PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): o339.
Published online 2007 December 21. doi:  10.1107/S1600536807067037
PMCID: PMC2915380

Triethyl­ammonium N′-(benzyl­sulfanylthio­carbonyl)-2-hydroxy­benzohydrazidate

Abstract

In the title compound, C6H16N+·C15H13N2O2S2 , the thione S atom is in a cis configuration with respect to the phenyl and benzene rings, while it adopts a trans configuration with respect to the carbonyl group. The dihedral angle between the benzene and phenyl rings is 78.81 (2)°. The mol­ecular conformation is stabilized by intra­molecular O—H(...)O and N—H(...)S hydrogen bonds, while inter­molecular N—H(...)O, N—H(...)N and weak C—H(...)O inter­actions help to stabilize the crystal structure.

Related literature

For related literature, see: Scovill et al. (1982 [triangle], 1984 [triangle]); West et al. (1989 [triangle]); Gou et al. (1990 [triangle]); Abu-Raquabah et al. (1992 [triangle]); Marchi et al. (1990 [triangle]); Ali & Livingston, (1974 [triangle]); Wu et al. (2000); Boga et al. (1990 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o339-scheme1.jpg

Experimental

Crystal data

  • C6H16N+·C15H13N2O2S2
  • M r = 419.59
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o339-efi1.jpg
  • a = 10.7109 (4) Å
  • b = 18.6807 (6) Å
  • c = 22.1814 (7) Å
  • V = 4438.2 (3) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.26 mm−1
  • T = 173 (2) K
  • 0.08 × 0.08 × 0.05 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: none
  • 26195 measured reflections
  • 3928 independent reflections
  • 2542 reflections with I > 2σ(I)
  • R int = 0.138

Refinement

  • R[F 2 > 2σ(F 2)] = 0.056
  • wR(F 2) = 0.118
  • S = 1.05
  • 3928 reflections
  • 257 parameters
  • H-atom parameters constrained
  • Δρmax = 0.34 e Å−3
  • Δρmin = −0.23 e Å−3

Data collection: COLLECT (Nonius, 1998 [triangle]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO (Otwinowski & Minor 1997 [triangle]) and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807067037/lh2550sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807067037/lh2550Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Professor W. Quail, Saskatchewan Structural Sciences Centre, Canada, for the X-ray diffraction facility.

supplementary crystallographic information

Comment

Dithiocarbazates and their derivatives have attracted much attention as they have potential applications as antitumor, antibacterial and antifungal agents (Scovill et al., 1982,1984, West & Pannell, 1989, Gou et al., 1990). Interest in these systems is also stimulated by their unusual physico-chemical (Abu-Raquabah et al.1992, Marchi et al., 1990) and chemotherapeutic properties (Ali & Livingston, 1974). Although N'-acyl hydrazine carbodithioates are structurally similar to the derivatives of dithiocarbazates, little data is available on their synthesis and characterization. As part of our ongoing investigation, we report here the synthesis and structure determination of the title compound (I) which was obtained from the reaction of salicylic acid hydrazide, CS2 and benzyl chloride in the presence of triethylamine.

The molecular structure of (I), together with atom labeling scheme is shown in Fig 1. The Hydrazinic H atom on N1 is trans with respect to the carbonyl group and cis with respect to the thione S atom. The C7—N1 distance of 1.329 (4) Å is intermediate between 1.47 Å for a C—N single bond and 1.29 Å for a double bond (Boga et al., 1999). The N1—N2 distance of 1.396 (3) Å [single bond (N—N) = 1.45 Å and double bond (N=N) = 1.25 Å] and the O2—C7 distance of 1.257 (4) Å suggest extensive delocalization in this part of the molecule. In the crystal structure, there is a weak C—H···π interaction (Fig 2) [C5—H5···Cg = 140.65°, H5···Cg = 2.976 Å and C5···Cg = 3.759 Å, where Cg is the centroid of the phenyl ring]. The molecular conformation is stabilized by intramolecular O—H···O and N—H···S hydrogen bonds while intermolecular N—H···O, N—H···N and weak C—H···O interactions help stabilize the crystal structure.

Experimental

The title compound was synthesized by the reaction of CS2 (1.99 g, 26.29 mmol) with a solution of salicylic acid hydrazide (4 g, 24.09 mmol) in CHCl3 (15 ml) in the presence of triethylamine (2 ml, 24.09 mmol). Benzyl chloride (3.5 ml, 26.30 mmol) was added dropwise to the above clear solution, which was stirred continuously for 2 h at room temperature. The product was obtained on evaporation of the solvent at room temperature. Colorless single crystals of (I) (m.p., 418 K) suitable for X-ray analysis were obtained by slow evaporation of a chloroform solution over a period of 10 days. (Yield 58%). Elemental analysis: Anal. Calcd (%): C, 60.11; H, 6.97; N, 10.01; S, 15.28; Found (%) for C21H29N3O2S2 (419.59): C,60.01; H, 6.87; N, 10.30; S, 15.06. Spectroscopic analysis: 1H NMR (CDCl3, TMS, δ, p.p.m.) 11.66, 12.38 (s, 2H, NH), 7.92–6.9 (m, 4H, benzene ring), 7.18 - 6.89 (m, 5H, phenyl), 4.48 (s, 1H, OH), 4.25 (s, 2H, CH2), 2.49 (s, 6H, CH2 of Et3NH+), 1.15 (s, 9H, CH3 of Et3NH+).13C NMR (CDCl3, TMS, δ, p.p.m.): 117.25 (C1), 158.94 (C2), 116.30 (C3),134.06 (C4), 118.99 (C5), 128.42 (C6), 165.85 (C7), 174.23 (C8), 35.66 (C9), 139.52 (C10),127.60 (C11,C15), 129.09 (C12,C14),126.38 (C13),45.77 (C16,C18, C20), 8.59 (C17, C19, C21).

Refinement

All H atoms were initially located in a diffrence Fourier map. They were then placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.95–0.99 Å; N—H = 0.88Å and O—H = 0.84Å and Uiso(H) = 1.2 Ueq(C,N) or 1.5Ueq(Cmethyl,O).

Figures

Fig. 1.
The molecular structure showing the atom-numbering scheme and displacement ellipsoids the 30% probability level. Hydrogen atoms are not shown.
Fig. 2.
Part of the crystal structure showing hydrogen bonds as dashed lines. Some H atoms have not been shown but the H atom of the benzene ring which is involved in a C—H···π interaction with the phenyl ring is shown. ...

Crystal data

C6H16N+·C15H13N2O2S2Dx = 1.256 Mg m3
Mr = 419.59Melting point: 418 K
Orthorhombic, PbcaMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 16320 reflections
a = 10.7109 (4) Åθ = 1.0–26.0º
b = 18.6807 (6) ŵ = 0.26 mm1
c = 22.1814 (7) ÅT = 173 (2) K
V = 4438.2 (3) Å3Chip, yellow
Z = 80.08 × 0.08 × 0.05 mm
F000 = 1792

Data collection

Nonius KappaCCD diffractometer2542 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.138
Monochromator: horizonally mounted graphite crystalθmax = 25.0º
T = 173(2) Kθmin = 2.4º
[var phi] scans and ω scans with κ offsetsh = −12→12
Absorption correction: nonek = −22→20
26195 measured reflectionsl = −26→26
3928 independent reflections

Refinement

Refinement on F2H-atom parameters constrained
Least-squares matrix: full  w = 1/[σ2(Fo2) + (0.033P)2 + 3.4211P] where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.056(Δ/σ)max < 0.001
wR(F2) = 0.118Δρmax = 0.34 e Å3
S = 1.05Δρmin = −0.23 e Å3
3928 reflectionsExtinction correction: none
257 parameters

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.15592 (9)0.33158 (5)−0.05488 (4)0.0436 (2)
S20.34667 (8)0.44725 (4)−0.01971 (4)0.0380 (2)
O10.5287 (2)0.23266 (12)0.22154 (10)0.0454 (6)
H10.46380.22590.20100.068*
O20.3691 (2)0.25376 (12)0.13887 (10)0.0427 (6)
N10.3824 (2)0.35026 (14)0.07825 (12)0.0351 (7)
H1A0.41520.39280.07190.042*
N20.2880 (2)0.32553 (13)0.04023 (11)0.0335 (6)
C10.5386 (3)0.33468 (16)0.15530 (13)0.0302 (7)
C20.5870 (3)0.29257 (17)0.20199 (14)0.0348 (8)
C30.6992 (3)0.31114 (19)0.22951 (15)0.0434 (9)
H30.73130.28250.26130.052*
C40.7638 (3)0.3707 (2)0.21095 (16)0.0462 (9)
H40.84080.38260.22970.055*
C50.7178 (3)0.41331 (19)0.16532 (15)0.0431 (9)
H50.76270.45460.15280.052*
C60.6067 (3)0.39574 (17)0.13812 (15)0.0376 (8)
H60.57510.42560.10700.045*
C70.4235 (3)0.31073 (17)0.12389 (14)0.0332 (8)
C80.2719 (3)0.36876 (16)−0.00578 (14)0.0320 (7)
C90.1697 (3)0.38403 (17)−0.12303 (14)0.0395 (8)
H9A0.25050.4097−0.12200.047*
H9B0.17190.3509−0.15790.047*
C100.0678 (3)0.43768 (17)−0.13339 (14)0.0355 (8)
C110.0125 (4)0.4435 (2)−0.18983 (16)0.0501 (10)
H110.03580.4115−0.22120.060*
C12−0.0765 (4)0.4959 (2)−0.20057 (19)0.0637 (12)
H12−0.11350.4995−0.23940.076*
C13−0.1118 (4)0.5423 (2)−0.1562 (2)0.0597 (11)
H13−0.17230.5782−0.16410.072*
C14−0.0587 (4)0.53656 (19)−0.09972 (17)0.0498 (10)
H14−0.08330.5684−0.06850.060*
C150.0300 (3)0.48471 (17)−0.08859 (15)0.0394 (8)
H150.06590.4812−0.04950.047*
N30.1590 (3)0.18429 (14)0.07791 (13)0.0420 (7)
H3A0.21450.22240.08070.050*
C160.1821 (3)0.14954 (19)0.01787 (16)0.0476 (9)
H16A0.13110.10550.01490.057*
H16B0.15490.1825−0.01460.057*
C170.3143 (4)0.1311 (2)0.0086 (2)0.0683 (12)
H17A0.36630.17300.01730.102*
H17B0.32710.1163−0.03330.102*
H17C0.33740.09190.03570.102*
C180.1836 (3)0.13709 (19)0.13117 (17)0.0498 (10)
H18A0.17160.16550.16840.060*
H18B0.27210.12180.13000.060*
C190.1015 (4)0.0707 (2)0.13475 (18)0.0589 (11)
H19A0.01370.08510.13770.088*
H19B0.12430.04260.17040.088*
H19C0.11350.04160.09850.088*
C200.0303 (4)0.2161 (2)0.07594 (17)0.0527 (10)
H20A0.02300.24610.03930.063*
H20B−0.03130.17680.07250.063*
C21−0.0019 (4)0.2601 (2)0.1287 (2)0.0746 (13)
H21A−0.00680.22950.16450.112*
H21B−0.08270.28330.12200.112*
H21C0.06250.29670.13470.112*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0456 (5)0.0354 (5)0.0496 (5)−0.0055 (4)−0.0148 (5)0.0072 (4)
S20.0395 (5)0.0281 (4)0.0464 (5)−0.0009 (4)−0.0008 (4)0.0027 (4)
O10.0535 (16)0.0388 (14)0.0439 (14)−0.0102 (12)−0.0090 (12)0.0085 (11)
O20.0475 (15)0.0396 (13)0.0410 (13)−0.0169 (12)−0.0066 (11)0.0058 (11)
N10.0346 (16)0.0280 (14)0.0427 (16)−0.0063 (12)−0.0066 (13)0.0005 (12)
N20.0323 (16)0.0312 (15)0.0371 (15)−0.0019 (12)−0.0062 (12)−0.0018 (12)
C10.0301 (18)0.0315 (17)0.0289 (17)−0.0010 (15)0.0045 (14)−0.0056 (14)
C20.038 (2)0.0342 (18)0.0325 (18)−0.0005 (15)0.0032 (15)−0.0045 (15)
C30.041 (2)0.048 (2)0.041 (2)0.0036 (17)−0.0057 (17)−0.0026 (17)
C40.032 (2)0.057 (2)0.050 (2)−0.0019 (18)−0.0008 (18)−0.0114 (19)
C50.037 (2)0.045 (2)0.047 (2)−0.0115 (17)0.0063 (17)−0.0070 (17)
C60.042 (2)0.038 (2)0.0331 (19)−0.0028 (16)0.0044 (16)−0.0010 (15)
C70.035 (2)0.0324 (18)0.0322 (18)0.0019 (15)−0.0003 (15)−0.0051 (15)
C80.0289 (18)0.0287 (17)0.0384 (18)0.0060 (14)0.0033 (15)−0.0024 (15)
C90.045 (2)0.0400 (19)0.0338 (18)0.0037 (17)−0.0032 (16)−0.0013 (15)
C100.0373 (19)0.0338 (18)0.0354 (19)−0.0067 (15)−0.0019 (16)0.0044 (15)
C110.062 (3)0.046 (2)0.043 (2)0.001 (2)−0.0073 (19)0.0019 (17)
C120.077 (3)0.056 (3)0.058 (3)0.011 (2)−0.025 (2)0.017 (2)
C130.059 (3)0.043 (2)0.078 (3)0.010 (2)−0.002 (2)0.014 (2)
C140.054 (3)0.041 (2)0.054 (2)0.0064 (19)0.009 (2)0.0055 (18)
C150.041 (2)0.040 (2)0.0371 (19)−0.0008 (17)0.0039 (16)0.0043 (16)
N30.0357 (16)0.0339 (15)0.0564 (18)−0.0110 (13)0.0012 (15)−0.0074 (14)
C160.051 (2)0.040 (2)0.052 (2)−0.0060 (18)−0.0023 (19)−0.0038 (18)
C170.053 (3)0.066 (3)0.086 (3)−0.002 (2)0.005 (2)−0.018 (2)
C180.046 (2)0.051 (2)0.053 (2)−0.0111 (18)−0.0063 (19)−0.0081 (18)
C190.062 (3)0.057 (3)0.058 (3)−0.016 (2)−0.007 (2)0.006 (2)
C200.046 (2)0.053 (2)0.059 (2)−0.0035 (19)−0.001 (2)−0.0003 (19)
C210.076 (3)0.068 (3)0.080 (3)0.013 (2)0.008 (3)−0.021 (2)

Geometric parameters (Å, °)

S1—C81.793 (3)C12—H120.9500
S1—C91.807 (3)C13—C141.379 (5)
S2—C81.699 (3)C13—H130.9500
O1—C21.353 (4)C14—C151.379 (5)
O1—H10.8400C14—H140.9500
O2—C71.258 (4)C15—H150.9500
N1—C71.328 (4)N3—C181.498 (4)
N1—N21.395 (3)N3—C201.502 (4)
N1—H1A0.8800N3—C161.502 (4)
N2—C81.313 (4)N3—H3A0.9300
C1—C21.400 (4)C16—C171.471 (5)
C1—C61.407 (4)C16—H16A0.9900
C1—C71.485 (4)C16—H16B0.9900
C2—C31.392 (5)C17—H17A0.9800
C3—C41.374 (5)C17—H17B0.9800
C3—H30.9500C17—H17C0.9800
C4—C51.379 (5)C18—C191.523 (5)
C4—H40.9500C18—H18A0.9900
C5—C61.374 (4)C18—H18B0.9900
C5—H50.9500C19—H19A0.9800
C6—H60.9500C19—H19B0.9800
C9—C101.499 (4)C19—H19C0.9800
C9—H9A0.9900C20—C211.470 (5)
C9—H9B0.9900C20—H20A0.9900
C10—C151.387 (4)C20—H20B0.9900
C10—C111.389 (5)C21—H21A0.9800
C11—C121.387 (5)C21—H21B0.9800
C11—H110.9500C21—H21C0.9800
C12—C131.365 (6)
C8—S1—C9103.99 (15)C13—C14—C15120.1 (4)
C2—O1—H1109.5C13—C14—H14120.0
C7—N1—N2121.1 (3)C15—C14—H14120.0
C7—N1—H1A119.4C14—C15—C10121.2 (3)
N2—N1—H1A119.4C14—C15—H15119.4
C8—N2—N1111.2 (3)C10—C15—H15119.4
C2—C1—C6117.7 (3)C18—N3—C20114.7 (3)
C2—C1—C7119.0 (3)C18—N3—C16114.6 (3)
C6—C1—C7123.2 (3)C20—N3—C16107.3 (3)
O1—C2—C3117.7 (3)C18—N3—H3A106.6
O1—C2—C1122.1 (3)C20—N3—H3A106.6
C3—C2—C1120.3 (3)C16—N3—H3A106.6
C4—C3—C2120.4 (3)C17—C16—N3112.5 (3)
C4—C3—H3119.8C17—C16—H16A109.1
C2—C3—H3119.8N3—C16—H16A109.1
C3—C4—C5120.5 (3)C17—C16—H16B109.1
C3—C4—H4119.8N3—C16—H16B109.1
C5—C4—H4119.8H16A—C16—H16B107.8
C6—C5—C4119.6 (3)C16—C17—H17A109.5
C6—C5—H5120.2C16—C17—H17B109.5
C4—C5—H5120.2H17A—C17—H17B109.5
C5—C6—C1121.6 (3)C16—C17—H17C109.5
C5—C6—H6119.2H17A—C17—H17C109.5
C1—C6—H6119.2H17B—C17—H17C109.5
O2—C7—N1121.2 (3)N3—C18—C19114.8 (3)
O2—C7—C1121.0 (3)N3—C18—H18A108.6
N1—C7—C1117.8 (3)C19—C18—H18A108.6
N2—C8—S2127.6 (2)N3—C18—H18B108.6
N2—C8—S1109.0 (2)C19—C18—H18B108.6
S2—C8—S1123.40 (18)H18A—C18—H18B107.6
C10—C9—S1115.5 (2)C18—C19—H19A109.5
C10—C9—H9A108.4C18—C19—H19B109.5
S1—C9—H9A108.4H19A—C19—H19B109.5
C10—C9—H9B108.4C18—C19—H19C109.5
S1—C9—H9B108.4H19A—C19—H19C109.5
H9A—C9—H9B107.5H19B—C19—H19C109.5
C15—C10—C11118.2 (3)C21—C20—N3114.4 (3)
C15—C10—C9121.7 (3)C21—C20—H20A108.7
C11—C10—C9120.0 (3)N3—C20—H20A108.7
C12—C11—C10120.2 (4)C21—C20—H20B108.7
C12—C11—H11119.9N3—C20—H20B108.7
C10—C11—H11119.9H20A—C20—H20B107.6
C13—C12—C11121.0 (4)C20—C21—H21A109.5
C13—C12—H12119.5C20—C21—H21B109.5
C11—C12—H12119.5H21A—C21—H21B109.5
C12—C13—C14119.4 (4)C20—C21—H21C109.5
C12—C13—H13120.3H21A—C21—H21C109.5
C14—C13—H13120.3H21B—C21—H21C109.5
C7—N1—N2—C8−172.4 (3)C9—S1—C8—N2−167.1 (2)
C6—C1—C2—O1−179.7 (3)C9—S1—C8—S212.3 (2)
C7—C1—C2—O1−3.5 (4)C8—S1—C9—C10−105.5 (3)
C6—C1—C2—C3−0.5 (4)S1—C9—C10—C1548.7 (4)
C7—C1—C2—C3175.7 (3)S1—C9—C10—C11−134.3 (3)
O1—C2—C3—C4178.9 (3)C15—C10—C11—C120.9 (5)
C1—C2—C3—C4−0.3 (5)C9—C10—C11—C12−176.2 (3)
C2—C3—C4—C50.7 (5)C10—C11—C12—C13−0.2 (6)
C3—C4—C5—C6−0.3 (5)C11—C12—C13—C14−0.6 (6)
C4—C5—C6—C1−0.6 (5)C12—C13—C14—C150.6 (6)
C2—C1—C6—C50.9 (5)C13—C14—C15—C100.1 (5)
C7—C1—C6—C5−175.1 (3)C11—C10—C15—C14−0.9 (5)
N2—N1—C7—O2−8.7 (5)C9—C10—C15—C14176.2 (3)
N2—N1—C7—C1169.2 (3)C18—N3—C16—C17−64.9 (4)
C2—C1—C7—O20.4 (4)C20—N3—C16—C17166.6 (3)
C6—C1—C7—O2176.4 (3)C20—N3—C18—C1962.5 (4)
C2—C1—C7—N1−177.5 (3)C16—N3—C18—C19−62.2 (4)
C6—C1—C7—N1−1.5 (4)C18—N3—C20—C2158.6 (4)
N1—N2—C8—S2−2.5 (4)C16—N3—C20—C21−172.9 (3)
N1—N2—C8—S1176.84 (19)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···O20.841.792.538 (3)147
N1—H1A···S20.882.392.855 (3)114
N3—H3A···O20.932.182.929 (3)137
N3—H3A···N20.932.273.094 (4)148
C9—H9A···S20.992.593.200 (3)120
C21—H21A···O1i0.982.563.377 (5)141

Symmetry codes: (i) x−1/2, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2550).

References

  • Abu-Raqabah, A., Davies, G., El-Sayed, M. A., El-Toukhy, A., Shaikh, S. N. & Zubieta, J. (1992). Inorg. Chim. Acta, 193, 43–56.
  • Ali, M. A. & Livingston, S. E. (1974). Coord. Chem. Rev. 13, 101–132.
  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  • Boga, C., Forlani, L., Silverstoni, C., Corradi, A. B. & Sgarabotto, P. (1999). J. Chem. Soc. Perkin Trans. 1, pp. 1363–1368.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Gou, S. H., You, X. Z., Xu, Z., Yu, K. B. & Zhou, Z. Y. (1990). Polyhedron, 9, 2981–2985.
  • Marchi, A., Rossi, R., Magon, L., Duttai, A., Pasqualini, R., Ferretti, V. & Bertolasi, V. (1990). J. Chem. Soc. Dalton Trans. pp. 1411–1416.
  • Nonius (1998). COLLECT Nonius BV Delft The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Scovill, J. P., Klayman, D. L. & Franchino, C. F. (1982). J. Med. Chem.25, 1261–1264. [PubMed]
  • Scovill, J. P., Klayman, D. L., Lambros, C., Childs, G. E. & Nortsh, J. D. (1984). J. Med. Chem.27, 87–91. [PubMed]
  • Sheldrick, G. M. (1997). SHELXL97, University of Göttingen, Germany. [PubMed]
  • West, D. X. & Pannell, L. K. (1989). Transition Met. Chem.14, 457–462.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography