PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): o320.
Published online 2007 December 21. doi:  10.1107/S160053680706223X
PMCID: PMC2915364

(E)-5-Phenyl-N′-(1-phenyl­ethyl­idene)-1H-pyrazole-3-carbohydrazide

Abstract

In the mol­ecule of the title compound, C18H16N4O, the intra­molecular N—H(...)N hydrogen bond results in the formation of a planar five-membered ring, which is also co-planar with the adjacent five-membered ring, being oriented at a dihedral angle of 1.23 (3)°. The dihedral angles formed by the planar pyrazole ring with the adjacent phenyl ring and the other phenyl ring are 7.29 and 11.21°, respectively. The dihedral angle between the two phenyl rings is 18.07°. In the crystal structure, inter­molecular N—H(...)O hydrogen bonds link the mol­ecules.

Related literature

For general background, see: Ogretir et al. (2006 [triangle]); Tarafder et al. (2000 [triangle]); Deschamps et al. (2003 [triangle]); Wu et al. (2006 [triangle]). For related literature, see: Yang & Raptis (2003 [triangle]); Ali et al. (2005 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o320-scheme1.jpg

Experimental

Crystal data

  • C18H16N4O
  • M r = 304.35
  • Tetragonal, An external file that holds a picture, illustration, etc.
Object name is e-64-0o320-efi1.jpg
  • a = 8.0190 (11) Å
  • c = 24.147 (5) Å
  • V = 1552.8 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 294 (2) K
  • 0.25 × 0.20 × 0.18 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: none
  • 3737 measured reflections
  • 1686 independent reflections
  • 1017 reflections with I > 2σ(I)
  • R int = 0.081
  • 3 standard reflections every 100 reflections intensity decay: 4.1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.054
  • wR(F 2) = 0.143
  • S = 1.04
  • 1686 reflections
  • 209 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.19 e Å−3
  • Δρmin = −0.32 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989 [triangle]); cell refinement: CAD-4 Software; data reduction: NRCVAX (Gabe et al., 1989 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: SHELXTL/PC (Siemens, 1990 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680706223X/hk2398sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680706223X/hk2398Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Natural Science Foundation of Shandong Province (grant No. Y2005B04).

supplementary crystallographic information

Comment

Schiff bases have been used extensively as ligands in the field of coordination chemistry (Ogretir et al., 2006). As dinegatively charged ligands, Schiff bases show potential as antimicrobial and anticancer agents (Tarafder et al., 2000; Deschamps et al., 2003) and so have biochemical and pharmacological applications. In addition, the chemical behavior of metal complexes with Schiff base ligands has attracted much attention because of their catalytic activity in some industrial and biochemical processes (Wu et al., 2006). The title compound, (I), was synthesized as part of our study of these ligands and we report herein its crystal structure.

In the molecule of (I), (Fig. 1) the bond lengths and angles are within normal ranges (Allen et al., 1987). They are in good agreement with the corresponding values reported (Yang & Raptis, 2003). The C7—N1 [1.285 (6) Å] bond has a double-bond character (Ali et al., 2005). The intramolecular N—H···N hydrogen bond (Table 1) results in the formation of a planar five-membered ring B (N2/H2A/N3/C9/C1). Rings A (C1—C6), C (N3/N4/C10—C11) and D (C13—C18) are, of course, planar and the dihedral angles between them are A/B = 11.06 (3)°, A/C = 11.10 (3)°, A/D = 17.82 (2)°, B/C = 1.23 (3)°, B/D = 7.85 (3)° and C/D = 7.15 (3)°. So, rings B and C are also co-planar.

In the crystal structure, intermolecular N—H···O hydrogen bonds (Table 1) link the molecules, in which they may be effective in the stabilization of the structure.

Experimental

A mixture of 5-phenyl-1H-pyrazole-3-carbohydrazide (10 mmol) with acetophenone (10 mmol) was stirred in refluxing ethanol (30 ml) for 5 h to afford the title compound, (I), (yield; 81%). Single crystals suitable for X-ray analysis were obtained by recrystallization from dimethylformamide (DMF) at 309 K.

Refinement

H atoms were positioned geometrically, with N—H = 0.86 Å and C—H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H, and x = 1.2 for all other H atoms.

Figures

Fig. 1.
The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level.

Crystal data

C18H16N4OZ = 4
Mr = 304.35F000 = 640
Tetragonal, P43Dx = 1.302 Mg m3
Hall symbol: P 4cwMo Kα radiation λ = 0.71073 Å
a = 8.0190 (11) ÅCell parameters from 25 reflections
b = 8.0190 (11) Åθ = 1–25º
c = 24.147 (5) ŵ = 0.08 mm1
α = 90ºT = 294 (2) K
β = 90ºBlock, yellow
γ = 90º0.25 × 0.20 × 0.18 mm
V = 1552.8 (4) Å3

Data collection

Enraf–Nonius CAD-4 diffractometerRint = 0.081
Radiation source: fine-focus sealed tubeθmax = 26.9º
Monochromator: graphiteθmin = 2.5º
T = 294(2) Kh = 0→9
ω scansk = 0→9
Absorption correction: nonel = −28→28
3737 measured reflections3 standard reflections
1686 independent reflections every 100 reflections
1017 reflections with I > 2σ(I) intensity decay: 4.1%

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.143  w = 1/[σ2(Fo2) + (0.0792P)2] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
1686 reflectionsΔρmax = 0.19 e Å3
209 parametersΔρmin = −0.32 e Å3
1 restraintExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.6526 (4)0.7885 (4)0.19156 (14)0.0530 (9)
N10.8996 (5)0.5984 (5)0.14452 (17)0.0484 (9)
N20.7574 (4)0.6473 (5)0.11695 (18)0.0495 (10)
H2A0.74230.61860.08300.059*
N30.4872 (4)0.7339 (5)0.05571 (16)0.0477 (10)
N40.3421 (5)0.7929 (5)0.03787 (17)0.0467 (9)
H4A0.30600.77770.00470.056*
C11.2768 (6)0.3604 (6)0.1231 (3)0.0600 (14)
H1B1.25460.31290.08880.072*
C21.4206 (7)0.3174 (7)0.1507 (3)0.0700 (16)
H2B1.49180.23810.13550.084*
C31.4605 (6)0.3911 (7)0.2008 (3)0.0615 (14)
H3B1.56000.36580.21870.074*
C41.3495 (7)0.5025 (7)0.2236 (2)0.0624 (14)
H4B1.37370.55050.25780.075*
C51.2040 (6)0.5445 (6)0.1972 (2)0.0547 (13)
H5A1.13140.62030.21350.066*
C61.1639 (5)0.4735 (6)0.1456 (2)0.0445 (11)
C71.0116 (6)0.5222 (5)0.1161 (2)0.0427 (10)
C80.9950 (7)0.4862 (7)0.0543 (2)0.0612 (14)
H8A0.96200.58610.03540.092*
H8B0.91230.40130.04870.092*
H8C1.10020.44850.04010.092*
C90.6421 (6)0.7398 (5)0.1432 (2)0.0445 (11)
C100.4972 (5)0.7848 (5)0.10870 (19)0.0401 (9)
C110.3586 (5)0.8767 (5)0.12334 (19)0.0424 (10)
H11A0.33780.92670.15740.051*
C120.2562 (5)0.8794 (5)0.07682 (19)0.0403 (10)
C130.0915 (5)0.9501 (5)0.06862 (18)0.0384 (10)
C140.0112 (6)0.9482 (7)0.0169 (2)0.0552 (13)
H14A0.06580.9053−0.01400.066*
C15−0.1487 (7)1.0101 (7)0.0119 (3)0.0645 (15)
H15A−0.20251.0052−0.02210.077*
C16−0.2297 (6)1.0789 (7)0.0566 (2)0.0594 (14)
H16A−0.33611.12330.05250.071*
C17−0.1517 (6)1.0818 (7)0.1080 (2)0.0581 (13)
H17A−0.20591.12640.13860.070*
C180.0066 (6)1.0182 (6)0.1129 (2)0.0514 (12)
H18A0.05841.02110.14740.062*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.064 (2)0.071 (2)0.024 (2)0.0045 (16)−0.0093 (14)−0.0017 (15)
N10.052 (2)0.058 (2)0.035 (3)0.0014 (18)−0.0090 (18)0.0042 (18)
N20.052 (2)0.066 (2)0.030 (2)0.0052 (19)−0.0083 (18)−0.0035 (19)
N30.048 (2)0.062 (2)0.033 (2)0.0054 (18)−0.0069 (17)−0.0105 (17)
N40.050 (2)0.061 (2)0.029 (2)0.0088 (18)−0.0065 (17)−0.0093 (17)
C10.056 (3)0.071 (3)0.053 (4)0.002 (3)−0.003 (3)−0.012 (3)
C20.056 (3)0.072 (4)0.082 (5)0.005 (3)0.000 (3)−0.011 (3)
C30.055 (3)0.075 (3)0.054 (4)−0.003 (3)−0.010 (3)0.009 (3)
C40.067 (3)0.075 (3)0.044 (4)−0.008 (3)−0.008 (3)0.004 (3)
C50.060 (3)0.056 (3)0.048 (4)0.002 (2)−0.007 (2)−0.002 (2)
C60.045 (2)0.045 (2)0.043 (3)−0.005 (2)0.004 (2)0.005 (2)
C70.047 (2)0.052 (2)0.029 (3)−0.004 (2)0.0008 (19)−0.001 (2)
C80.067 (3)0.076 (3)0.041 (4)0.004 (3)0.001 (2)−0.004 (2)
C90.053 (3)0.050 (3)0.031 (3)−0.009 (2)−0.004 (2)0.003 (2)
C100.049 (2)0.050 (2)0.022 (2)−0.003 (2)−0.0065 (18)−0.0004 (18)
C110.055 (3)0.046 (2)0.027 (3)−0.001 (2)−0.003 (2)−0.0047 (18)
C120.049 (2)0.047 (2)0.024 (3)−0.0011 (19)−0.0063 (18)−0.0003 (19)
C130.047 (2)0.042 (2)0.026 (3)0.0015 (18)0.0018 (18)0.0020 (18)
C140.064 (3)0.074 (3)0.028 (3)0.018 (3)−0.005 (2)−0.003 (2)
C150.068 (3)0.095 (4)0.031 (3)0.022 (3)−0.011 (2)0.007 (3)
C160.054 (3)0.075 (3)0.049 (4)0.015 (2)0.001 (2)0.012 (2)
C170.059 (3)0.077 (3)0.039 (3)0.013 (3)0.009 (2)0.000 (2)
C180.060 (3)0.068 (3)0.026 (3)0.000 (2)0.002 (2)−0.002 (2)

Geometric parameters (Å, °)

O1—C91.234 (6)C7—C81.526 (7)
N1—C71.285 (6)C8—H8A0.9600
N1—N21.378 (5)C8—H8B0.9600
N2—C91.344 (6)C8—H8C0.9600
N2—H2A0.8600C9—C101.474 (6)
N3—N41.328 (5)C10—C111.380 (6)
N3—C101.346 (6)C11—C121.392 (6)
N4—C121.357 (6)C11—H11A0.9300
N4—H4A0.8600C12—C131.451 (6)
C1—C21.375 (8)C13—C181.381 (7)
C1—C61.391 (7)C13—C141.406 (7)
C1—H1B0.9300C14—C151.380 (7)
C2—C31.385 (8)C14—H14A0.9300
C2—H2B0.9300C15—C161.376 (8)
C3—C41.376 (8)C15—H15A0.9300
C3—H3B0.9300C16—C171.389 (7)
C4—C51.371 (7)C16—H16A0.9300
C4—H4B0.9300C17—C181.373 (7)
C5—C61.408 (7)C17—H17A0.9300
C5—H5A0.9300C18—H18A0.9300
C6—C71.466 (7)
C7—N1—N2117.2 (4)H8A—C8—H8C109.5
C9—N2—N1119.9 (4)H8B—C8—H8C109.5
C9—N2—H2A120.1O1—C9—N2125.0 (4)
N1—N2—H2A120.1O1—C9—C10120.8 (4)
N4—N3—C10104.6 (4)N2—C9—C10114.2 (4)
N3—N4—C12113.7 (4)N3—C10—C11110.9 (4)
N3—N4—H4A123.1N3—C10—C9120.7 (4)
C12—N4—H4A123.1C11—C10—C9128.4 (4)
C2—C1—C6121.4 (6)C10—C11—C12106.1 (4)
C2—C1—H1B119.3C10—C11—H11A127.0
C6—C1—H1B119.3C12—C11—H11A127.0
C1—C2—C3120.6 (5)N4—C12—C11104.6 (4)
C1—C2—H2B119.7N4—C12—C13124.6 (4)
C3—C2—H2B119.7C11—C12—C13130.8 (4)
C4—C3—C2118.5 (5)C18—C13—C14117.9 (4)
C4—C3—H3B120.7C18—C13—C12119.8 (4)
C2—C3—H3B120.7C14—C13—C12122.3 (4)
C5—C4—C3121.6 (5)C15—C14—C13119.9 (5)
C5—C4—H4B119.2C15—C14—H14A120.1
C3—C4—H4B119.2C13—C14—H14A120.1
C4—C5—C6120.5 (5)C16—C15—C14121.0 (5)
C4—C5—H5A119.8C16—C15—H15A119.5
C6—C5—H5A119.8C14—C15—H15A119.5
C1—C6—C5117.4 (4)C15—C16—C17119.6 (5)
C1—C6—C7121.8 (5)C15—C16—H16A120.2
C5—C6—C7120.8 (4)C17—C16—H16A120.2
N1—C7—C6116.8 (4)C18—C17—C16119.2 (5)
N1—C7—C8123.4 (4)C18—C17—H17A120.4
C6—C7—C8119.8 (4)C16—C17—H17A120.4
C7—C8—H8A109.5C17—C18—C13122.3 (5)
C7—C8—H8B109.5C17—C18—H18A118.8
H8A—C8—H8B109.5C13—C18—H18A118.8
C7—C8—H8C109.5

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2A···N30.862.342.714 (2)107
N4—H4A···O1i0.861.982.788 (2)157

Symmetry codes: (i) −x+1, −y, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2398).

References

  • Ali, H. M., Puvaneswary, S. & Ng, S. W. (2005). Acta Cryst. E61, o3464–o3465.
  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Deschamps, P., Kulkarni, P. P. & Sarkar, B. (2003). Inorg. Chem.42, 7366–7368. [PubMed]
  • Enraf–Nonius (1989). CAD-4 Software Version 5.0. Enraf–Nonius, Delft, The Netherlands.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst.22, 384–387.
  • Ogretir, C., Dal, H., Berber, H. & Taktak, F. F. (2006). J. Chem. Eng. Data, 51, 46–50.
  • Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  • Siemens (1990). SHELXTL/PC Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Tarafder, M. T. H., Ali, M. A., Wee, D. J., Azahari, K., Silong, S. & Crouse, K. A. (2000). Transition Met. Chem.25, 456–460.
  • Wu, L.-B., Hu, Z.-Q. & Lai, G.-Q. (2006). Chin. J. Struct. Chem.25, 567–571.
  • Yang, G. & Raptis, R. G. (2003). J. Heterocycl. Chem.32, 659–664.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography