophylline (1 μM), suggesting aminophylline blocked adenosine A1 receptors at a low concentration. The adenosine A2A receptor antagonist ZM241385 (4-(2-[7-amino-2-(2-furyl)[1,2,4]-triazolo[2,3-a](1,3,5)triazin-5-ylamino]ethyl)phenol, 10 μM) did not alter the input conductance compared to control.

To test the hypothesis that aminophylline blocks waves via its effect on adenosine receptors in addition to its effect on GABA-A receptors we performed current clamp recordings to measure wave-associated depolarizations in RGCs (Figure 6C) while applying specific antagonists for different adenosine receptors: A1, A2A, A2B (10μM alloxazine) and A3 (10μM MRS 1523: 3-propyl-6-ethyl-5-[(ethylthio)carbonyl]-2-phenyl-4-propyl-3-pyridine carboxylat). The A2A antagonist (ZM241385) increased wave frequency over control, whereas none of the other individual adenosine receptor antagonists alone had any effect on retinal waves (Figure 6E). It is worth noting that aminophylline blocked waves only at high concentrations (data presented here and Singer et al., 2001; Syed et al., 2004b), whereas a low concentration of aminophylline significantly increased wave frequency (Figure 5C), the same effect we see with the adenosine A2A receptor antagonist. The increase in wave frequency is therefore likely due to aminophylline action on adenosine receptors. Applying all the individual adenosine receptor antagonists together does not block waves (Fig 6B), suggesting the wave blockade by high concentrations of aminophylline was not due to blockade of any currently known adenosine receptors, but was due to tonic activation of GABA-A receptors.


In this study, our primary results are that 1) tonic activation of GABA-A receptors blocks retinal waves; 2) GABA-A receptor agonists activate a tonic GABA-A conductance on both SACs and RGCs which significantly reduces the excitability of both cell types; and 3) endogenous activation of GABA-A receptors alters the spatial and temporal properties of retinal waves. In addition, we have demonstrated that aminophylline blocks retinal waves not by its previously reported action of blocking adenosine receptors but rather by activating GABA-A receptors.

Aminophylline is a GABA-A receptor agonist

Aminophylline is one of a short list of pharmacological agents that block retinal waves and therefore its mode of action is of great significance. In the adult nervous system, aminophylline functions as a general adenosine receptor antagonist and its use has led to the hypothesis that during development, ambient adenosine plays an important role in promoting wave activity. In support of this hypothesis, application of adenosine deaminase to degrade extracellular adenosine also decreases wave frequency (Stellwagen et al., 1999; Singer et al., 2001; Syed et al., 2004a). In addition, bath application of the general adenosine receptor agonist NECA increases wave frequency (Stellwagen et al., 1999; Syed et al., 2004b). The effect of adenosine receptor agonists on retinal wave frequency is prevented by blockade of protein kinase A (PKA), a primary target of cAMP, indicating its effects are being mediated by an increase in cAMP via A2-type adenosine receptors (Stellwagen et al., 1999).

We present several lines of evidence that aminophylline blocks retinal waves by tonically activating GABA-A receptors (Figures (Figures55--6).6). First, aminophylline blockade of spontaneous calcium transients and compound PSCs was reversed in the presence of gabazine. Second, aminophylline induced a chloride conductance in RGCs. Third, short application of aminophylline to outside-out patches excised from RGCs induced a current that was blocked by gabazine. We also conducted an extensive pharmacology study that indicated that specific antagonists of adenosine receptors do not block retinal waves either individually or in combination. Aminophylline is an ethylenediamine salt of the adenosine receptor antagonist theophylline. Several studies have demonstrated that ethylenediamine itself is a GABA-A receptor agonist (for example, see Davies et al., 1982). Hence, our data suggest that the ethylenediamine component of aminophylline has a potent effect on retinal waves while the adenosine receptor antagonist component, theophylline, does not.

We observed an increase in retinal wave frequency in the presence of an A2A antagonist. A2A adenosine receptors stimulate adenylate cyclase via Gs and therefore elevate levels of cAMP. A2 adenosine receptors in the retina (Stella et al., 2003) have been implicated in modulating transmitter release, primarily through modulation of calcium channels. These results predict that perhaps release of ACh from starburst amacrine cells is regulated by endogenous levels of adenosine. This finding is in contradiction with the result that adenosine deaminase blocks retinal waves (Stellwagen et al., 1999; Singer et al., 2001), which suggests that endogenous adenosine signaling is required for retinal wave propagation. There are two possibilities. First, the high concentration of adenosine deaminase used in our previous studies was blocking waves through an impurity in the adenosine deaminase. Second, the cocktail of adenosine receptor antagonists described here did not effectively block all adenosine signaling pathways, suggesting the possible existence of an unexplored adenosine receptor subtype.

The multiple roles of GABA-A receptor-mediated signaling in neural circuits

We have demonstrated that GABA-A receptor signaling has many sites of action in the developing retina. Previous reports have indicated that retinal waves drive periodic release of GABA that induces phasic GABA-A receptor mediated responses in RGCs (Feller et al., 1996; Zhou, 1998; Zheng et al., 2004) and SACs (Zhou, 1998; Zheng et al., 2004). Here, we demonstrated that both RGCs and SACs had a tonic increase in holding current upon application of GABA-A receptor agonists (Figures (Figures1C1C and and3D).3D). Blockade of all GABA-A receptors with gabazine did not affect the spatiotemporal properties of retinal waves as assayed with calcium imaging, as reported in several previous studies (Stellwagen et al., 1999; Catsicas and Mobbs, 2001; Sernagor et al., 2003; Syed et al., 2004b). However, by using multielectrode array recordings, we found that blockade of GABA-A receptors did change the structure of the spontaneous bursts of action potentials (Figure 4). The bursts lasted longer and occurred more rarely, and there was an increase in the correlation index across all distances. This change in the firing structure may be due to a GABA-A receptor antagonist-induced decrease in the resting conductance of SACs (Figure 3E) or to the blockade of GABA-A receptors on RGCs that are synaptically activated during retinal waves.

Our findings are consistent with the multiple modes of GABA-A signaling observed in the adult cerebellum, hippocampus and thalamus, where the mechanisms underlying the distinct roles of phasic and tonic release have been studied extensively (Semyanov et al., 2004; Farrant and Nusser, 2005). For example, in these brain structures, synaptic and extrasynaptic GABA-A signals are mediated by pharmacologically distinct classes of GABA-A receptors. These pharmacological distinctions are due to different subunit compositions of the synaptic vs. extrasynaptic GABA-A receptors. GABA-A receptors are heteromultimeric proteins comprised of 5 subunits that form a chloride channel. For example, in cerebellum (Mody and Pearce, 2004) and some regions of thalamus (Cope et al., 2005), the δ subunit is found preferentially in extrasynaptic receptors, where it increases the receptors’ affinity for GABA, thereby making the receptors sensitive to ambient levels of GABA (Mody, 2001; Farrant and Nusser, 2005). In contrast, GABA-A receptors found in hippocampus mediate a tonic conductance that is not blocked by gabazine but is blocked by picrotoxin (McCartney et al., 2007). It has been proposed that these extrasynaptic GABA-A receptors are active in the absence of GABA.

Our results indicate that RGCs and SACs may have distinct GABA-A receptor compositions. In the retina, there is a broad distribution of most GABA-A receptor subunits that have been analyzed. Interestingly, the δ subunit has a distinct co-localization with starburst amacrine cell processes (Greferath et al., 1993; Wassle et al., 1998; Zucker and Ehinger, 1998; Grunert, 1999). We observed that SACs, but not RGCs, are activated by THIP, consistent with the presence of δ-containing GABA-A receptors on starburst cells but not RGCs (Figure 3D). In addition, gabazine decreased the input conductance of SACs but not RGCs (Figure 3E; Tables Tables11 and and2),2), indicating ambient GABA tonically activates GABA-A receptors on SACs. Whether RGCs have a gabazine-insensitive, picrotoxin-sensitive GABA-A receptor as recently observed in hippocampus (McCartney et al., 2007) remains to be determined. Furthermore, GABA concentrations in vivo may be higher than in the isolated retina, so we cannot rule out the possibility that GABA-A receptors are tonically active on RGCs as well as on SACs.

In the adult nervous system, tonic activation of GABA-A receptors profoundly modulates network excitability through a variety of mechanisms including shunting inhibition, which alters the integrative properties of individual neurons as well as the structure of network oscillations (Cope et al., 2005). We observed that blockade of GABA-A receptor signaling increased the correlations in the developing retina. These findings are similar to a recent report that indicates blockade of GABA signaling in spinal cord increases the correlations between motoneurons (Berg et al., 2007). The observation that GABA signaling decreased correlations is in sharp contrast to its role in adult neocortex and hippocampus where it is thought to enhance long-range correlations (Cobb et al., 1995; Whittington and Traub, 2003; Long et al., 2005). One possible advantage of decorrelated bursts in the developing retina is that firing patterns with lower correlations are more appropriate for driving plasticity at developing synapses (Hensch and Fagiolini, 2005). A second possibility is that GABA-A receptor mediated signaling may be critical for differentiating the firing patterns of distinct RGC classes. For example, the GABA-A receptor mediated signaling may facilitate the differential firing patterns of ON and OFF RGCs (Wong and Oakley, 1996; Myhr et al., 2001), which are critical for the refinement of ON and OFF circuits in downstream visual centers (Lee et al., 2002). Whether GABA-A receptor mediated signaling further distinguishes RGC classes remains to be determined.

Implications for fetal development

We found that endogenous activation of GABA-A receptors influences the correlation structure of spontaneous firing patterns critical for normal development of the visual system. It is important to note that ambient levels of GABA are likely to be higher in the intact retina than in acutely isolated preparations that are rapidly superfused with GABA-free ACSF, and therefore our results may represent a smaller effect than would be detected in vivo.

Extrasynaptic GABA-A receptors are potent sites of modulation by several factors, including alcohol (Weiner and Valenzuela, 2006). This may have profound implications for developing fetuses, where it has been demonstrated in animal models of fetal alcohol syndrome that exposure to alcohol leads to a variety of neuropathologies, including alterations in the developing visual system (Stromland, 2004) such as a profound loss of plasticity in visual cortex (Medina et al., 2005). Understanding the susceptibility of developing networks to neuromodulatory substances will provide insights into the mechanisms by which exposure to substances such as alcohol impact the prenatal wiring of the nervous system.

Supplementary Material



We thank Papiya Mahapatra and Shiloh Guerrero for breeding transgenic mice. This work was supported by NIH grant R01EY13528. JE was supported by an NSF predoctoral fellowship.


  • Bansal A, Singer J, Hwang B, Feller M. Mice lacking specific nAChR subunits exhibit dramatically altered spontaneous activity patterns and reveal a limited role for retinal waves in forming ON/OFF circuits in the inner retina. Journal of Neuroscience. 2000;20:7672–7681. [PubMed]
  • Ben-Ari Y. Developing networks play a similar melody. Trends Neurosci. 2001;24:353–360. [PubMed]
  • Ben-Ari Y. Excitatory actions of gaba during development: the nature of the nurture. Nat Rev Neurosci. 2002;3:728–739. [PubMed]
  • Ben-Ari Y, Khalilov I, Represa A, Gozlan H. Interneurons set the tune of developing networks. Trends Neurosci. 2004;27:422–427. [PubMed]
  • Berg RW, Alaburda A, Hounsgaard J. Balanced inhibition and excitation drive spike activity in spinal half-centers. Science. 2007;315:390–393. [PubMed]
  • Brickley SG, Cull-Candy SG, Farrant M. Development of a tonic form of synaptic inhibition in rat cerebellar granule cells resulting from persistent activation of GABAA receptors. J Physiol. 1996;497:753–759. [PubMed]
  • Butts DA, Feller MB, Shatz CJ, Rokhsar DS. Retinal Waves Are Governed by Collective Network Properties. J Neurosci. 1999;19:3580–3593. [PubMed]
  • Catsicas M, Mobbs P. GABAb receptors regulate chick retinal calcium waves. J Neurosci. 2001;21:897–910. [PubMed]
  • Chadderton P, Margrie TW, Hausser M. Integration of quanta in cerebellar granule cells during sensory processing. Nature. 2004;428:856–860. [PubMed]
  • Chance FS, Abbott LF, Reyes AD. Gain modulation from background synaptic input. Neuron. 2002;35:773–782. [PubMed]
  • Cobb SR, Buhl EH, Halasy K, Paulsen O, Somogyi P. Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons. Nature. 1995;378:75–78. [PubMed]
  • Colicos M, Firth S, Bosze J, Goldstein J, Feller M. Emergence of realistic retinal networks in culture promoted by the superior colliculus. Developmental Neuroscience. 2004 in press. [PubMed]
  • Cope DW, Hughes SW, Crunelli V. GABAA receptor-mediated tonic inhibition in thalamic neurons. J Neurosci. 2005;25:11553–11563. [PubMed]
  • Davies LP, Hambley JW, Johnston GA. Ethylenediamine as a GABA agonist: enhancement of diazepam binding and interaction with GABA receptors and uptake sites. Neurosci Lett. 1982;29:57–61. [PubMed]
  • De Koninck Y, Mody I. Noise analysis of miniature IPSCs in adult rat brain slices: properties and modulation of synaptic GABAA receptor channels. J Neurophysiol. 1994;71:1318–1335. [PubMed]
  • Demarque M, Represa A, Becq H, Khalilov I, Ben-Ari Y, Aniksztejn L. Paracrine intercellular communication by a Ca2+- and SNARE-independent release of GABA and glutamate prior to synapse formation. Neuron. 2002;36:1051–1061. [PubMed]
  • Farrant M, Nusser Z. Variations on an inhibitory theme: phasic and tonic activation of GABA(A) receptors. Nat Rev Neurosci. 2005;6:215–229. [PubMed]
  • Feller MB, Wellis DP, Stellwagen D, Werblin FS, Shatz CJ. Requirement for cholinergic synaptic transmission in the propagation of spontaneous retinal waves. Science. 1996;272:1182–1187. [PubMed]
  • Fischer K, Lukasiewicz P, Wong R. Age-dependent and cell-class specific modulation of retinal ganglion cell bursting activity by GABA. Journal of Neuroscience. 1998;18:3767–3778. [PubMed]
  • Garaschuk O, Hanse E, Konnerth A. Developmental profile and synaptic origin of early network oscillations in the CA1 region of rat neonatal hippocampus. J Physiol (Lond) 1998;507:219–236. [PubMed]
  • Greferath U, Grunert U, Mohler H, Wassle H. Cholinergic amacrine cells of the rat retina express the delta-subunit of the GABAA-receptor. Neurosci Lett. 1993;163:71–73. [PubMed]
  • Grunert U. Distribution of GABAA and glycine receptors in the mammalian retina. Clinical and Experimental Pharmacology and Physiology. 1999;26:941–944. [PubMed]
  • Gulati K, Ray A, Pal G, Vijayan VK. Possible role of free radicals in theophylline-induced seizures in mice. Pharmacol Biochem Behav. 2005;82:241–245. Epub 2005 Sep 2026. [PubMed]
  • Hensch TK, Fagiolini M. Excitatory-inhibitory balance and critical period plasticity in developing visual cortex. Prog Brain Res. 2005;147:115–124. [PubMed]
  • Huberman AD. Mechanisms of eye-specific visual circuit development. Curr Opin Neurobiol. 2007;17:73–80. Epub 2007 Jan 2024. [PubMed]
  • Jensen K, Chiu CS, Sokolova I, Lester HA, Mody I. GABA transporter-1 (GAT1)-deficient mice: differential tonic activation of GABAA versus GABAB receptors in the hippocampus. J Neurophysiol. 2003;90:2690–2701. [PubMed]
  • Johnson J, Tian N, Caywood MS, Reimer RJ, Edwards RH, Copenhagen DR. Vesicular neurotransmitter transporter expression in developing postnatal rodent retina: GABA and glycine precede glutamate. J Neurosci. 2003;23:518–529. [PubMed]
  • Kaneda M, Farrant M, Cull-Candy SG. Whole-cell and single-channel currents activated by GABA and glycine in granule cells of the rat cerebellum. J Physiol. 1995;485:419–435. [PubMed]
  • Lee CW, Eglen SJ, Wong RO. Segregation of ON and OFF retinogeniculate connectivity directed by patterned spontaneous activity. J Neurophysiol. 2002;88:2311–2321. [PubMed]
  • Leinekugel X, Medina I, Khalilov I, Ben-Ari Y, Khazipov R. Ca2+ oscillations mediated by the synergistic excitatory actions of GABA(A) and NMDA receptors in the neonatal hippocampus. Neuron. 1997;18:243–255. [PubMed]
  • Litke A, Bezayiff N, Chichilnisky E, Cunningham W, Dabrowski W, Grillo A, Grivich M, Grybos P, Hottowy P, Kachiguine S, Kalmar R, Mathieson K, Petrusca D, Rahman M, Sher A. What does the eye tell the brain? Development of a system for the large-scale recording of retinal output activity. IEEE Transactions on Nuclear Science. 2004;51
  • Litke AM, Chichilnisky EJ, Dabrowski W, Grillo AA, Grybos P, Kachiguine S, Rahman M, Taylor G. Large-scale imaging of retinal output activity. Nucl Instr and Meth A. 2003;501:298–307.
  • Liu Z, Neff RA, Berg DK. Sequential interplay of nicotinic and GABAergic signaling guides neuronal development. Science. 2006;314:1610–1613. [PubMed]
  • Long MA, Cruikshank SJ, Jutras MJ, Connors BW. Abrupt maturation of a spike-synchronizing mechanism in neocortex. J Neurosci. 2005;25:7309–7316. [PubMed]
  • Marchionni I, Omrani A, Cherubini E. In the developing rat hippocampus a tonic GABAA-mediated conductance selectively enhances the glutamatergic drive of principal cells. J. Neurophys. 2007;581:515–528. [PubMed]
  • McCartney MR, Deeb TZ, Henderson TN, Hales TG. Tonically active GABAA receptors in hippocampal pyramidal neurons exhibit constitutive GABA-independent gating. Mol Pharmacol. 2007;71:539–548. Epub 2006 Nov 2007. [PubMed]
  • McLaughlin T, Torborg CL, Feller M, O’Leary DDM. Retinotopic map refinement requires spontaneous retinal waves during a brief critical period of development. Neuron. 2003;40:1147–1160. [PubMed]
  • Medina AE, Krahe TE, Ramoa AS. Early alcohol exposure induces persistent alteration of cortical columnar organization and reduced orientation selectivity in the visual cortex. J Neurophysiol. 2005;93:1317–1325. Epub 2004 Oct 1313. [PubMed]
  • Meister M, Pine J, Baylor DA. Multi-neuronal signals from the retina: acquisition and analysis. J Neurosci Methods. 1994;51:95–106. [PubMed]
  • Meister M, Wong ROL, Baylor DA, Shatz CJ. Synchonous bursts of action potentials in ganglion cells of the developing mammalian retina. Science. 1991;252:939–943. [PubMed]
  • Mitchell SJ, Silver RA. Shunting inhibition modulates neuronal gain during synaptic excitation. Neuron. 2003;38:433–445. [PubMed]
  • Mody I. Distinguishing between GABA(A) receptors responsible for tonic and phasic conductances. Neurochem Res. 2001;26:907–913. [PubMed]
  • Mody I. Aspects of the homeostaic plasticity of GABAA receptor-mediated inhibition. J Physiol. 2005;562:37–46. [PubMed]
  • Mody I, Pearce RA. Diversity of inhibitory neurotransmission through GABA(A) receptors. Trends Neurosci. 2004;27:569–575. [PubMed]
  • Myhr KL, Lukasiewicz PD, Wong RO. Mechanisms underlying developmental changes in the firing patterns of ON and OFF retinal ganglion cells during refinement of their central projections. J Neurosci. 2001;21:8664–8671. [PubMed]
  • Neher E. Correction for liquid junction potentials in patch clamp experiments. Methods Enzymol. 1992;207:123–131. [PubMed]
  • O’Donovan MJ. The origin of spontaneous activity in developing networks of the vertebrate nervous system. Curr Opin Neurobiol. 1999;9:94–104. [PubMed]
  • Owens DF, Kriegstein AR. Is there more to GABA than synaptic inhibition? Nat Rev Neurosci. 2002;3:715–727. [PubMed]
  • Payne JA, Rivera C, Voipio J, Kaila K. Cation-chloride co-transporters in neuronal communication, development and trauma. Trends Neurosci. 2003;26:199–206. [PubMed]
  • Represa A, Ben-Ari Y. Trophic actions of GABA on neuronal development. Trends Neurosci. 2005;28:278–283. [PubMed]
  • Rivera C, Voipio J, Payne JA, Ruusuvuori E, Lahtinen H, Lamsa K, Pirvola U, Saarma M, Kaila K. The K+/Cl- co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation. Nature. 1999;397:251–255. [PubMed]
  • Semyanov A, Walker MC, Kullmann DM. GABA uptake regulates cortical excitability via cell type-specific tonic inhibition. Nat Neurosci. 2003;6:484–490. [PubMed]
  • Semyanov A, Walker MC, Kullmann DM, Silver RA. Tonically active GABA A receptors: modulating gain and maintaining the tone. Trends Neurosci. 2004;27:262–269. [PubMed]
  • Sernagor E, Young C, Eglen SJ. Developmental modulation of retinal wave dynamics: shedding light on the GABA saga. J Neurosci. 2003;23:7621–7629. [PubMed]
  • Singer J, Mirotznik R, Feller M. Potentiation of L-type calcium channelds reveals nonsynaptic mechanisms that correlat spontaneous activity in the developing mammalian retina. Journal of Neuroscience. 2001;21:8514–8522. [PubMed]
  • Soda T, Nakashima R, Watanabe D, Nakajima K, Pastan I, Nakanishi S. Segregation and coactivation of developing neocortical layer 1 neurons. J Neurosci. 2003;23:6272–6279. [PubMed]
  • Stella SL, Jr., Bryson EJ, Cadetti L, Thoreson WB. Endogenous adenosine reduces glutamatergic output from rods through activation of A2-like adenosine receptors. J Neurophysiol. 2003;90:165–174. [PubMed]
  • Stellwagen D, Shatz CJ, Feller MB. Dynamics of retinal waves are controlled by cyclic AMP. Neuron. 1999;24:673–685. [PubMed]
  • Stromland K. Visual impairment and ocular abnormalities in children with fetal alcohol syndrome. Addict Biol. 2004;9:153–157. discussion 159-160. [PubMed]
  • Syed MM, Lee S, He S, Zhou ZJ. Spontaneous waves in the ventricular zone of developing mammalian retina. J Neurophysiol. 2004a;91:1999–2009. [PubMed]
  • Syed MM, Lee S, Zheng J, Zhou ZJ. Stage-dependent dynamics and modulation of spontaneous waves in the developing rabbit retina. J Physiol. 2004b;560:533–549. [PubMed]
  • Torborg CL, Feller MB. Spontaneous patterned retinal activity and the refinement of retinal projections. Prog Neurobiol. 2005;76:213–235. Epub 2005 Nov 2008. [PubMed]
  • Torborg CL, Hansen KA, Feller MB. High frequency, synchronized bursting drives eye-specific segregation of retinogeniculate projections. Nat Neurosci. 2005;8:72–78. [PMC free article] [PubMed]
  • Tozuka Y, Fukuda S, Namba T, Seki T, Hisatsune T. GABAergic excitation promotes neuronal differentiation in adult hippocampal progenitor cells. Neuron. 2005;47:803–815. [PubMed]
  • Wassle H, Koulen P, Brandstatter JH, Fletcher EL, Becker CM. Glycine and GABA receptors in the mammalian retina. Vision Res. 1998;38:1411–1430. [PubMed]
  • Watanabe D, Inokawa H, Hashimoto K, Suzuki N, Kano M, Shigemoto R, Hirano T, Toyama K, Kaneko S, Yokoi M, Moriyoshi K, Suzuki M, Kobayashi K, Nagatsu T, Kreitman RJ, Pastan I, Nakanishi S. Ablation of cerebellar Golgi cells disrupts synaptic integration involving GABA inhibition and NMDA receptor activation in motor coordination. Cell. 1998;95:17–27. [PubMed]
  • Weiner JL, Valenzuela CF. Ethanol modulation of GABAergic transmission: The view from the slice. Pharmacol Ther. 2006;17:17. [PubMed]
  • Wetherington JP, Lambert NA. Differential desensitization of responses mediated by presynaptic and postsynaptic A1 adenosine receptors. J Neurosci. 2002;22:1248–1255. [PubMed]
  • Whittington MA, Traub RD. Interneuron diversity series: inhibitory interneurons and network oscillations in vitro. Trends Neurosci. 2003;26:676–682. [PubMed]
  • Wong R. Retinal waves and visual system development. Annual Reviews of Neuroscience. 1999;22:29–47. [PubMed]
  • Wong RO, Oakley DM. Changing patterns of spontaneous bursting activity of on and off retinal ganglion cells during development. Neuron. 1996;16:1087–1095. [PubMed]
  • Wong RO, Meister M, Shatz CJ. Transient period of correlated bursting activity during development of the mammalian retina. Neuron. 1993;11:923–938. [PubMed]
  • Yoshida K, Watanabe D, Ishikane H, Tachibana M, Pastan I, Nakanishi S. A key role of starburst amacrine cells in originating retinal directional selectivity and optokinetic eye movement. Neuron. 2001;30:771–780. [PubMed]
  • Zhang LL, Pathak HR, Coulter DA, Freed MA, Vardi N. Shift of intracellular chloride concentration in ganglion and amacrine cells of developing mouse retina. J Neurophysiol. 2006;95:2404–2416. Epub 2005 Dec 2421. [PubMed]
  • Zheng J, Lee S, Zhou ZJ. A transient network of intrinsically bursting starburst cells underlies the generation of retinal waves. Nat Neurosci. 2006;9:363–371. Epub 2006 Feb 2005. [PubMed]
  • Zheng JJ, Lee S, Zhou ZJ. A developmental switch in the excitability and function of the starburst network in the mammalian retina. Neuron. 2004;44:851–864. [PubMed]
  • Zhou Z. The function of the cholinergic system in the developing mammalian retina. Progress in Brain Research. 2001;131:599–613. [PubMed]
  • Zhou ZJ. Direct participation of starburst amacrine cells in spontaneous rhythmic activities in the developing mammalian retina. J Neurosci. 1998;18:4155–4165. [PubMed]
  • Zucker CL, Ehinger B. Gamma-aminobutyric acidA receptors on a bistratified amacrine cell type in the rabbit retina. J Comp Neurol. 1998;393:309–319. [PubMed]