PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): o338.
Published online 2007 December 21. doi:  10.1107/S1600536807067177
PMCID: PMC2915379

3,5-Dihydr­oxy-N′-(2-hydroxy­benzyl­idene)benzohydrazide monohydrate

Abstract

The title potential anti­bacterial compound, C14H12N2O4·H2O, is a Schiff base which has an intra­molecular O—H(...)N hydrogen bond and crystallizes with one uncoordinated water mol­ecule, which links three symmetry-related mol­ecules through two O—H(...)O and one N—H(...)O hydrogen bond. In the crystal structure, further inter­molecular O—H(...)O hydrogen bonds link symmetry-related mol­ecules, forming layers parallel to the bc plane.

Related literature

For related structures, see: Ali et al. (2005 [triangle]); Diao (2007 [triangle]); Diao, Li et al. (2007 [triangle]); Diao, Shu et al. (2007 [triangle]); Diao, Wang et al. (2007 [triangle]); Jing et al. (2006 [triangle]); Qiu et al. (2006 [triangle]); Wang et al. (2007 [triangle]); Yang (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o338-scheme1.jpg

Experimental

Crystal data

  • C14H12N2O4·H2O
  • M r = 290.27
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o338-efi1.jpg
  • a = 7.773 (2) Å
  • b = 13.411 (3) Å
  • c = 13.084 (3) Å
  • β = 100.52 (3)°
  • V = 1341.0 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 293 (2) K
  • 0.33 × 0.32 × 0.32 mm

Data collection

  • Bruker SMART APEX area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.964, T max = 0.965
  • 17195 measured reflections
  • 2918 independent reflections
  • 2062 reflections with I > 2σ(I)
  • R int = 0.038

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045
  • wR(F 2) = 0.125
  • S = 1.03
  • 2918 reflections
  • 202 parameters
  • 4 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.56 e Å−3
  • Δρmin = −0.21 e Å−3

Data collection: SMART (Siemens, 1996 [triangle]); cell refinement: SAINT (Siemens, 1996 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a [triangle]); molecular graphics: SHELXTL (Sheldrick, 1997b [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807067177/su2036sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807067177/su2036Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Affiliated Shengjing Hospital of the China Medical University for a research grant.

supplementary crystallographic information

Comment

Compounds derived from the Schiff base condensation reaction of aldehydes with hydrazides have been widely investigated both from a structural point of view and for their biological activity (Jing et al., 2006; Yang, 2007; Wang et al., 2007). Complexes derived from Schiff bases have also been widely investigated (Ali et al., 2005; Qiu et al., 2006; Diao, 2007; Diao, 2007; Diao, Li et al., 2007; Diao, Shu et al., 2007; Diao, Wang et al., 2007). We report herein the crystal structure of the title compound derived from the reaction of equimolar salicylaldehyde with 3,5-dihydroxybenzoic acid hydrazide in a methanol solution.

The molecular structure of the title compound (Fig. 1) is a Schiff base, which has an intramolecular O1—H1···N1 hydrogen bond (Table 1), and crystallizes as a water solvate. In the crystal structure the water molecule links three symmetry related molecules through two donnor O—H···O hydrogen bonds and one acceptor N—H···O hydrogen bond (Table 1). Together with two further intermolecular O—H···O hydrogen bonds, layers parallel to the bc plane are formed (Fig. 2).

Experimental

Salicylaldehyde and 3,5-dihydroxybenzoic acid hydrazide were purchased from Aldrich and were used without further purification. Salicylaldehyde (0.1 mmol, 12.2 mg) and 3,5-dihydroxybenzoic acid hydrazide (0.1 mmol, 16.8 mg) were mixed in a methanol solution (10 cm3). The mixture was stirred at reflux for 30 min and cooled to room temperature. After keeping the solution in air for a few days, yellow block-shaped crystals appeard at the bottom of the vessel.

Refinement

The NH H-atom, H2A, and the water H-atoms were located from difference Fourier maps and were refined with the N–H, O–H and H···H distances restrained to 0.90 (1), 0.85 (1) and 1.37 (2) Å, respectively. The remaining H-atoms were placed in calculated positions and treated as riding atoms; C–H = 0.93 Å with Uiso(H) = 1.2Ueq(C), and O–H = 0.82 Å with Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.
The molecular structure of the title compound, showing the numbering scheme and displacement ellipsoids drawn at the 30% probability level
Fig. 2.
The crystal packing of the the title compound. The intermolecular hydrogen bonds are shown as dashed lines.

Crystal data

C14H12N2O4·H2OF000 = 608
Mr = 290.27Dx = 1.438 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: P 2ybcCell parameters from 2799 reflections
a = 7.773 (2) Åθ = 2.2–24.5º
b = 13.411 (3) ŵ = 0.11 mm1
c = 13.084 (3) ÅT = 293 (2) K
β = 100.52 (3)ºBlock, yellow
V = 1341.0 (5) Å30.33 × 0.32 × 0.32 mm
Z = 4

Data collection

Bruker SMART APEX area-detector diffractometer2918 independent reflections
Radiation source: fine-focus sealed tube2062 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.038
T = 293(2) Kθmax = 27.0º
ω scansθmin = 2.2º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −9→9
Tmin = 0.964, Tmax = 0.965k = −16→17
17195 measured reflectionsl = −16→16

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.125  w = 1/[σ2(Fo2) + (0.0542P)2 + 0.4645P] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2918 reflectionsΔρmax = 0.56 e Å3
202 parametersΔρmin = −0.21 e Å3
4 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.82125 (17)0.06536 (10)0.52477 (11)0.0340 (3)
N20.89934 (18)0.14758 (10)0.48954 (11)0.0329 (3)
O10.7166 (2)−0.03870 (11)0.66833 (10)0.0593 (4)
H10.75900.00930.64300.089*
O20.96488 (18)0.20688 (9)0.65336 (9)0.0452 (3)
O31.1037 (3)0.43849 (11)0.28345 (10)0.0700 (5)
H31.05370.39420.24620.105*
O41.3445 (2)0.50690 (11)0.63155 (11)0.0577 (4)
H41.33890.48960.69100.087*
O50.8486 (2)0.36158 (10)0.76830 (11)0.0606 (4)
C10.6575 (2)−0.08377 (12)0.48772 (14)0.0369 (4)
C20.5775 (2)−0.15150 (14)0.41236 (17)0.0508 (5)
H20.5807−0.13970.34270.061*
C30.4943 (3)−0.23513 (15)0.4397 (2)0.0613 (6)
H3A0.4418−0.27940.38870.074*
C40.4886 (3)−0.25336 (15)0.5423 (2)0.0635 (7)
H4A0.4340−0.31060.56070.076*
C50.5630 (3)−0.18744 (16)0.61818 (19)0.0579 (6)
H50.5571−0.19970.68740.070*
C60.6470 (2)−0.10272 (13)0.59157 (15)0.0424 (4)
C70.7438 (2)0.00390 (12)0.45641 (14)0.0363 (4)
H70.74310.01570.38630.044*
C80.9672 (2)0.21721 (12)0.55913 (12)0.0319 (4)
C91.0484 (2)0.30675 (11)0.51996 (12)0.0315 (4)
C101.0290 (2)0.33013 (13)0.41515 (13)0.0399 (4)
H100.95760.29160.36560.048*
C111.1174 (3)0.41156 (13)0.38544 (14)0.0431 (4)
C121.2233 (3)0.46968 (13)0.45862 (14)0.0424 (4)
H121.28390.52350.43780.051*
C131.2382 (2)0.44731 (13)0.56219 (13)0.0385 (4)
C141.1516 (2)0.36597 (12)0.59365 (13)0.0354 (4)
H141.16250.35110.66400.042*
H2A0.894 (3)0.1496 (18)0.4203 (8)0.080*
H5A0.876 (3)0.4197 (9)0.7493 (18)0.080*
H5B0.885 (3)0.3199 (13)0.7274 (16)0.080*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0361 (7)0.0282 (7)0.0391 (8)−0.0005 (6)0.0105 (6)0.0015 (6)
N20.0397 (8)0.0282 (7)0.0319 (7)−0.0035 (6)0.0099 (6)−0.0004 (6)
O10.0736 (10)0.0606 (9)0.0411 (8)−0.0153 (8)0.0033 (7)0.0109 (7)
O20.0685 (9)0.0388 (7)0.0287 (7)−0.0058 (6)0.0104 (6)0.0020 (5)
O30.1327 (15)0.0443 (8)0.0319 (7)−0.0293 (9)0.0125 (8)0.0041 (6)
O40.0694 (9)0.0560 (9)0.0443 (8)−0.0272 (7)0.0015 (7)−0.0049 (7)
O50.1062 (13)0.0392 (8)0.0432 (8)0.0067 (8)0.0312 (8)0.0064 (6)
C10.0316 (8)0.0285 (8)0.0517 (11)0.0031 (7)0.0101 (8)−0.0023 (7)
C20.0445 (10)0.0444 (11)0.0654 (13)−0.0034 (9)0.0149 (9)−0.0156 (10)
C30.0442 (11)0.0385 (11)0.102 (2)−0.0061 (9)0.0148 (12)−0.0205 (12)
C40.0443 (11)0.0326 (10)0.115 (2)−0.0027 (9)0.0177 (12)0.0101 (12)
C50.0530 (12)0.0481 (12)0.0726 (15)−0.0013 (10)0.0110 (11)0.0226 (11)
C60.0397 (10)0.0336 (9)0.0524 (12)0.0017 (7)0.0043 (8)0.0086 (8)
C70.0385 (9)0.0353 (9)0.0371 (10)0.0010 (7)0.0117 (7)−0.0017 (7)
C80.0366 (9)0.0299 (8)0.0292 (9)0.0037 (7)0.0061 (7)0.0010 (7)
C90.0375 (9)0.0271 (8)0.0303 (9)0.0026 (7)0.0071 (7)−0.0004 (6)
C100.0586 (11)0.0287 (8)0.0304 (9)−0.0043 (8)0.0030 (8)−0.0008 (7)
C110.0684 (12)0.0312 (9)0.0305 (9)−0.0030 (8)0.0108 (8)0.0017 (7)
C120.0562 (11)0.0305 (9)0.0418 (11)−0.0067 (8)0.0121 (8)0.0011 (8)
C130.0425 (10)0.0340 (9)0.0382 (10)−0.0030 (7)0.0056 (8)−0.0044 (7)
C140.0423 (9)0.0356 (9)0.0281 (9)0.0000 (7)0.0057 (7)−0.0004 (7)

Geometric parameters (Å, °)

N1—C71.283 (2)C3—C41.373 (3)
N1—N21.3780 (19)C3—H3A0.9300
N2—C81.343 (2)C4—C51.375 (3)
N2—H2A0.899 (10)C4—H4A0.9300
O1—C61.357 (2)C5—C61.386 (3)
O1—H10.8200C5—H50.9300
O2—C81.244 (2)C7—H70.9300
O3—C111.368 (2)C8—C91.490 (2)
O3—H30.8200C9—C141.386 (2)
O4—C131.368 (2)C9—C101.388 (2)
O4—H40.8200C10—C111.383 (2)
O5—H5A0.856 (9)C10—H100.9300
O5—H5B0.857 (9)C11—C121.383 (3)
C1—C61.399 (3)C12—C131.372 (3)
C1—C21.400 (3)C12—H120.9300
C1—C71.450 (2)C13—C141.383 (2)
C2—C31.374 (3)C14—H140.9300
C2—H20.9300
C7—N1—N2117.40 (14)C5—C6—C1120.43 (19)
C8—N2—N1118.17 (13)N1—C7—C1120.45 (16)
C8—N2—H2A126.9 (16)N1—C7—H7119.8
N1—N2—H2A114.8 (16)C1—C7—H7119.8
C6—O1—H1109.5O2—C8—N2121.30 (15)
C11—O3—H3109.5O2—C8—C9120.94 (15)
C13—O4—H4109.5N2—C8—C9117.75 (14)
H5A—O5—H5B106.6 (18)C14—C9—C10120.16 (15)
C6—C1—C2117.96 (17)C14—C9—C8116.75 (15)
C6—C1—C7122.26 (16)C10—C9—C8123.06 (15)
C2—C1—C7119.75 (17)C11—C10—C9119.09 (16)
C3—C2—C1121.0 (2)C11—C10—H10120.5
C3—C2—H2119.5C9—C10—H10120.5
C1—C2—H2119.5O3—C11—C10121.91 (17)
C4—C3—C2120.1 (2)O3—C11—C12117.19 (16)
C4—C3—H3A120.0C10—C11—C12120.90 (17)
C2—C3—H3A120.0C13—C12—C11119.52 (17)
C3—C4—C5120.4 (2)C13—C12—H12120.2
C3—C4—H4A119.8C11—C12—H12120.2
C5—C4—H4A119.8O4—C13—C12117.35 (16)
C4—C5—C6120.1 (2)O4—C13—C14122.08 (16)
C4—C5—H5120.0C12—C13—C14120.54 (16)
C6—C5—H5120.0C13—C14—C9119.75 (16)
O1—C6—C5118.38 (18)C13—C14—H14120.1
O1—C6—C1121.19 (16)C9—C14—H14120.1

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.862.587 (2)147
O5—H5B···O20.857 (9)1.96 (1)2.807 (2)170 (2)
O5—H5A···O3i0.856 (9)1.96 (1)2.806 (2)168 (2)
N2—H2A···O5ii0.899 (10)1.96 (1)2.852 (2)170 (2)
O3—H3···O2ii0.821.872.682 (2)173
O4—H4···O1iii0.822.002.813 (2)169

Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) x, −y+1/2, z−1/2; (iii) −x+2, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2036).

References

  • Ali, H. M., Kamalul Aripin, N. F. & Ng, S. W. (2005). Acta Cryst. E61, m433–m434.
  • Diao, Y.-P. (2007). Acta Cryst. E63, m1453–m1454.
  • Diao, Y.-P., Li, K., Huang, S.-S., Lu, L. & Liu, K.-X. (2007). Acta Cryst. E63, m2426.
  • Diao, Y.-P., Shu, X.-H., Zhang, B.-J., Zhen, Y.-H. & Kang, T.-G. (2007). Acta Cryst. E63, m1816.
  • Diao, Y.-P., Wang, Y.-Z., Wang, M.-D. & Li, K. (2007). Acta Cryst. E63, m2494.
  • Jing, Z.-L., Zhao, Y.-L., Chen, X. & Yu, M. (2006). Acta Cryst. E62, o4087–o4088.
  • Qiu, X.-Y., Yang, S.-L., Liu, W.-S. & Zhu, H.-L. (2006). Acta Cryst. E62, m1320–m1321.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  • Sheldrick, G. M. (1997b). SHELXTL Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Siemens (1996). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Wang, N., Li, J.-P. & Pu, Y.-L. (2007). Chin. J. Struct. Chem.26, 547–550.
  • Yang, D.-S. (2007). J. Chem. Crystallogr.37, 343–348.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography