PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): o333.
Published online 2007 December 21. doi:  10.1107/S1600536807065166
PMCID: PMC2915374

N-Benzoyl-N′,N′′-diphenyl­guanidinium chloride

Abstract

In the title compound, C20H18N3O+·Cl, the orientation of the aromatic rings around the planar CN3 + unit produces steric hindrance. As a consequence of this particular orientation of the guanidinium cation, hydrogen bonding is restricted to N—H(...)Cl and intra­molecular N—H(...)O hydrogen bonds within the discrete unit. The guanidinium and carbonyl groups are coplanar as a result of the six-membered ring formed by the N—H(...)O intra­molecular hydrogen bond. The dihedral angles between the guanidinium plane and the two phenyl rings are 62.31 (8) and 64.24 (8)°.

Related literature

For related structures, see: Said et al. (2006 [triangle]); Cunha et al. (2005 [triangle]). For related literature, see: Aldhaheri (1998 [triangle]); Cunha et al. (2002 [triangle]); Köhn et al. (2004 [triangle]); Moroni et al. (2001 [triangle]); Taniguchi et al. (1993 [triangle]); Yoshiizumi et al. (1998 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o333-scheme1.jpg

Experimental

Crystal data

  • C20H18N3O+·Cl
  • M r = 351.82
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o333-efi1.jpg
  • a = 8.586 (4) Å
  • b = 10.254 (5) Å
  • c = 10.966 (6) Å
  • α = 70.193 (10)°
  • β = 88.612 (19)°
  • γ = 84.524 (18)°
  • V = 904.2 (8) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.22 mm−1
  • T = 296 (2) K
  • 0.50 × 0.40 × 0.25 mm

Data collection

  • Rigaku/MSC Mercury CCD diffractometer
  • Absorption correction: integration (Higashi, 1999 [triangle]) T min = 0.653, T max = 0.803
  • 7197 measured reflections
  • 4050 independent reflections
  • 3534 reflections with I > 2σ(I)
  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.054
  • wR(F 2) = 0.133
  • S = 1.13
  • 4050 reflections
  • 238 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.20 e Å−3
  • Δρmin = −0.32 e Å−3

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2001 [triangle]); cell refinement: CrystalClear; data reduction: TEXSAN (Molecular Structure Corporation & Rigaku, 2004 [triangle]); program(s) used to solve structure: SIR97 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: ORTEPII (Johnson, 1976 [triangle]); software used to prepare material for publication: SHELXL97 and TEXSAN.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807065166/ez2109sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807065166/ez2109Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to the HEC Pakistan for financial support of this research project.

supplementary crystallographic information

Comment

Guanidines are used in medicine as analgesic, antihypertensive, antibacterial, cancerostatic and cytotoxic agents (Taniguchi et al., 1993; Yoshiizumi et al., 1998; Moroni et al., 2001). They have potential applications in the fields of analytical and synthetic organic chemistry (Aldhaheri,1998; Köhn et al., 2004). The title compound (I), Fig. 1, is a typical N,N',N"-trisubstituted guanidinium halide salt with normal geometric parameters (Said et al., 2006). The C(1)—O(1) bond shows the expected full double bond character while the short values for the C(1)—N(1), C(2)—N(1), C(2)—N(2), and C(2)—N(3) bond lengths indicate partial double bond character (Table 1). The dihedral angles between the guanidinium plane (C(2)/N(1)/N(2)/N(3)) and the two phenyl ring planes formed by C(15)—C(20) & C(9)—C(14) are 62.31 (8)° & 64.24 (8)° respectively, and that between the guanidinium plane and the aroyl group is 20.17 (10)°. The guanidinium and carbonyl groups are almost coplanar, as reflected by the torsion angles O(1)—C(1)—N(1)—C(2) = -7.5 (3)°, N(2)—C(2)— N(1)—C(1) = -174.26 (17))°, N(3)—C(2)—N(1)—C(1) = 7.2 (3)° and C(3)— C(1)—N(1)—C(2) = 175.92 (16)° (Table 1), this is associated with the intramolecular N—H···O hydrogen bond (Table 2), forming the six-membered ring commonly observed in this class of compounds (Cunha et al., 2005).

Experimental

The guanidine was synthesized by a previously reported method (Cunha et al., 2002), from N-benzoyl-N'-phenylthiourea and aniline. 0.315 g (1 mmol) of synthesized guanidine was added to a mixture of 20 ml e thanol and 1 ml of 37% v/v HCl with constant stirring at 323 K for 30 min. The reaction mixture was concentrated by evaporating 50% of the solvent under reduced pressure, and block like X-ray quality crystals were obtained by slow evaporation at room temperature.

Refinement

Hydrogen atoms bonded to C were included in calculated positions and refined as riding on their parent C atom with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). The H atoms bonded to N were freely refined.

Figures

Fig. 1.
Molecular structure of (I) showing atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen bonds are shown by dashed lines.

Crystal data

C20H18N3O+·ClZ = 2
Mr = 351.82F000 = 368
Triclinic, P1Dx = 1.292 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71070 Å
a = 8.586 (4) ÅCell parameters from 2693 reflections
b = 10.254 (5) Åθ = 3.2–27.5º
c = 10.966 (6) ŵ = 0.22 mm1
α = 70.193 (10)ºT = 296 (2) K
β = 88.612 (19)ºBlock, colourless
γ = 84.524 (18)º0.50 × 0.40 × 0.25 mm
V = 904.2 (8) Å3

Data collection

Rigaku/MSC Mercury CCD diffractometer4050 independent reflections
Radiation source: fine-focus sealed tube3534 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.026
Detector resolution: 14.62 pixels mm-1θmax = 27.5º
T = 296(2) Kθmin = 3.2º
ω scansh = −8→11
Absorption correction: integration(Higashi, 1999)k = −13→8
Tmin = 0.653, Tmax = 0.803l = −14→14
7197 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.133  w = 1/[σ2(Fo2) + (0.0563P)2 + 0.2415P] where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max < 0.001
4050 reflectionsΔρmax = 0.20 e Å3
238 parametersΔρmin = −0.32 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.46455 (19)0.16051 (18)0.64865 (17)0.0414 (4)
O10.56362 (16)0.06102 (15)0.68532 (14)0.0638 (4)
C20.57534 (18)0.26054 (17)0.43234 (16)0.0373 (3)
N10.46189 (16)0.25511 (16)0.52470 (14)0.0393 (3)
H10.396 (3)0.328 (3)0.505 (2)0.061 (6)*
C30.33471 (18)0.18014 (18)0.73498 (16)0.0395 (4)
C40.1942 (2)0.2597 (2)0.69126 (18)0.0467 (4)
H40.17990.31140.60380.056*
C50.0754 (2)0.2616 (2)0.7787 (2)0.0584 (5)
H5−0.01940.31370.74930.070*
C60.0966 (3)0.1873 (3)0.9083 (2)0.0649 (6)
H60.01640.18950.96630.078*
C70.2365 (3)0.1096 (3)0.9525 (2)0.0705 (7)
H70.25160.06061.04040.085*
C80.3544 (2)0.1046 (2)0.86592 (19)0.0581 (5)
H80.44770.05010.89560.070*
N20.55540 (18)0.36772 (16)0.32355 (14)0.0440 (4)
H20.487 (3)0.434 (3)0.327 (2)0.058 (6)*
C90.62383 (19)0.37844 (19)0.20058 (16)0.0409 (4)
C100.6906 (3)0.4978 (2)0.1331 (2)0.0624 (6)
H100.69490.56790.16850.075*
C110.7517 (4)0.5130 (3)0.0115 (2)0.0777 (7)
H110.79840.5934−0.03440.093*
C120.7439 (3)0.4111 (3)−0.0417 (2)0.0725 (7)
H120.78470.4221−0.12350.087*
C130.6759 (3)0.2927 (3)0.0261 (2)0.0696 (6)
H130.67080.2233−0.01010.084*
C140.6142 (2)0.2750 (2)0.1486 (2)0.0557 (5)
H140.56750.19470.19430.067*
N30.69145 (16)0.16005 (16)0.45603 (16)0.0432 (3)
H30.683 (3)0.100 (3)0.530 (2)0.065 (7)*
C150.84141 (18)0.17037 (17)0.39319 (15)0.0362 (3)
C160.9279 (2)0.27925 (19)0.38423 (18)0.0447 (4)
H160.88810.35020.41430.054*
C171.0751 (2)0.2818 (2)0.3298 (2)0.0543 (5)
H171.13410.35570.32210.065*
C181.1351 (2)0.1753 (2)0.28699 (19)0.0545 (5)
H181.23420.17760.25060.065*
C191.0488 (2)0.0662 (2)0.2980 (2)0.0538 (5)
H191.0896−0.00570.26950.065*
C200.9007 (2)0.0627 (2)0.35154 (19)0.0472 (4)
H200.8418−0.01120.35930.057*
Cl10.28841 (5)0.55341 (5)0.39536 (5)0.05030 (16)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0359 (8)0.0424 (9)0.0417 (9)0.0028 (7)0.0055 (7)−0.0107 (7)
O10.0547 (8)0.0564 (8)0.0563 (8)0.0208 (6)0.0188 (6)0.0039 (7)
C20.0352 (8)0.0393 (8)0.0386 (8)0.0002 (6)0.0047 (6)−0.0161 (7)
N10.0340 (7)0.0416 (8)0.0395 (7)0.0050 (6)0.0055 (5)−0.0125 (6)
C30.0341 (8)0.0440 (9)0.0396 (9)0.0005 (6)0.0047 (6)−0.0144 (7)
C40.0396 (9)0.0544 (11)0.0423 (9)0.0060 (7)0.0012 (7)−0.0144 (8)
C50.0384 (9)0.0706 (14)0.0621 (13)0.0097 (9)0.0065 (8)−0.0213 (11)
C60.0529 (11)0.0769 (15)0.0576 (12)0.0057 (10)0.0225 (10)−0.0179 (11)
C70.0669 (13)0.0857 (17)0.0422 (11)0.0154 (12)0.0141 (9)−0.0065 (11)
C80.0480 (10)0.0712 (13)0.0422 (10)0.0151 (9)0.0035 (8)−0.0078 (9)
N20.0470 (8)0.0434 (8)0.0373 (8)0.0104 (6)0.0062 (6)−0.0124 (6)
C90.0390 (8)0.0474 (9)0.0326 (8)0.0079 (7)0.0002 (6)−0.0119 (7)
C100.0884 (16)0.0496 (11)0.0458 (11)−0.0048 (10)0.0140 (10)−0.0131 (9)
C110.1051 (19)0.0655 (15)0.0467 (12)−0.0023 (13)0.0217 (12)−0.0014 (11)
C120.0776 (15)0.0892 (18)0.0357 (10)0.0264 (13)0.0086 (10)−0.0114 (11)
C130.0798 (15)0.0849 (17)0.0535 (13)0.0119 (13)−0.0008 (11)−0.0407 (13)
C140.0594 (12)0.0614 (12)0.0509 (11)−0.0040 (9)0.0045 (9)−0.0257 (10)
N30.0373 (7)0.0417 (8)0.0443 (8)0.0049 (6)0.0100 (6)−0.0092 (7)
C150.0327 (7)0.0409 (8)0.0334 (8)0.0041 (6)0.0033 (6)−0.0128 (6)
C160.0467 (9)0.0414 (9)0.0474 (10)0.0012 (7)0.0027 (7)−0.0184 (8)
C170.0442 (10)0.0547 (11)0.0598 (12)−0.0093 (8)0.0040 (8)−0.0129 (9)
C180.0374 (9)0.0683 (13)0.0482 (11)0.0048 (8)0.0098 (8)−0.0103 (9)
C190.0481 (10)0.0619 (12)0.0534 (11)0.0141 (9)0.0065 (8)−0.0275 (10)
C200.0436 (9)0.0475 (10)0.0559 (11)0.0013 (7)0.0023 (8)−0.0262 (9)
Cl10.0488 (3)0.0513 (3)0.0533 (3)0.01300 (19)−0.00668 (19)−0.0253 (2)

Geometric parameters (Å, °)

C1—O11.224 (2)C10—C111.385 (3)
C1—N11.376 (2)C10—H100.9300
C1—C31.488 (2)C11—C121.365 (4)
C2—N21.321 (2)C11—H110.9300
C2—N31.326 (2)C12—C131.367 (4)
C2—N11.379 (2)C12—H120.9300
N1—H10.86 (2)C13—C141.392 (3)
C3—C81.387 (3)C13—H130.9300
C3—C41.387 (2)C14—H140.9300
C4—C51.386 (3)N3—C151.441 (2)
C4—H40.9300N3—H30.84 (3)
C5—C61.373 (3)C15—C161.374 (3)
C5—H50.9300C15—C201.381 (2)
C6—C71.377 (3)C16—C171.383 (3)
C6—H60.9300C16—H160.9300
C7—C81.380 (3)C17—C181.381 (3)
C7—H70.9300C17—H170.9300
C8—H80.9300C18—C191.371 (3)
N2—C91.432 (2)C18—H180.9300
N2—H20.86 (2)C19—C201.386 (3)
C9—C101.369 (3)C19—H190.9300
C9—C141.374 (3)C20—H200.9300
O1—C1—N1122.33 (15)C11—C10—H10120.3
O1—C1—C3121.03 (16)C12—C11—C10120.6 (2)
N1—C1—C3116.55 (14)C12—C11—H11119.7
N2—C2—N3125.14 (15)C10—C11—H11119.7
N2—C2—N1115.35 (14)C11—C12—C13119.7 (2)
N3—C2—N1119.49 (15)C11—C12—H12120.2
C1—N1—C2125.74 (14)C13—C12—H12120.2
C1—N1—H1119.5 (15)C12—C13—C14120.7 (2)
C2—N1—H1113.5 (15)C12—C13—H13119.6
C8—C3—C4119.34 (16)C14—C13—H13119.6
C8—C3—C1116.33 (15)C9—C14—C13118.7 (2)
C4—C3—C1124.15 (16)C9—C14—H14120.7
C5—C4—C3119.63 (18)C13—C14—H14120.7
C5—C4—H4120.2C2—N3—C15125.89 (15)
C3—C4—H4120.2C2—N3—H3111.2 (17)
C6—C5—C4120.55 (18)C15—N3—H3119.3 (17)
C6—C5—H5119.7C16—C15—C20121.04 (16)
C4—C5—H5119.7C16—C15—N3120.56 (15)
C5—C6—C7120.06 (18)C20—C15—N3118.21 (16)
C5—C6—H6120.0C15—C16—C17119.03 (17)
C7—C6—H6120.0C15—C16—H16120.5
C6—C7—C8119.8 (2)C17—C16—H16120.5
C6—C7—H7120.1C18—C17—C16120.43 (19)
C8—C7—H7120.1C18—C17—H17119.8
C7—C8—C3120.55 (19)C16—C17—H17119.8
C7—C8—H8119.7C19—C18—C17120.10 (17)
C3—C8—H8119.7C19—C18—H18120.0
C2—N2—C9126.71 (15)C17—C18—H18120.0
C2—N2—H2115.2 (15)C18—C19—C20120.09 (18)
C9—N2—H2117.8 (15)C18—C19—H19120.0
C10—C9—C14120.97 (18)C20—C19—H19120.0
C10—C9—N2118.28 (17)C15—C20—C19119.30 (18)
C14—C9—N2120.63 (17)C15—C20—H20120.3
C9—C10—C11119.3 (2)C19—C20—H20120.3
C9—C10—H10120.3
O1—C1—N1—C2−7.5 (3)C14—C9—C10—C11−1.1 (3)
C3—C1—N1—C2175.92 (16)N2—C9—C10—C11−177.3 (2)
N2—C2—N1—C1−174.26 (17)C9—C10—C11—C120.8 (4)
N3—C2—N1—C17.2 (3)C10—C11—C12—C13−0.3 (4)
O1—C1—C3—C816.6 (3)C11—C12—C13—C140.1 (4)
N1—C1—C3—C8−166.76 (18)C10—C9—C14—C130.9 (3)
O1—C1—C3—C4−158.4 (2)N2—C9—C14—C13176.99 (18)
N1—C1—C3—C418.2 (3)C12—C13—C14—C9−0.4 (3)
C8—C3—C4—C5−0.5 (3)N2—C2—N3—C1523.2 (3)
C1—C3—C4—C5174.43 (19)N1—C2—N3—C15−158.45 (16)
C3—C4—C5—C61.0 (3)C2—N3—C15—C1650.4 (3)
C4—C5—C6—C7−0.2 (4)C2—N3—C15—C20−134.56 (19)
C5—C6—C7—C8−1.2 (4)C20—C15—C16—C171.5 (3)
C6—C7—C8—C31.7 (4)N3—C15—C16—C17176.39 (17)
C4—C3—C8—C7−0.9 (3)C15—C16—C17—C18−1.0 (3)
C1—C3—C8—C7−176.2 (2)C16—C17—C18—C190.1 (3)
N3—C2—N2—C918.6 (3)C17—C18—C19—C200.4 (3)
N1—C2—N2—C9−159.87 (16)C16—C15—C20—C19−1.0 (3)
C2—N2—C9—C10−133.2 (2)N3—C15—C20—C19−176.09 (17)
C2—N2—C9—C1450.6 (3)C18—C19—C20—C150.1 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···Cl10.86 (2)2.32 (3)3.143 (2)159 (2)
N2—H2···Cl10.86 (2)2.27 (2)3.0977 (18)162 (2)
N3—H3···O10.84 (3)1.91 (3)2.628 (2)143 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: EZ2109).

References

  • Aldhaheri, S. M. (1998). Talanta, 46, 1613–1618. [PubMed]
  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  • Cunha, S., De Lima, B. R. & De Souza, A. R. (2002). Tetrahedron Lett.43, 49–52.
  • Cunha, S., Rodrigues, M. T., da Silva, C. C., Napolitano, H. B., Vencato, I. & Lariucci, C. (2005). Tetrahedron, 61, 10536–10540.
  • Higashi, T. (1999). NUMABS Rigaku Corporation, Tokyo, Japan.
  • Johnson, C. K. (1976). ORTEPII Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
  • Köhn, U., Günther, W., Görls, H. & Anders, E. (2004). Tetrahedron Asymmetry, 15, 1419–1426.
  • Molecular Structure Corporation & Rigaku (2001). Crystal Clear. Version 1.3. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
  • Molecular Structure Corporation & Rigaku (2004). TEXSAN Version 2.0. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
  • Moroni, M., Koksch, B., Osipov, S. N., Crucianelli, M., Frigerio, M., Bravo, P. & Burger, K. (2001). J. Org. Chem.66, 130–133. [PubMed]
  • Said, F. F., Bazinet, P., Ong, T.-G., Yap, G. P. A. & Richeson, D. S. (2006). Cryst. Growth Des.6, 258–266.
  • Sheldrick, G. M. (1997). SHELXL97 University of Göttingen, Germany. [PubMed]
  • Taniguchi, K., Shigenaga, S., Ogahara, T., Fujitsu, T. & Matsuo, M. (1993). Chem. Pharm. Bull.41, 301–309. [PubMed]
  • Yoshiizumi, K., Seko, N., Nishimura, N., Ikeda, S., Yoshino, K., Kondo, H. & Tanizawa, K. (1998). Bioorg. Med. Chem. Lett.8, 3397–3402. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography