PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): o332.
Published online 2007 December 21. doi:  10.1107/S1600536807066986
PMCID: PMC2915373

1,6-Dihydr­oxy-3-hydroxy­methyl-8-methoxy­anthracene-9,10-dione monohydrate

Abstract

The title compound, C16H12O6·H2O, isolated from the halotolerant fungus Aspergillus variecolor B-17, is also known as questinol monohydrate. In the crystal structure, O—H(...)O hydrogen bonds link the mol­ecules, forming a three-dimensional network. π–π stacking inter­actions consolidate the supra­molecular structure [the shortest inter­planar distances are 3.456 (3), 3.366 (4) and 3.382 (4) Å].

Related literature

For general background, see: Stickings & Mahmoodian (1962 [triangle]); Slater et al. (1971 [triangle]); Kimura et al. (1983 [triangle]); Arai et al. (1989 [triangle]); Nielsen et al. (2004 [triangle]); Wang et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o332-scheme1.jpg

Experimental

Crystal data

  • C16H12O6·H2O
  • M r = 318.27
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o332-efi5.jpg
  • a = 11.3317 (11) Å
  • b = 16.7515 (19) Å
  • c = 7.2193 (9) Å
  • β = 95.453 (2)°
  • V = 1364.2 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.12 mm−1
  • T = 298 (2) K
  • 0.18 × 0.14 × 0.05 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003 [triangle]) T min = 0.978, T max = 0.994
  • 7003 measured reflections
  • 2404 independent reflections
  • 1108 reflections with I > 2σ(I)
  • R int = 0.090

Refinement

  • R[F 2 > 2σ(F 2)] = 0.055
  • wR(F 2) = 0.099
  • S = 1.01
  • 2404 reflections
  • 208 parameters
  • H-atom parameters constrained
  • Δρmax = 0.23 e Å−3
  • Δρmin = −0.24 e Å−3

Data collection: SMART (Bruker, 2002 [triangle]); cell refinement: SAINT (Bruker, 2002 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: XP (Siemens, 1994 [triangle]) and CAMERON (Watkin et al., 1993 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807066986/bq2051sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807066986/bq2051Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Chinese National Natural Science Fund (grant Nos. 30470196 and 30670219).

supplementary crystallographic information

Comment

Questinol was first isolated from the metabolites of Penicillium frequentans (Stickings & Mahmoodian, 1962). This compound and related derivatives arise from their biological activities (Slater et al., 1971; Kimura et al., 1983; Arai et al., 1989; Nielsen et al., 2004). We isolated the title compound (I) as a part of our ongoing study characterizing bioactive metabolites from various halotolerant microorganism (Wang et al., 2007). This was the first report about the X-ray crystallographic study of the title compound.

As shown in Fig. 1, crystal water connected with questinol by a O-H···O hydrogen bond. There is an intramolecular hydrogen bond between a hydroxyl O1 and carbonyl oxygen atom O6. The three six-membered rings adopt a planar conformation with the maximum deviation being 0.070 (3) Å (for atom C13).

In the crystal structure, O—H···O hydrogen bonds (Table 1, Fig. 2) link the molecules to form a three-dimensional network. A supramolecular structure is consolidated by three types (Symmetry codes: (iii) x, 3/2-y, z-1/2; (iv) X, 3/2-Y, z+1/2; (v) 2-X, 1-Y, 2-Z) of π-π stacking interactions (Fig. 3). The shortest interplanar distances for these π-π stacking interactions are 3.456 (3) Å, 3.366 (4) Å and 3.382 (4) Å, respectively.

Experimental

The isolated halotolerant fugal strain Aspergillus variecolor B-17, was isolated from the sediments collected in Jilantai salt field, Alashan, Inner Mongolia, China. The working strain was cultured under static conditions at 303 K for 45 days in thirty 1000-ml conical flasks containing the liquid medium (300 ml/flask) composed of maltose (20 g/L), mannitol (20 g/L), glucose (10 g/L), monosodium glutamate (10 g/L), NH4Cl (10 g/L), MgSO4 (10 g/L), yeast extract paste (3 g/L), maize paste (3 g/L), NaCl (120 g/L) and KCl (5 g/L) after adjusting its pH to 7.0. The fermented whole broth (9 liters) was filtered through cheese cloth to separate into supernatant and mycelia. The mycelia was extracted three times with acetone and the acetone solution was concentrated under reduced pressure to afford crude extract (7.8 g). The crude extract, which was subjected to chromatography over silica gel column using a stepwise gradient elution of CHCl3—MeOH, to yield four fractions (Fr.1-Fr.4). Fr.3 was subjected to chromatographing on a silica gel column eluting with CHCl3—MeOH (93:7), to afford sixteen subfractions (Fr.3–1-Fr.3–16). The title compound (9 mg) was purified by extensive preparative HPLC using MeOH-H2O from Fr.3–3 and Fr.3–4. The single crystals were obtained by slow evaporation of CHCl3—MeOH (1:1) solution at 299 K.

Refinement

Water H atoms were found in a difference Fouier map and were treated as riding, with fixed Uiso(H) = 1.2Ueq. The other H atoms were positioned geometrically and allowed to ride on their parent atoms at distances of 0.93–0.97 (C—H) and 0.82 Å (O—H), and with Uiso(H) values of 1.2Ueq(C) and 1.5Ueq(Cmethyl, Ohydroxyl).

Figures

Fig. 1.
The molecular structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering but for non-H atoms. Dashed lines indicate hydrogen bonds.
Fig. 2.
The packing diagram for (I). The H-bonds are shown as dotted lines; H atoms not involved in hydrogen bonding were omitted for clarity. [Symmetry codes: (i) 1 - x, 1/2 + y, 3/2 - z; (ii) 1 + x, y, z; (iii) x, 3/2 - y, z - 1/2.]
Fig. 3.
A view showing the π-π stacking interactions, viewed down the a axis. H atoms and H2O molecules have been omitted for clarity. [Symmetry codes: (iii) x, 3/2 - y, z - 1/2; (iv) x, 3/2 - y, z + 1/2; (v) 2 - x, 1 - y, 2 - z.]

Crystal data

C16H12O6·H2OF000 = 664
Mr = 318.27Dx = 1.550 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P2ybcCell parameters from 901 reflections
a = 11.3317 (11) Åθ = 2.2–25.2º
b = 16.7515 (19) ŵ = 0.12 mm1
c = 7.2193 (9) ÅT = 298 (2) K
β = 95.453 (2)ºFlake, yellow
V = 1364.2 (3) Å30.18 × 0.14 × 0.05 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer2404 independent reflections
Radiation source: fine-focus sealed tube1108 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.090
T = 298(2) Kθmax = 25.0º
[var phi] and ω scansθmin = 1.8º
Absorption correction: multi-scan(SADABS; Sheldrick, 2003)h = −13→10
Tmin = 0.978, Tmax = 0.994k = −19→19
7003 measured reflectionsl = −8→7

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H-atom parameters constrained
wR(F2) = 0.099  w = 1/[σ2(Fo2) + (0.0163P)2] where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
2404 reflectionsΔρmax = 0.23 e Å3
208 parametersΔρmin = −0.24 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.47014 (19)0.62825 (13)0.9624 (3)0.0409 (7)
H10.49270.58280.94230.061*
O20.4486 (2)0.91888 (13)0.8924 (3)0.0452 (7)
H20.42150.93370.78870.068*
O30.9454 (2)0.74461 (14)0.7759 (4)0.0548 (8)
O41.1510 (2)0.48495 (14)0.6863 (3)0.0489 (7)
H41.18980.52460.66440.073*
O50.77278 (19)0.40952 (13)0.8557 (3)0.0446 (7)
O60.6237 (2)0.52178 (13)0.9245 (3)0.0419 (7)
O70.2909 (2)0.61113 (14)0.6547 (3)0.0609 (8)
H7A0.34230.61450.74810.073*
H7B0.32790.60160.56010.073*
C10.5559 (3)0.6817 (2)0.9249 (4)0.0302 (9)
C20.5248 (3)0.76155 (18)0.9251 (4)0.0316 (9)
H2A0.44860.77630.94850.038*
C30.6068 (3)0.8194 (2)0.8904 (4)0.0303 (9)
C40.7203 (3)0.79692 (18)0.8534 (4)0.0314 (9)
H4A0.77570.83580.83080.038*
C50.7514 (3)0.7171 (2)0.8500 (4)0.0290 (8)
C60.8705 (3)0.6940 (2)0.8020 (4)0.0334 (9)
C70.9000 (3)0.60779 (19)0.7896 (4)0.0294 (9)
C81.0101 (3)0.5876 (2)0.7384 (4)0.0363 (9)
H81.06260.62740.70940.044*
C91.0428 (3)0.5076 (2)0.7301 (4)0.0351 (9)
C100.9635 (3)0.4471 (2)0.7656 (4)0.0366 (10)
H100.98510.39390.75490.044*
C110.8527 (3)0.4668 (2)0.8167 (4)0.0334 (9)
C120.8161 (3)0.54798 (19)0.8292 (4)0.0285 (8)
C130.7004 (3)0.5714 (2)0.8841 (4)0.0304 (9)
C140.6699 (3)0.65733 (19)0.8854 (4)0.0278 (8)
C150.5733 (3)0.90622 (19)0.8933 (4)0.0393 (9)
H15A0.61320.93091.00360.047*
H15B0.60100.93240.78560.047*
C160.8055 (3)0.3271 (2)0.8389 (5)0.0564 (12)
H16A0.82250.31650.71350.085*
H16B0.74130.29360.86940.085*
H16C0.87460.31600.92260.085*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0374 (16)0.0249 (15)0.0619 (17)−0.0027 (12)0.0123 (13)−0.0018 (12)
O20.0414 (16)0.0392 (16)0.0558 (17)0.0107 (13)0.0084 (13)0.0035 (12)
O30.0387 (17)0.0291 (16)0.100 (2)−0.0081 (13)0.0226 (15)0.0001 (14)
O40.0384 (16)0.0398 (17)0.0711 (19)0.0066 (13)0.0182 (14)0.0000 (13)
O50.0337 (15)0.0244 (15)0.0771 (19)0.0011 (13)0.0122 (14)−0.0005 (14)
O60.0333 (15)0.0244 (15)0.0702 (18)−0.0049 (12)0.0167 (13)0.0007 (12)
O70.0491 (18)0.073 (2)0.0616 (18)−0.0052 (15)0.0096 (14)−0.0054 (15)
C10.029 (2)0.029 (2)0.032 (2)−0.0075 (18)0.0036 (18)−0.0010 (16)
C20.033 (2)0.025 (2)0.038 (2)0.0050 (18)0.0069 (18)0.0032 (16)
C30.039 (2)0.022 (2)0.030 (2)0.0024 (19)0.0027 (18)−0.0010 (15)
C40.033 (2)0.023 (2)0.039 (2)−0.0027 (18)0.0053 (17)0.0039 (17)
C50.028 (2)0.030 (2)0.030 (2)−0.0011 (18)0.0053 (17)0.0013 (16)
C60.033 (2)0.027 (2)0.041 (2)−0.0038 (19)0.0032 (18)−0.0011 (17)
C70.029 (2)0.028 (2)0.032 (2)−0.0014 (18)0.0073 (17)0.0002 (16)
C80.036 (2)0.032 (2)0.043 (2)−0.001 (2)0.0117 (18)0.0018 (18)
C90.028 (2)0.042 (3)0.036 (2)0.009 (2)0.0072 (18)−0.0001 (18)
C100.034 (2)0.031 (2)0.045 (2)0.0034 (18)0.0025 (19)−0.0053 (17)
C110.028 (2)0.031 (2)0.040 (2)−0.0017 (19)0.0008 (18)−0.0001 (17)
C120.024 (2)0.027 (2)0.035 (2)0.0004 (18)0.0047 (17)−0.0012 (16)
C130.029 (2)0.034 (2)0.028 (2)−0.0038 (19)−0.0002 (17)−0.0044 (17)
C140.030 (2)0.026 (2)0.027 (2)0.0021 (17)0.0045 (17)−0.0017 (15)
C150.042 (2)0.035 (2)0.041 (2)0.002 (2)0.0071 (19)−0.0018 (18)
C160.061 (3)0.020 (2)0.089 (3)0.003 (2)0.013 (2)0.002 (2)

Geometric parameters (Å, °)

O1—C11.368 (3)C4—H4A0.9300
O1—H10.8200C5—C141.403 (4)
O2—C151.428 (3)C5—C61.476 (4)
O2—H20.8200C6—C71.486 (4)
O3—C61.227 (3)C7—C81.376 (4)
O4—C91.349 (3)C7—C121.428 (4)
O4—H40.8200C8—C91.394 (4)
O5—C111.367 (4)C8—H80.9300
O5—C161.439 (4)C9—C101.394 (4)
O6—C131.256 (3)C10—C111.382 (4)
O7—H7A0.8500C10—H100.9300
O7—H7B0.8500C11—C121.428 (4)
C1—C21.382 (4)C12—C131.460 (4)
C1—C141.409 (4)C13—C141.481 (4)
C2—C31.381 (4)C15—H15A0.9700
C2—H2A0.9300C15—H15B0.9700
C3—C41.390 (4)C16—H16A0.9600
C3—C151.504 (4)C16—H16B0.9600
C4—C51.383 (4)C16—H16C0.9600
C1—O1—H1109.5O4—C9—C10117.0 (3)
C15—O2—H2109.5C8—C9—C10120.9 (3)
C9—O4—H4109.5C11—C10—C9119.6 (3)
C11—O5—C16118.3 (3)C11—C10—H10120.2
H7A—O7—H7B107.3C9—C10—H10120.2
O1—C1—C2116.6 (3)O5—C11—C10121.7 (3)
O1—C1—C14122.1 (3)O5—C11—C12116.9 (3)
C2—C1—C14121.3 (3)C10—C11—C12121.4 (3)
C3—C2—C1120.1 (3)C11—C12—C7116.9 (3)
C3—C2—H2A119.9C11—C12—C13123.2 (3)
C1—C2—H2A119.9C7—C12—C13119.9 (3)
C2—C3—C4119.7 (3)O6—C13—C12123.0 (3)
C2—C3—C15120.0 (3)O6—C13—C14118.3 (3)
C4—C3—C15120.3 (3)C12—C13—C14118.6 (3)
C5—C4—C3120.5 (3)C5—C14—C1117.5 (3)
C5—C4—H4A119.8C5—C14—C13122.3 (3)
C3—C4—H4A119.8C1—C14—C13120.2 (3)
C4—C5—C14120.9 (3)O2—C15—C3113.2 (3)
C4—C5—C6119.9 (3)O2—C15—H15A108.9
C14—C5—C6119.2 (3)C3—C15—H15A108.9
O3—C6—C5121.0 (3)O2—C15—H15B108.9
O3—C6—C7120.0 (3)C3—C15—H15B108.9
C5—C6—C7119.0 (3)H15A—C15—H15B107.7
C8—C7—C12121.3 (3)O5—C16—H16A109.5
C8—C7—C6118.0 (3)O5—C16—H16B109.5
C12—C7—C6120.8 (3)H16A—C16—H16B109.5
C7—C8—C9119.9 (3)O5—C16—H16C109.5
C7—C8—H8120.0H16A—C16—H16C109.5
C9—C8—H8120.0H16B—C16—H16C109.5
O4—C9—C8122.1 (3)
O1—C1—C2—C3179.3 (3)O5—C11—C12—C7179.6 (3)
C14—C1—C2—C3−1.6 (5)C10—C11—C12—C7−1.0 (5)
C1—C2—C3—C40.7 (5)O5—C11—C12—C131.2 (5)
C1—C2—C3—C15−179.2 (3)C10—C11—C12—C13−179.5 (3)
C2—C3—C4—C50.4 (5)C8—C7—C12—C111.2 (5)
C15—C3—C4—C5−179.8 (3)C6—C7—C12—C11−179.0 (3)
C3—C4—C5—C14−0.6 (5)C8—C7—C12—C13179.7 (3)
C3—C4—C5—C6177.2 (3)C6—C7—C12—C13−0.5 (4)
C4—C5—C6—O34.5 (5)C11—C12—C13—O6−0.1 (5)
C14—C5—C6—O3−177.7 (3)C7—C12—C13—O6−178.4 (3)
C4—C5—C6—C7−176.9 (3)C11—C12—C13—C14−177.7 (3)
C14—C5—C6—C71.0 (4)C7—C12—C13—C143.9 (4)
O3—C6—C7—C8−3.5 (5)C4—C5—C14—C1−0.2 (5)
C5—C6—C7—C8177.8 (3)C6—C5—C14—C1−178.0 (3)
O3—C6—C7—C12176.7 (3)C4—C5—C14—C13−179.6 (3)
C5—C6—C7—C12−2.0 (4)C6—C5—C14—C132.6 (4)
C12—C7—C8—C9−2.0 (5)O1—C1—C14—C5−179.6 (3)
C6—C7—C8—C9178.2 (3)C2—C1—C14—C51.3 (5)
C7—C8—C9—O4−177.9 (3)O1—C1—C14—C13−0.2 (4)
C7—C8—C9—C102.7 (5)C2—C1—C14—C13−179.3 (3)
O4—C9—C10—C11178.0 (3)O6—C13—C14—C5177.2 (3)
C8—C9—C10—C11−2.5 (5)C12—C13—C14—C5−5.1 (4)
C16—O5—C11—C10−1.2 (4)O6—C13—C14—C1−2.2 (4)
C16—O5—C11—C12178.1 (3)C12—C13—C14—C1175.5 (3)
C9—C10—C11—O5−178.9 (3)C2—C3—C15—O2−13.1 (4)
C9—C10—C11—C121.7 (5)C4—C3—C15—O2167.1 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···O60.821.822.525 (3)144
O2—H2···O5i0.822.382.945 (3)127
O2—H2···O6i0.822.162.919 (3)154
O4—H4···O7ii0.821.852.665 (3)170
O7—H7A···O10.852.032.878 (3)176
O7—H7B···O2iii0.851.942.771 (3)165

Symmetry codes: (i) −x+1, y+1/2, −z+3/2; (ii) x+1, y, z; (iii) x, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2051).

References

  • Arai, K., Aoki, Y. & Yamamoto, Y. (1989). Chem. Pharm. Bull.37, 621–625.
  • Bruker (2002). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Kimura, Y., Kozawa, M., Baba, K. & Hata, K. (1983). Planta Med.48, 164–168. [PubMed]
  • Nielsen, K. F., Holm, G., Uttrup, L. P. & Nielsen, P. A. (2004). Int. Biodeter. Biodegr.54, 325–336.
  • Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  • Sheldrick, G. M. (2003). SADABS Version 2.10. University of Göttingen, Germany.
  • Siemens (1994). XP Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Slater, G. P., Haskins, R. H. & Hogge, L. R. (1971). Can. J. Microbiol.17, 1576–1579. [PubMed]
  • Stickings, C. E. & Mahmoodian, A. (1962). Chem. Ind. (London), 40, 1718–1719.
  • Wang, W. L., Zhu, T. J., Tao, H. W., Lu, Z. Y., Fang, Y. C., Gu, Q. Q. & Zhu, W. M. (2007). J. Antibiot.60, 603–607. [PubMed]
  • Watkin, D. M., Pearce, L. & Prout, C. K. (1993). CAMERON Chemical Crystallography Laboratory, University of Oxford, England.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography