PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): o323.
Published online 2007 December 21. doi:  10.1107/S1600536807066603
PMCID: PMC2915366

S-2-(Adamant-1-yl)-4-methyl­phenyl N,N-dimethyl­thio­carbamate

Abstract

The title compound, C20H27NOS, was obtained from the corresponding O-thio­carbamate. The structure features a C=O bond distance of 1.209 (2) Å and an sp 3-hybridized S atom [C—S—C = 101.66 (1)°]. The steric bulk of the 1-adamantyl substituent on the 2-position of the aromatic ring is reflected in the S—C—C—C torsion angle [−7.5 (3)°].

Related literature

For related literature, see: Bennett et al. (1999 [triangle]); Allen (2002 [triangle]); Bruno et al. (2002 [triangle]); Flores-Figueroa et al. (2005 [triangle]); Higgs & Carrano (2002 [triangle]); Newman & Karnes (1966 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o323-scheme1.jpg

Experimental

Crystal data

  • C20H27NOS
  • M r = 329.49
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o323-efi1.jpg
  • a = 6.6161 (7) Å
  • b = 11.2113 (12) Å
  • c = 13.2231 (14) Å
  • α = 101.287 (2)°
  • β = 103.753 (2)°
  • γ = 103.025 (2)°
  • V = 895.40 (16) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.19 mm−1
  • T = 298 (2) K
  • 0.40 × 0.18 × 0.14 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: none
  • 7346 measured reflections
  • 3147 independent reflections
  • 2231 reflections with I > 2σ(I)
  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047
  • wR(F 2) = 0.120
  • S = 0.94
  • 3147 reflections
  • 211 parameters
  • H-atom parameters constrained
  • Δρmax = 0.24 e Å−3
  • Δρmin = −0.20 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT-Plus (Bruker, 1997 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a [triangle]); molecular graphics: SHELXTL (Sheldrick, 1997b [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807066603/gw2030sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807066603/gw2030Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

IC and RH thank DGAPA–UNAM for financial support (PAPIIT IN216806).

supplementary crystallographic information

Comment

Newman–Kwart thermal rearrangement of O-thiocarbamates to the corresponding S-thiocarbamates is a widely used reaction for the preparation of benzenethiols (Newman & Karnes, 1966). The presence of bulky substituents on the 2-position of phenols represents a synthetic challenge in this methodology, and the experimental difficulties have been attributed by our group to the steric congestion around the thiocarbamate moiety (Flores-Figueroa et al., 2005). We herein report the preparation (see Experimental and Scheme) of the title compound S-2-adamant-1-yl-4- methylphenyl N,N-dimethylthiocarbamate (I).

Compound (I) crystallizes in the triclinic space group P-1 by slow evaporation of a concentrated 2-propanol solution. A search of the Cambridge Crystallographic Database (Version 5.19; Allen, 2002) using CONQUEST, Version 1.4; Bruno et al., 2002) revealed that (I) represents one of the very few examples of aromatic S-thiocarbamates with sterically demanding substituents adjacent to the S atom. Its structure, which is depicted with atom numbering scheme in Fig. 1, features a C=O bond length of 1.209 (2) Å, and C—S 1.780 (3) Å (Table 1). The bond lengths and angles of the thiocarbamate group of (I) are comparable to those of related compounds (Higgs & Carrano, 2002, Bennett et al., 1999). The steric congestion around the S-thiocarbamate group is reflected in the torsion angle of -7.5 (3)° between the S—C(aromatic) and the adjacent C(aromatic)- C(orthosubsituent) bond (S—C1—C2—C10).

Molecules of (I) pack in chains on the 100 plane, as shown in Fig. 2. These chains are formed by intermolecular C—H···O interactions between the O atom of one molecule and C8—H8B on an adjacent molecule, with C8···O and H8B···O distances of 3.294 (3) and 2.534 (2) Å, respectively. The C and H atoms are located on one of the NMe2 groups of a the S-thiocarbamate moiety, and the corresponding C—H···O angle is 136.1 (2)°.

Experimental

O-2-adamant-1-yl-4-methylphenyl N,N-dimethylthiocarbamate (0.26 g, 0.80 mmol) was heated to 593–603 K for 2 h in a round bottom flask equipped with a teflon stopcock. After cooling to room temperature, the material was disolved in dichloromethane, filtered, and evaporated to dryness (30 ml). The solid obtained was disolved in hot 2-propanol, and upon cooling starting material precipitated. After filtering, the mother liquor yielded yellow crystals of (I) by slow evaporation of the solvent. Yield: 0.06 g (23%); m.p. 407–408 K; IR (CHCl3) 3011, 2903, 2852, 1710, 1655, 1598, 1451, 1406, 1365, 1261, 1170, 1100, 1066, 1029, 910 cm-1; 1H NMR (300 MHz, CDCl3, TMS internal reference) δ 7.24 (1H, d, ArH), 7.13 (1H, d, ArH), 6.94 (1H, dd, ArH), 3.02 (6H, s, NMe), 2.28 (3H, s, ArMe), 2.12 (6H, s, AdH), 2.02 (3H, s, AdH), 1.69 (6H, s, AdH); EI mass spectrum: m/z 329 (M+, 18%).

Figures

Fig. 1.
Molecular structure of (I) with atom numbering scheme. Thermal ellipsoids are shown at the 50% probability level.
Fig. 2.
View of the chains of (I) along the 001 axis.
Fig. 3.
The formation of the title compound.

Crystal data

C20H27NOSZ = 2
Mr = 329.49F000 = 356
Triclinic, P1Dx = 1.222 Mg m3Dm = No Mg m3Dm measured by ?
Hall symbol: -P 1Melting point = 407–408 K
a = 6.6161 (7) ÅMo Kα radiation λ = 0.71073 Å
b = 11.2113 (12) ÅCell parameters from 3272 reflections
c = 13.2231 (14) Åθ = 2.8–25.3º
α = 101.287 (2)ºµ = 0.19 mm1
β = 103.753 (2)ºT = 298 (2) K
γ = 103.025 (2)ºPrism, pale yellow
V = 895.40 (16) Å30.40 × 0.18 × 0.14 mm

Data collection

Bruker SMART APEX CCD area-detector diffractometer3147 independent reflections
Radiation source: fine-focus sealed tube2231 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.035
Detector resolution: 0.83 pixels mm-1θmax = 25.0º
T = 298(2) Kθmin = 1.6º
ω scansh = −7→7
Absorption correction: nonek = −13→13
7346 measured reflectionsl = −15→15

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.120  w = 1/[σ2(Fo2) + (0.0685P)2] where P = (Fo2 + 2Fc2)/3
S = 0.94(Δ/σ)max < 0.001
3147 reflectionsΔρmax = 0.24 e Å3
211 parametersΔρmin = −0.20 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Hydrogen atoms were placed in idealized positions, and the isotropic thermal parameters were assigned the values Uiso = 1.2 times the thermal parameter of the parent atom.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S1.02047 (9)0.84253 (6)0.64328 (4)0.0637 (2)
O0.6891 (3)0.73897 (17)0.46508 (13)0.0809 (5)
N0.9990 (3)0.68642 (18)0.46352 (15)0.0678 (5)
C10.8226 (3)0.91300 (19)0.67862 (16)0.0523 (5)
C20.7344 (3)0.89238 (17)0.76267 (15)0.0445 (5)
C30.6039 (3)0.96867 (18)0.78793 (15)0.0491 (5)
H30.54470.95810.84390.059*
C40.5563 (3)1.05877 (19)0.73570 (17)0.0558 (5)
C50.6397 (4)1.0725 (2)0.65162 (19)0.0686 (6)
H50.60551.12980.61290.082*
C60.7731 (4)1.0025 (2)0.62444 (18)0.0677 (6)
H60.83191.01490.56870.081*
C70.8757 (3)0.7468 (2)0.50903 (17)0.0569 (5)
C81.2191 (4)0.6925 (3)0.5174 (2)0.0866 (8)
H8A1.28960.77430.56770.130*
H8B1.29610.67940.46500.130*
H8C1.21840.62780.55540.130*
C90.9060 (5)0.6114 (3)0.3519 (2)0.0997 (9)
H9A0.75290.60180.32950.150*
H9B0.93000.52930.34570.150*
H9C0.97390.65350.30680.150*
C100.7760 (3)0.79486 (17)0.82641 (14)0.0432 (4)
C110.6436 (3)0.78732 (18)0.90815 (16)0.0500 (5)
H11A0.68020.87040.95780.060*
H11B0.49000.76300.86970.060*
C120.6891 (3)0.69145 (19)0.97190 (17)0.0573 (5)
H120.60230.68921.02250.069*
C130.6294 (4)0.56006 (19)0.89568 (18)0.0620 (6)
H13A0.47540.53250.85750.074*
H13B0.66110.49990.93640.074*
C140.7607 (3)0.56505 (19)0.81512 (16)0.0577 (6)
H140.72250.48070.76530.069*
C151.0029 (4)0.6065 (2)0.87625 (18)0.0619 (6)
H15A1.03640.54490.91490.074*
H15B1.08710.61050.82550.074*
C161.0633 (3)0.73657 (19)0.95584 (16)0.0551 (5)
H161.21810.76170.99560.066*
C171.0176 (3)0.83282 (18)0.89292 (15)0.0488 (5)
H17A1.10750.83830.84480.059*
H17B1.05530.91580.94290.059*
C180.7109 (3)0.65985 (18)0.75146 (15)0.0511 (5)
H18A0.55690.63440.71360.061*
H18B0.78940.65960.69810.061*
C190.9301 (4)0.7322 (2)1.03520 (16)0.0609 (6)
H19A0.96800.81531.08510.073*
H19B0.96060.67241.07650.073*
C200.4196 (4)1.1399 (2)0.7697 (2)0.0765 (7)
H20A0.51081.22410.80800.115*
H20B0.34581.10420.81590.115*
H20C0.31481.14340.70700.115*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S0.0487 (3)0.0885 (5)0.0537 (4)0.0209 (3)0.0188 (3)0.0120 (3)
O0.0518 (10)0.1095 (14)0.0698 (10)0.0296 (9)0.0059 (8)0.0049 (9)
N0.0541 (11)0.0814 (13)0.0627 (12)0.0224 (9)0.0183 (10)0.0021 (10)
C10.0471 (12)0.0579 (13)0.0518 (12)0.0150 (10)0.0138 (10)0.0152 (10)
C20.0359 (10)0.0484 (11)0.0438 (10)0.0103 (8)0.0082 (8)0.0066 (9)
C30.0452 (11)0.0514 (12)0.0477 (11)0.0136 (9)0.0118 (9)0.0092 (9)
C40.0535 (12)0.0515 (13)0.0551 (13)0.0165 (10)0.0059 (10)0.0085 (10)
C50.0780 (16)0.0654 (15)0.0669 (15)0.0287 (13)0.0137 (13)0.0276 (12)
C60.0729 (15)0.0761 (16)0.0634 (14)0.0218 (13)0.0281 (12)0.0290 (13)
C70.0478 (13)0.0665 (14)0.0544 (13)0.0119 (10)0.0168 (11)0.0141 (11)
C80.0637 (16)0.113 (2)0.097 (2)0.0411 (15)0.0336 (15)0.0275 (17)
C90.098 (2)0.109 (2)0.0790 (18)0.0339 (17)0.0264 (16)−0.0097 (16)
C100.0382 (10)0.0461 (11)0.0444 (10)0.0123 (8)0.0124 (8)0.0092 (9)
C110.0463 (11)0.0502 (12)0.0549 (12)0.0156 (9)0.0189 (10)0.0101 (10)
C120.0628 (14)0.0587 (13)0.0575 (13)0.0175 (10)0.0284 (11)0.0181 (11)
C130.0646 (14)0.0538 (13)0.0668 (14)0.0121 (11)0.0201 (12)0.0187 (11)
C140.0672 (14)0.0426 (12)0.0574 (13)0.0161 (10)0.0153 (11)0.0034 (10)
C150.0680 (14)0.0621 (14)0.0652 (14)0.0336 (11)0.0209 (12)0.0197 (11)
C160.0473 (11)0.0620 (13)0.0521 (12)0.0191 (10)0.0061 (10)0.0128 (10)
C170.0427 (11)0.0510 (12)0.0471 (11)0.0115 (9)0.0111 (9)0.0052 (9)
C180.0463 (11)0.0534 (12)0.0470 (11)0.0118 (9)0.0104 (9)0.0052 (9)
C190.0755 (15)0.0596 (14)0.0483 (12)0.0231 (11)0.0146 (11)0.0159 (10)
C200.0871 (17)0.0680 (16)0.0764 (16)0.0414 (13)0.0149 (14)0.0122 (13)

Geometric parameters (Å, °)

S—C11.780 (2)C11—H11A0.9700
S—C71.790 (2)C11—H11B0.9700
O—C71.209 (2)C12—C131.520 (3)
N—C71.345 (3)C12—C191.530 (3)
N—C81.441 (3)C12—H120.9800
N—C91.454 (3)C13—C141.527 (3)
C1—C61.395 (3)C13—H13A0.9700
C1—C21.406 (3)C13—H13B0.9700
C2—C31.395 (3)C14—C181.524 (3)
C2—C101.539 (3)C14—C151.529 (3)
C3—C41.382 (3)C14—H140.9800
C3—H30.9300C15—C161.527 (3)
C4—C51.373 (3)C15—H15A0.9700
C4—C201.500 (3)C15—H15B0.9700
C5—C61.370 (3)C16—C191.523 (3)
C5—H50.9300C16—C171.525 (3)
C6—H60.9300C16—H160.9800
C8—H8A0.9600C17—H17A0.9700
C8—H8B0.9600C17—H17B0.9700
C8—H8C0.9600C18—H18A0.9700
C9—H9A0.9600C18—H18B0.9700
C9—H9B0.9600C19—H19A0.9700
C9—H9C0.9600C19—H19B0.9700
C10—C181.541 (3)C20—H20A0.9600
C10—C171.545 (2)C20—H20B0.9600
C10—C111.548 (2)C20—H20C0.9600
C11—C121.528 (3)
C1—S—C7101.66 (10)C13—C12—H12109.2
C7—N—C8124.42 (19)C11—C12—H12109.2
C7—N—C9118.09 (19)C19—C12—H12109.2
C8—N—C9117.48 (19)C12—C13—C14108.95 (17)
C6—C1—C2120.18 (19)C12—C13—H13A109.9
C6—C1—S115.61 (16)C14—C13—H13A109.9
C2—C1—S123.90 (15)C12—C13—H13B109.9
C3—C2—C1115.62 (18)C14—C13—H13B109.9
C3—C2—C10120.07 (17)H13A—C13—H13B108.3
C1—C2—C10124.31 (16)C18—C14—C13109.78 (17)
C4—C3—C2124.62 (19)C18—C14—C15109.31 (17)
C4—C3—H3117.7C13—C14—C15109.31 (17)
C2—C3—H3117.7C18—C14—H14109.5
C5—C4—C3117.73 (19)C13—C14—H14109.5
C5—C4—C20120.8 (2)C15—C14—H14109.5
C3—C4—C20121.5 (2)C16—C15—C14109.94 (16)
C6—C5—C4120.4 (2)C16—C15—H15A109.7
C6—C5—H5119.8C14—C15—H15A109.7
C4—C5—H5119.8C16—C15—H15B109.7
C5—C6—C1121.3 (2)C14—C15—H15B109.7
C5—C6—H6119.3H15A—C15—H15B108.2
C1—C6—H6119.3C19—C16—C17109.52 (17)
O—C7—N124.6 (2)C19—C16—C15110.29 (18)
O—C7—S123.20 (17)C17—C16—C15108.77 (16)
N—C7—S112.24 (16)C19—C16—H16109.4
N—C8—H8A109.5C17—C16—H16109.4
N—C8—H8B109.5C15—C16—H16109.4
H8A—C8—H8B109.5C16—C17—C10111.20 (15)
N—C8—H8C109.5C16—C17—H17A109.4
H8A—C8—H8C109.5C10—C17—H17A109.4
H8B—C8—H8C109.5C16—C17—H17B109.4
N—C9—H9A109.5C10—C17—H17B109.4
N—C9—H9B109.5H17A—C17—H17B108.0
H9A—C9—H9B109.5C14—C18—C10111.19 (16)
N—C9—H9C109.5C14—C18—H18A109.4
H9A—C9—H9C109.5C10—C18—H18A109.4
H9B—C9—H9C109.5C14—C18—H18B109.4
C2—C10—C18111.72 (15)C10—C18—H18B109.4
C2—C10—C17110.27 (15)H18A—C18—H18B108.0
C18—C10—C17109.83 (14)C16—C19—C12108.76 (16)
C2—C10—C11112.25 (15)C16—C19—H19A109.9
C18—C10—C11106.19 (15)C12—C19—H19A109.9
C17—C10—C11106.37 (15)C16—C19—H19B109.9
C12—C11—C10111.62 (15)C12—C19—H19B109.9
C12—C11—H11A109.3H19A—C19—H19B108.3
C10—C11—H11A109.3C4—C20—H20A109.5
C12—C11—H11B109.3C4—C20—H20B109.5
C10—C11—H11B109.3H20A—C20—H20B109.5
H11A—C11—H11B108.0C4—C20—H20C109.5
C13—C12—C11110.19 (18)H20A—C20—H20C109.5
C13—C12—C19109.73 (17)H20B—C20—H20C109.5
C11—C12—C19109.23 (16)
C7—S—C1—C6−69.82 (18)C2—C10—C11—C12−179.21 (15)
C7—S—C1—C2116.52 (17)C18—C10—C11—C1258.4 (2)
C6—C1—C2—C3−1.7 (3)C17—C10—C11—C12−58.5 (2)
S—C1—C2—C3171.68 (14)C10—C11—C12—C13−59.9 (2)
C6—C1—C2—C10179.12 (18)C10—C11—C12—C1960.7 (2)
S—C1—C2—C10−7.5 (3)C11—C12—C13—C1458.5 (2)
C1—C2—C3—C40.9 (3)C19—C12—C13—C14−61.8 (2)
C10—C2—C3—C4−179.92 (17)C12—C13—C14—C18−59.5 (2)
C2—C3—C4—C51.3 (3)C12—C13—C14—C1560.4 (2)
C2—C3—C4—C20−178.19 (19)C18—C14—C15—C1661.3 (2)
C3—C4—C5—C6−2.8 (3)C13—C14—C15—C16−58.9 (2)
C20—C4—C5—C6176.8 (2)C14—C15—C16—C1958.6 (2)
C4—C5—C6—C12.0 (4)C14—C15—C16—C17−61.5 (2)
C2—C1—C6—C50.4 (3)C19—C16—C17—C10−61.6 (2)
S—C1—C6—C5−173.55 (18)C15—C16—C17—C1059.0 (2)
C8—N—C7—O−177.8 (2)C2—C10—C17—C16−179.34 (15)
C9—N—C7—O3.2 (4)C18—C10—C17—C16−55.8 (2)
C8—N—C7—S2.8 (3)C11—C10—C17—C1658.72 (19)
C9—N—C7—S−176.25 (19)C13—C14—C18—C1061.8 (2)
C1—S—C7—O−1.6 (2)C15—C14—C18—C10−58.1 (2)
C1—S—C7—N177.83 (16)C2—C10—C18—C14177.91 (15)
C3—C2—C10—C18124.16 (18)C17—C10—C18—C1455.2 (2)
C1—C2—C10—C18−56.7 (2)C11—C10—C18—C14−59.4 (2)
C3—C2—C10—C17−113.39 (18)C17—C16—C19—C1260.7 (2)
C1—C2—C10—C1765.7 (2)C15—C16—C19—C12−59.0 (2)
C3—C2—C10—C115.0 (2)C13—C12—C19—C1660.8 (2)
C1—C2—C10—C11−175.85 (17)C11—C12—C19—C16−60.1 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GW2030).

References

  • Allen, F. H. (2002). Acta Cryst. B58, 380–388. [PubMed]
  • Bennett, S. M. W., Brown, S. M., Conole, G., Dennis, M. R., Fraser, P. K., Radojevic, S., McPartlin, M., Topping, C. M. & Woodward, W. (1999). J. Chem. Soc. Perkin Trans. 1, pp. 3127–3132.
  • Bruker (1997). SMART (Version 5.625) and SAINT-Plus (Version 7.01A). Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397. [PubMed]
  • Flores-Figueroa, A., Arista-M, V., Talancón-Sánchez, D. & Castillo, I. (2005). J. Braz. Chem. Soc.16, 397–403.
  • Higgs, T. C. & Carrano, C. J. (2002). Eur. J. Org. Chem. pp. 3632–3645.
  • Newman, M. S. & Karnes, H. A. (1966). J. Org. Chem.31, 3980–3984.
  • Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  • Sheldrick, G. M. (1997b). SHELXTL Version 6.10. University of Göttingen, Germany.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography