PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): o340.
Published online 2007 December 21. doi:  10.1107/S1600536807066937
PMCID: PMC2915381

N-(3,4-Dimethyl­phen­yl)benzamide

Abstract

The conformation of the NH bond in the structure of the title compound (N34DMPBA), C15H15NO, is anti to the meta-methyl substituent in the aniline ring, similar to that observed with respect to the meta-chloro substituent in N-(3,4-dichloro­phen­yl)benzamide (N34DCPBA), but in contrast to the syn conformation observed with respect to the meta-methyl substituent in N-(3,4-dimethyl­phen­yl)acetamide. The bond parameters in N34DMPBA are similar to those in N34DCPBA and other benzanilides. The mol­ecules in N34DMPBA are packed into a column-like structure in the direction of the a axis through N—H(...)O hydrogen bonds.

Related literature

For related literature, see: Gowda, Foro & Fuess (2007 [triangle]); Gowda et al. (2003 [triangle]); Gowda, Sowmya et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o340-scheme1.jpg

Experimental

Crystal data

  • C15H15NO
  • M r = 225.28
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o340-efi3.jpg
  • a = 9.1082 (2) Å
  • b = 9.8123 (2) Å
  • c = 28.5126 (8) Å
  • V = 2548.24 (10) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.07 mm−1
  • T = 295 (2) K
  • 0.33 × 0.11 × 0.08 mm

Data collection

  • Oxford Diffraction Xcalibur System diffractometer
  • Absorption correction: none
  • 21605 measured reflections
  • 2527 independent reflections
  • 1448 reflections with I > 2σ(I)
  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.058
  • wR(F 2) = 0.194
  • S = 0.97
  • 2527 reflections
  • 159 parameters
  • 3 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.37 e Å−3
  • Δρmin = −0.19 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2007 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 2002 [triangle]); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2003 [triangle]) and WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807066937/dn2302sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807066937/dn2302Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

MT and JK thank the Grant Agency of the Slovak Republic (grant No. 1/2449/05).

supplementary crystallographic information

Comment

In the present work, the structure of N-(3,4-dimethylphenyl)-benzamide (N34DMPBA) has been determined to explore the effect of substituents on the structure of N-aromatic amides (Gowda et al., 2003; Gowda, Sowmya et al., 2007; Gowda, Foro & Fuess, 2007). The conformation of the N—H bond in N34DMPBA (FIg. 1) is anti to the meta methyl substituent in the aniline phenyl ring, similar to that observed with respect to the meta chloro substituent in N-(3,4-dichlorophenyl)-benzamide (N34DCPBA) (Gowda, Sowmya et al., 2007), but in contrast to the syn conformation observed with respect to the meta methyl substituent in the N-(3,4-dimethylphenyl)- acetamide (Gowda, Foro & Fuess, 2007). The bond parameters in N34DMPBA are similar to those in N34DCPBA and other benzanilides (Gowda et al., 2003). The molecules in N34DMPBA are packed into Column like s tructure in the direction of a axis through N—H···O hydrogen bonds (Table 1 & Fig. 2).

Experimental

The title compound was prepared according to the literature method (Gowda et al., 2003). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra. Single crystals of the title compound were obtained from an ethanolic solution and used for X-ray diffraction studies at room temperature.

Refinement

H atoms bonded to C atoms were placed in geometrically calculated positions and subsequently treated as riding with C–H distance 0.93Å for ring, 0.96Å for methyl. H(N) atom was visible in difference map. In the refinement the N–H distance was restrained to 0.86 (5) Å. The Uiso(H) values were set at 1.2 Ueq(C,N) of the parent atom (1.5 for methyl).

Figures

Fig. 1.
Molecular structure of the title compound showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
Fig. 2.
Part of crystal structure of the title compound showing the hydrogen bonds N1–H1N···O1(i). Symmetry code (i): -x + 1/2, y + 1/2, z.

Crystal data

C15H15NOF000 = 960
Mr = 225.28Dx = 1.174 Mg m3
Orthorhombic, PbcaMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 6829 reflections
a = 9.1082 (2) Åθ = 3.0–29.5º
b = 9.8123 (2) ŵ = 0.07 mm1
c = 28.5126 (8) ÅT = 295 (2) K
V = 2548.24 (10) Å3Prism, colourless
Z = 80.33 × 0.11 × 0.08 mm

Data collection

Oxford Diffraction Xcalibur System diffractometer2527 independent reflections
Radiation source: Enhance (Mo) X-ray Source1448 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.035
Detector resolution: 10.4340 pixels mm-1θmax = 26.2º
T = 295(2) Kθmin = 5.1º
ω scans with κ offsetsh = −11→9
Absorption correction: nonek = −12→12
21605 measured reflectionsl = −32→35

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.194  w = 1/[σ2(Fo2) + (0.1315P)2] where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max < 0.001
2527 reflectionsΔρmax = 0.37 e Å3
159 parametersΔρmin = −0.18 e Å3
3 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.1683 (2)0.51852 (17)0.15178 (7)0.0543 (5)
C20.04493 (19)0.58368 (18)0.17772 (7)0.0526 (5)
C3−0.0315 (2)0.5050 (2)0.21000 (8)0.0651 (6)
H3−0.00630.41390.21410.078*
C4−0.1439 (3)0.5599 (2)0.23587 (9)0.0762 (7)
H4−0.19310.50680.25780.091*
C5−0.1835 (3)0.6937 (2)0.22926 (9)0.0766 (7)
H5−0.26020.73070.24660.092*
C6−0.1109 (2)0.7724 (2)0.19736 (9)0.0724 (7)
H6−0.13840.86270.19290.087*
C70.0038 (2)0.71760 (19)0.17159 (8)0.0608 (6)
H70.05340.77170.15000.073*
C80.4041 (2)0.55741 (19)0.11157 (8)0.0631 (6)
C90.4082 (3)0.4574 (2)0.07867 (8)0.0728 (7)
H90.32090.41710.06900.087*
C100.5432 (3)0.4126 (2)0.05859 (8)0.0762 (7)
C110.6702 (3)0.4749 (2)0.07412 (9)0.0804 (7)
C120.6653 (3)0.5762 (3)0.10680 (10)0.0874 (8)
H120.75200.61750.11650.105*
C130.5336 (2)0.6185 (3)0.12574 (10)0.0751 (7)
H130.53190.68780.14800.090*
C140.8200 (4)0.4325 (3)0.05424 (14)0.1195 (12)
H14A0.89430.49390.06550.179*
H14B0.81690.43580.02060.179*
H14C0.84260.34150.06420.179*
C150.5398 (4)0.3011 (3)0.02331 (12)0.1179 (11)
H15A0.61760.31420.00100.177*
H15B0.44710.30200.00730.177*
H15C0.55250.21500.03880.177*
N10.26924 (19)0.60131 (17)0.13237 (7)0.0614 (5)
H1N0.268 (2)0.685 (2)0.1389 (8)0.074*
O10.17788 (16)0.39356 (13)0.14930 (6)0.0777 (5)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0539 (11)0.0379 (10)0.0710 (13)−0.0013 (8)−0.0095 (9)0.0014 (8)
C20.0473 (11)0.0428 (11)0.0677 (13)−0.0043 (7)−0.0114 (9)0.0008 (8)
C30.0660 (14)0.0438 (11)0.0854 (15)−0.0053 (9)−0.0009 (11)0.0047 (10)
C40.0789 (16)0.0630 (14)0.0869 (16)−0.0100 (11)0.0189 (13)0.0031 (11)
C50.0701 (15)0.0670 (15)0.0927 (17)0.0000 (11)0.0149 (12)−0.0082 (12)
C60.0709 (14)0.0501 (11)0.0963 (16)0.0082 (10)0.0072 (13)−0.0006 (11)
C70.0604 (12)0.0439 (11)0.0781 (14)−0.0018 (9)0.0001 (10)0.0058 (10)
C80.0752 (15)0.0450 (11)0.0692 (13)0.0032 (10)0.0047 (11)0.0064 (10)
C90.0859 (17)0.0577 (13)0.0748 (14)−0.0017 (11)−0.0030 (12)0.0058 (11)
C100.107 (2)0.0519 (13)0.0697 (15)0.0122 (12)0.0034 (13)0.0056 (11)
C110.0936 (19)0.0621 (14)0.0855 (16)0.0091 (12)0.0067 (14)0.0044 (12)
C120.0704 (16)0.0881 (17)0.1036 (19)0.0007 (13)0.0041 (14)−0.0054 (15)
C130.0639 (14)0.0710 (15)0.0903 (17)−0.0011 (11)0.0054 (12)−0.0065 (12)
C140.106 (2)0.108 (2)0.145 (3)0.0300 (18)0.039 (2)0.0006 (19)
C150.174 (3)0.085 (2)0.095 (2)0.0096 (18)0.011 (2)−0.0201 (16)
N10.0628 (11)0.0394 (9)0.0821 (12)0.0001 (8)0.0098 (9)−0.0019 (8)
O10.0706 (10)0.0401 (9)0.1224 (14)0.0007 (6)0.0090 (9)0.0026 (8)

Geometric parameters (Å, °)

C1—O11.231 (2)C9—C101.425 (4)
C1—N11.346 (2)C9—H90.9300
C1—C21.490 (3)C10—C111.382 (4)
C2—C71.377 (3)C10—C151.487 (4)
C2—C31.389 (3)C11—C121.363 (4)
C3—C41.372 (3)C11—C141.535 (4)
C3—H30.9300C12—C131.379 (4)
C4—C51.374 (3)C12—H120.9300
C4—H40.9300C13—H130.9300
C5—C61.364 (3)C14—H14A0.9600
C5—H50.9300C14—H14B0.9600
C6—C71.386 (3)C14—H14C0.9600
C6—H60.9300C15—H15A0.9600
C7—H70.9300C15—H15B0.9600
C8—C91.358 (3)C15—H15C0.9600
C8—C131.384 (3)N1—H1N0.84 (2)
C8—N11.430 (3)
O1—C1—N1121.96 (18)C11—C10—C9117.2 (2)
O1—C1—C2120.61 (17)C11—C10—C15124.1 (3)
N1—C1—C2117.41 (15)C9—C10—C15118.7 (3)
C7—C2—C3118.57 (18)C12—C11—C10120.9 (2)
C7—C2—C1123.48 (17)C12—C11—C14118.6 (3)
C3—C2—C1117.95 (16)C10—C11—C14120.4 (3)
C4—C3—C2120.78 (19)C11—C12—C13121.0 (2)
C4—C3—H3119.6C11—C12—H12119.5
C2—C3—H3119.6C13—C12—H12119.5
C3—C4—C5119.8 (2)C12—C13—C8119.8 (2)
C3—C4—H4120.1C12—C13—H13120.1
C5—C4—H4120.1C8—C13—H13120.1
C6—C5—C4120.3 (2)C11—C14—H14A109.5
C6—C5—H5119.8C11—C14—H14B109.5
C4—C5—H5119.8H14A—C14—H14B109.5
C5—C6—C7120.0 (2)C11—C14—H14C109.5
C5—C6—H6120.0H14A—C14—H14C109.5
C7—C6—H6120.0H14B—C14—H14C109.5
C2—C7—C6120.50 (19)C10—C15—H15A109.5
C2—C7—H7119.7C10—C15—H15B109.5
C6—C7—H7119.7H15A—C15—H15B109.5
C9—C8—C13119.4 (2)C10—C15—H15C109.5
C9—C8—N1121.9 (2)H15A—C15—H15C109.5
C13—C8—N1118.7 (2)H15B—C15—H15C109.5
C8—C9—C10121.6 (2)C1—N1—C8125.11 (16)
C8—C9—H9119.2C1—N1—H1N119.4 (16)
C10—C9—H9119.2C8—N1—H1N113.3 (16)
O1—C1—C2—C7−161.5 (2)C8—C9—C10—C15179.0 (2)
N1—C1—C2—C719.9 (3)C9—C10—C11—C12−0.9 (4)
O1—C1—C2—C319.0 (3)C15—C10—C11—C12−179.6 (2)
N1—C1—C2—C3−159.59 (19)C9—C10—C11—C14180.0 (2)
C7—C2—C3—C4−1.2 (3)C15—C10—C11—C141.3 (4)
C1—C2—C3—C4178.3 (2)C10—C11—C12—C130.8 (4)
C2—C3—C4—C51.3 (4)C14—C11—C12—C13179.9 (3)
C3—C4—C5—C6−0.5 (4)C11—C12—C13—C80.1 (4)
C4—C5—C6—C7−0.3 (4)C9—C8—C13—C12−0.7 (3)
C3—C2—C7—C60.4 (3)N1—C8—C13—C12178.9 (2)
C1—C2—C7—C6−179.1 (2)O1—C1—N1—C8−7.0 (3)
C5—C6—C7—C20.3 (3)C2—C1—N1—C8171.52 (18)
C13—C8—C9—C100.6 (3)C9—C8—N1—C151.0 (3)
N1—C8—C9—C10−179.02 (19)C13—C8—N1—C1−128.6 (2)
C8—C9—C10—C110.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.84 (2)2.12 (2)2.948 (2)165 (2)

Symmetry codes: (i) −x+1/2, y+1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2302).

References

  • Brandenburg, K. (2002). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63 lw2051.
  • Gowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225–230.
  • Gowda, B. T., Sowmya, B. P., Tokarčík, M., Kožíšek, J. & Fuess, H. (2007). Acta Cryst. E63, o3365.
  • Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
  • Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography