PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): o337.
Published online 2007 December 21. doi:  10.1107/S1600536807067335
PMCID: PMC2915378

(4aS,5R,7R,8S,8aR)-8-(1,3-Dioxolan-2-yl)-7,8-dimethyl-5-(1-methyl­ethen­yl)perhydro­naphthalen-2-one

Abstract

In the chiral title compound, C18H28O3, the two six-membered rings of the perhydronaphthalenone adopt a rigid chair–chair conformation and the five-membered dioxolanyl ring adopts an envelope conformation. The crystal structure is stabilized only by weak inter­actions.

Related literature

For related literature, see Meulemans et al. (1999 [triangle]); Meulemans & de Groot (2007 [triangle]); Cremer & Pople (1975 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o337-scheme1.jpg

Experimental

Crystal data

  • C18H28O3
  • M r = 292.40
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o337-efi1.jpg
  • a = 8.9172 (9) Å
  • b = 11.0318 (12) Å
  • c = 8.9616 (9) Å
  • β = 116.354 (6)°
  • V = 789.95 (14) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 150 (2) K
  • 0.30 × 0.30 × 0.30 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: none
  • 6725 measured reflections
  • 1678 independent reflections
  • 1623 reflections with I > 2σ(I)
  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.028
  • wR(F 2) = 0.073
  • S = 1.07
  • 1678 reflections
  • 193 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.21 e Å−3
  • Δρmin = −0.12 e Å−3

Data collection: COLLECT (Nonius, 1998 [triangle]); cell refinement: DENZO (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO; program(s) used to solve structure: SHELXS86 (Sheldrick, 1985 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: PLATON.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807067335/si2067sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807067335/si2067Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are grateful to Dr Tommy M. Meulemans and Professor Aede de Groot for providing crystals of the title compound. This work was supported by the Council for Chemical Sciences of the Netherlands Organization for Scientific Research (CW–NWO).

supplementary crystallographic information

Comment

Crystals of the title compound (Fig. 1) were obtained as an undesired product as part of an attempt to synthesize a clerodane diterpenoid. The stereochemistry at each of the chiral centers (i.e., C5:S, C6:R, C8:R, C9:S, C10:R) was assigned based on the known chirality of C6:R of the starting material [i.e., R-(-)-carvone] (Meulemans et al.,1999).

The ring (C1/C2—C10) adopts a chair conformation with puckering parameters of Q = 0.559 (2) Å, θ = 173.5 (2)°, [var phi] = 78.4(1.7)° (Cremer & Pople, 1975). The ring (C5/C6—C10) adopts a chair conformation with puckering parameters Q = 0.559 (2) Å, θ =176.2 (2)°, [var phi] = 359 (3)°. The two six-membered rings of the hydronaphtalenone derivative adopt a rigid chair-chair conformation (i.e., the axial H atoms of the atoms C5 and C10 are located respectively below and above the best molecular plane of the octahydronaphtalen-2-one derivative).

The five-membered dioxolanyl ring (C11/O2—O3) adopts an envelope conformation on C17 (i.e., the atoms C11, C18, O2 and O3 are coplanar and C17 projects out of the plane) with puckering parameters of Q = 0.340 (2)Å and [var phi] = 152.0 (3)°. The torsion angles C17 – O2 – C11 – O3 and C18 – O3 – C11 – O2 are respectively 26.80 (16) and -5.37 (17). Weak interactions are found between the equatorial H atom of atom C1 and atom C18 [C1–H1B···C18 (1 - x, 1/2 + y, -z) = 2.88 Å].

Other short contacts [C5···O1 (2 - x, -1/2 + y, -z) = 3.680 (2) Å and C13···O1 (2 - x, -1/2 + y, 1 - z) = 3.503 (2) Å] are also found in the crystal structure.

Experimental

Crystal of the title compound were obtained (Scheme 1) from Meulemans & de Groot (2007).

Refinement

In the absence of significant anomalous scattering effects, Friedel pairs were merged prior to the refinement. The reflection 100 has been omitted from the refinement due to X-ray truncation at θmin = 2.54° (θ100 = 2.55°). H atoms were found in difference Fourier maps and subsequently placed at calculated positions (C—H = 0.95–1.00 Å) with isotropic displacement parameters having values 1.2 or 1.5 times Ueq of the attached C atom.

Figures

Fig. 1.
Displacement ellipsoid plot (50% probability level) of the asymmetric unit of the title compound at 150 K. H atoms are omitted for clarity.
Fig. 2.
The formation of the title compound.

Crystal data

C18H28O3F000 = 320
Mr = 292.40Dx = 1.229 Mg m3
Monoclinic, P21Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 225 reflections
a = 8.9172 (9) Åθ = 2.0–20.0º
b = 11.0318 (12) ŵ = 0.08 mm1
c = 8.9616 (9) ÅT = 150 (2) K
β = 116.354 (6)ºBlock, colourless
V = 789.95 (14) Å30.30 × 0.30 × 0.30 mm
Z = 2

Data collection

Nonius KappaCCD diffractometer1623 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0.034
Monochromator: graphiteθmax = 26.3º
T = 150(2) Kθmin = 2.5º
[var phi] and ω scansh = −11→11
Absorption correction: nonek = −13→13
6725 measured reflectionsl = −11→10
1678 independent reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.074  w = 1/[σ2(Fo2) + (0.0415P)2 + 0.0975P] where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
1678 reflectionsΔρmax = 0.21 e Å3
193 parametersΔρmin = −0.12 e Å3
1 restraintExtinction correction: none
Primary atom site location: structure-invariant direct methodsAbsolute structure: known chirality of atom C6(R)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.91230 (16)1.20580 (12)0.02689 (16)0.0341 (3)
O20.71825 (13)0.66981 (11)0.28172 (14)0.0219 (3)
O30.66971 (14)0.78772 (12)0.05496 (14)0.0252 (3)
C10.8606 (2)1.01128 (16)0.1128 (2)0.0232 (4)
H1A0.83180.94470.03060.028*
H1B0.75481.04920.09980.028*
C20.9642 (2)1.10439 (16)0.07722 (19)0.0226 (4)
C31.1366 (2)1.06287 (16)0.1097 (2)0.0250 (4)
H3A1.20191.13270.10080.030*
H3B1.12821.00220.02500.030*
C41.22676 (19)1.00670 (15)0.2844 (2)0.0209 (3)
H4A1.33500.97250.29870.025*
H4B1.25101.07130.36870.025*
C51.12471 (18)0.90660 (14)0.31573 (19)0.0157 (3)
H5A1.10450.84000.23330.019*
C61.22433 (18)0.85501 (14)0.49250 (19)0.0166 (3)
H6A1.25450.92450.57230.020*
C71.11779 (18)0.76665 (14)0.53733 (19)0.0172 (3)
H7A1.18300.73960.65400.021*
H7B1.09280.69430.46490.021*
C80.95238 (19)0.82285 (14)0.51790 (19)0.0162 (3)
H8A0.88690.75650.53760.019*
C90.84606 (18)0.86925 (14)0.33675 (19)0.0160 (3)
C100.95399 (18)0.95839 (14)0.29051 (19)0.0159 (3)
H10A0.97961.02860.36860.019*
C110.79211 (18)0.75823 (15)0.21959 (19)0.0183 (3)
H11A0.89270.72250.21420.022*
C120.68673 (19)0.93240 (15)0.3237 (2)0.0218 (3)
H12A0.63600.88330.38040.033*
H12B0.60700.94160.20610.033*
H12C0.71571.01250.37620.033*
C130.9859 (2)0.91914 (16)0.6532 (2)0.0229 (3)
H13A1.04180.98910.63270.034*
H13B1.05760.88460.76270.034*
H13C0.87950.94500.65030.034*
C141.38701 (19)0.79469 (15)0.51502 (19)0.0196 (3)
C151.3778 (2)0.70016 (18)0.3920 (2)0.0281 (4)
H15A1.34570.73800.28310.042*
H15B1.29420.63910.38260.042*
H15C1.48740.66130.42940.042*
C161.5329 (2)0.82505 (18)0.6422 (2)0.0284 (4)
H16A1.63320.78630.65550.034*
H16B1.53620.88540.71920.034*
C170.5970 (2)0.60851 (16)0.1386 (2)0.0257 (4)
H17A0.50790.57210.16160.031*
H17B0.64950.54430.10040.031*
C180.5291 (2)0.70922 (18)0.0126 (2)0.0290 (4)
H18A0.48890.6777−0.10220.035*
H18B0.43600.75190.02210.035*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0380 (7)0.0257 (7)0.0346 (7)0.0021 (6)0.0126 (6)0.0121 (6)
O20.0228 (6)0.0192 (6)0.0210 (6)−0.0074 (5)0.0073 (5)−0.0009 (5)
O30.0228 (6)0.0278 (6)0.0189 (6)−0.0096 (5)0.0037 (5)0.0007 (5)
C10.0176 (7)0.0256 (8)0.0229 (8)−0.0005 (7)0.0059 (6)0.0072 (7)
C20.0269 (8)0.0228 (8)0.0156 (7)−0.0027 (7)0.0072 (6)0.0028 (7)
C30.0265 (8)0.0273 (9)0.0235 (8)−0.0047 (7)0.0132 (7)0.0047 (7)
C40.0177 (7)0.0220 (8)0.0237 (8)−0.0019 (6)0.0100 (6)0.0043 (7)
C50.0149 (7)0.0154 (7)0.0163 (7)−0.0006 (6)0.0064 (6)0.0000 (6)
C60.0162 (7)0.0167 (7)0.0170 (7)0.0007 (6)0.0074 (6)0.0003 (6)
C70.0175 (7)0.0149 (7)0.0186 (7)0.0008 (6)0.0073 (6)0.0024 (6)
C80.0172 (7)0.0153 (7)0.0167 (7)−0.0011 (6)0.0081 (6)0.0011 (6)
C90.0147 (7)0.0165 (7)0.0179 (7)0.0000 (6)0.0081 (6)0.0012 (6)
C100.0146 (7)0.0149 (7)0.0172 (7)0.0008 (6)0.0063 (6)0.0027 (6)
C110.0175 (7)0.0183 (7)0.0181 (7)−0.0020 (6)0.0071 (6)0.0000 (6)
C120.0177 (7)0.0226 (8)0.0266 (8)0.0027 (6)0.0111 (6)0.0018 (7)
C130.0258 (8)0.0242 (8)0.0205 (8)−0.0013 (7)0.0120 (7)−0.0027 (7)
C140.0182 (7)0.0197 (8)0.0215 (8)0.0028 (6)0.0093 (6)0.0042 (6)
C150.0262 (8)0.0277 (9)0.0330 (9)0.0070 (7)0.0155 (7)0.0005 (8)
C160.0204 (8)0.0364 (10)0.0267 (9)0.0069 (7)0.0088 (7)0.0043 (8)
C170.0239 (8)0.0245 (8)0.0242 (8)−0.0097 (7)0.0067 (7)−0.0038 (7)
C180.0205 (8)0.0330 (9)0.0262 (8)−0.0104 (7)0.0039 (7)0.0012 (8)

Geometric parameters (Å, °)

O1—C21.218 (2)C8—C91.559 (2)
O2—C111.4215 (19)C8—H8A1.0000
O2—C171.428 (2)C9—C121.539 (2)
O3—C181.430 (2)C9—C111.544 (2)
O3—C111.4298 (18)C9—C101.5554 (19)
C1—C21.507 (2)C10—H10A1.0000
C1—C101.547 (2)C11—H11A1.0000
C1—H1A0.9900C12—H12A0.9800
C1—H1B0.9900C12—H12B0.9800
C2—C31.503 (2)C12—H12C0.9800
C3—C41.537 (2)C13—H13A0.9800
C3—H3A0.9900C13—H13B0.9800
C3—H3B0.9900C13—H13C0.9800
C4—C51.534 (2)C14—C161.337 (2)
C4—H4A0.9900C14—C151.493 (2)
C4—H4B0.9900C15—H15A0.9800
C5—C61.541 (2)C15—H15B0.9800
C5—C101.5458 (19)C15—H15C0.9800
C5—H5A1.0000C16—H16A0.9500
C6—C141.526 (2)C16—H16B0.9500
C6—C71.534 (2)C17—C181.506 (3)
C6—H6A1.0000C17—H17A0.9900
C7—C81.537 (2)C17—H17B0.9900
C7—H7A0.9900C18—H18A0.9900
C7—H7B0.9900C18—H18B0.9900
C8—C131.538 (2)
C11—O2—C17105.72 (12)C11—C9—C8108.03 (12)
C18—O3—C11108.30 (12)C10—C9—C8108.84 (11)
C2—C1—C10111.98 (13)C5—C10—C1109.58 (12)
C2—C1—H1A109.2C5—C10—C9114.40 (12)
C10—C1—H1A109.2C1—C10—C9113.50 (12)
C2—C1—H1B109.2C5—C10—H10A106.2
C10—C1—H1B109.2C1—C10—H10A106.2
H1A—C1—H1B107.9C9—C10—H10A106.2
O1—C2—C3122.63 (16)O2—C11—O3106.63 (12)
O1—C2—C1122.44 (16)O2—C11—C9109.67 (12)
C3—C2—C1114.93 (14)O3—C11—C9112.69 (13)
C2—C3—C4110.36 (13)O2—C11—H11A109.3
C2—C3—H3A109.6O3—C11—H11A109.3
C4—C3—H3A109.6C9—C11—H11A109.3
C2—C3—H3B109.6C9—C12—H12A109.5
C4—C3—H3B109.6C9—C12—H12B109.5
H3A—C3—H3B108.1H12A—C12—H12B109.5
C5—C4—C3113.07 (12)C9—C12—H12C109.5
C5—C4—H4A109.0H12A—C12—H12C109.5
C3—C4—H4A109.0H12B—C12—H12C109.5
C5—C4—H4B109.0C8—C13—H13A109.5
C3—C4—H4B109.0C8—C13—H13B109.5
H4A—C4—H4B107.8H13A—C13—H13B109.5
C4—C5—C6109.63 (12)C8—C13—H13C109.5
C4—C5—C10109.45 (12)H13A—C13—H13C109.5
C6—C5—C10111.58 (11)H13B—C13—H13C109.5
C4—C5—H5A108.7C16—C14—C15121.22 (15)
C6—C5—H5A108.7C16—C14—C6120.78 (15)
C10—C5—H5A108.7C15—C14—C6118.00 (14)
C14—C6—C7110.56 (12)C14—C15—H15A109.5
C14—C6—C5112.18 (12)C14—C15—H15B109.5
C7—C6—C5111.26 (12)H15A—C15—H15B109.5
C14—C6—H6A107.5C14—C15—H15C109.5
C7—C6—H6A107.5H15A—C15—H15C109.5
C5—C6—H6A107.5H15B—C15—H15C109.5
C6—C7—C8112.88 (12)C14—C16—H16A120.0
C6—C7—H7A109.0C14—C16—H16B120.0
C8—C7—H7A109.0H16A—C16—H16B120.0
C6—C7—H7B109.0O2—C17—C18102.48 (14)
C8—C7—H7B109.0O2—C17—H17A111.3
H7A—C7—H7B107.8C18—C17—H17A111.3
C7—C8—C13110.40 (12)O2—C17—H17B111.3
C7—C8—C9111.09 (12)C18—C17—H17B111.3
C13—C8—C9114.17 (13)H17A—C17—H17B109.2
C7—C8—H8A106.9O3—C18—C17103.57 (13)
C13—C8—H8A106.9O3—C18—H18A111.0
C9—C8—H8A106.9C17—C18—H18A111.0
C12—C9—C11107.98 (12)O3—C18—H18B111.0
C12—C9—C10110.66 (12)C17—C18—H18B111.0
C11—C9—C10111.29 (12)H18A—C18—H18B109.0
C12—C9—C8110.00 (12)
C10—C1—C2—O1−126.84 (17)C2—C1—C10—C5−55.17 (18)
C10—C1—C2—C352.74 (19)C2—C1—C10—C9175.58 (13)
O1—C2—C3—C4129.35 (17)C12—C9—C10—C5174.62 (12)
C1—C2—C3—C4−50.2 (2)C11—C9—C10—C5−65.32 (16)
C2—C3—C4—C552.91 (19)C8—C9—C10—C553.62 (16)
C3—C4—C5—C6179.67 (13)C12—C9—C10—C1−58.63 (17)
C3—C4—C5—C10−57.64 (17)C11—C9—C10—C161.44 (16)
C4—C5—C6—C14−63.06 (16)C8—C9—C10—C1−179.62 (12)
C10—C5—C6—C14175.53 (13)C17—O2—C11—O326.80 (16)
C4—C5—C6—C7172.49 (12)C17—O2—C11—C9149.10 (12)
C10—C5—C6—C751.08 (16)C18—O3—C11—O2−5.37 (17)
C14—C6—C7—C8179.67 (12)C18—O3—C11—C9−125.73 (14)
C5—C6—C7—C8−54.97 (17)C12—C9—C11—O2−67.98 (15)
C6—C7—C8—C13−70.08 (16)C10—C9—C11—O2170.38 (12)
C6—C7—C8—C957.63 (16)C8—C9—C11—O250.96 (15)
C7—C8—C9—C12−176.34 (13)C12—C9—C11—O350.63 (16)
C13—C8—C9—C12−50.71 (16)C10—C9—C11—O3−71.01 (15)
C7—C8—C9—C1166.02 (15)C8—C9—C11—O3169.56 (11)
C13—C8—C9—C11−168.35 (12)C7—C6—C14—C16−107.18 (17)
C7—C8—C9—C10−54.94 (15)C5—C6—C14—C16127.98 (17)
C13—C8—C9—C1070.69 (15)C7—C6—C14—C1572.20 (18)
C4—C5—C10—C157.34 (16)C5—C6—C14—C15−52.63 (19)
C6—C5—C10—C1178.86 (13)C11—O2—C17—C18−36.40 (16)
C4—C5—C10—C9−173.90 (12)C11—O3—C18—C17−16.77 (18)
C6—C5—C10—C9−52.38 (16)O2—C17—C18—O332.42 (17)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2067).

References

  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Meulemans, T. M. & de Groot, A. E. (2007). Private communication.
  • Meulemans, T. M., Stork, G. A., Macaev, F. Z., Jansen, B. J. M. & de Groot, A. (1999). J. Org. Chem.64, 9178–9188.
  • Nonius (1998). COLLECT Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Sheldrick, G. M. (1985). SHELXS86 University of Göttingen, Germany.
  • Sheldrick, G. M. (1997). SHELXL97 University of Göttingen, Germany. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography