PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): o316.
Published online 2007 December 21. doi:  10.1107/S1600536807066652
PMCID: PMC2915360

(E)-5-(2-Thienylmethyl­eneamino)quinolin-8-ol

Abstract

Two mol­ecules of the title compound, C14H10N2OS, are hydrogen bonded about a center of inversion. In the mol­ecule, the two aromatic rings are twisted by 37.27 (5)° with respect to one another. The azomethine bond is in the E configuration.

Related literature

For information about the utility of azomethines, see: Dufresne et al. (2006 [triangle]); Skene & Dufresne (2006 [triangle]). For related structures, see: Chen et al. (1999 [triangle]). For an analog with an aryl ring in place of the thienyl ring, see Manecke et al. (1972 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o316-scheme1.jpg

Experimental

Crystal data

  • C14H10N2OS
  • M r = 254.30
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o316-efi1.jpg
  • a = 7.6798 (4) Å
  • b = 9.8592 (4) Å
  • c = 15.7512 (7) Å
  • β = 92.926 (2)°
  • V = 1191.07 (9) Å3
  • Z = 4
  • Cu Kα radiation
  • μ = 2.31 mm−1
  • T = 150 (2) K
  • 0.07 × 0.05 × 0.05 mm

Data collection

  • Bruker SMART 6K diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.855, T max = 0.893
  • 31904 measured reflections
  • 2377 independent reflections
  • 2152 reflections with I > 2σ(I)
  • R int = 0.064

Refinement

  • R[F 2 > 2σ(F 2)] = 0.054
  • wR(F 2) = 0.139
  • S = 1.11
  • 2377 reflections
  • 164 parameters
  • H-atom parameters constrained
  • Δρmax = 0.42 e Å−3
  • Δρmin = −0.62 e Å−3

Data collection: SMART (Bruker, 2003 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and SHELXTL (Bruker, 1997 [triangle]); software used to prepare material for publication: UdMX (Marris, 2004 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807066652/ng2406sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807066652/ng2406Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge financial support from the Natural Sciences and Engineering Research Council Canada, the Centre for Self-Assembled Chemical Structures, and the Canada Foundation for Innovation. SD thanks the Université de Montréal for a graduate scholarship.

supplementary crystallographic information

Comment

Compound (I) was prepared as a new ligand for metal-ligand charge transfer complexes. The structure of (I) consists of quinolin-2-ol covalently linked to a thiophene unit by an azomethine bond with more stable E isomer being observed. The crystal structure has a P21/c symmetry as seen in figure 2. No solvent molecules or counter-ions were found in the crystal structure.

The bond lengths and angles of the quinolin-2-ol moiety are within 0.013 Å and 1°, respectively, to comparable structures (Chen et al., 1999). The bond lengths of the azomethine bond for C5—N2, N2—C10 and C10—C11 are 1.421 (2), 1.276 (2) and 1.446 (2) Å, respectively. The bond lengths are comparable to an all thiophene azomethine analogue (Dufresne et al., 2006) whose analogues bond lengths are 1.388 (3), 1.272 (3) and 1.441 (4) Å, respectively.

The mean planes of the two aryl moieties are twisted by 37.27 (5)° from the azomethine bond to which they are connected. This angle is smaller, i.e. 65°, (Manecke et al., 1972) than its homoaryl analogue. Steric hindrance between H6 and H10 is responsible for the twist between the mean planes similar to a thiophene azomethine, whose aryl mean planes are twisted by 33° Skene et al., 2006).

Hydrogen bonding takes place between two quinolin-8-ol moieties to form a supramolecular dimer. Figure 2 shows the two symmetry related hydrogen bonds between O1—H1···N1î^ and O1î^-H1î^···N1 that form the dimer. The length and the angle of this bond are 2.927 (2) Å and 136°, respectively. The two quinolin-2-ol involved in the hydrogen bonding are shifted by 0.593 Å.

Experimental

The title compound was synthesized by means of an acid catalyzed condensation of 5-amino-8-hydroxyquinoline with 2-thiophenecarboxaldehyde in ethanol with catalytic trifluoroacetic acid. The reaction was held at reflux for 20 h with stirring, cooled to room temperature and the volume reduced. Ice-cold distilled water was added to this solution causing a yellow solid to precipitate. The yellow solid was collected, washed with water and then dried under reduced pressure overnight. Crystals were obtained by slow evaporation of a concentrated solution of (1) in acetone.

Refinement

H atoms were placed in calculated positions (C—H = 0.95 Å) and included in the refinement in the riding-model approximation, with Uiso(H) = 1.2 Ueq(C). The hydrogen on the hydroxyl group was placed in calculated position (O—H = 0.84 Å, C—O—H = 109.5°) and included in the refinement in the riding-model approximation with Uiso(H) = 1.5 Ueq(O).

Figures

Fig. 1.
ORTEP representation of (I) with the numbering scheme adopted (Farrugia 1997). Ellipsoids drawn at 30% probability level.
Fig. 2.
The lattice structure of (I) showing hydrogen bonding. [Symmetry codes: (i) -x, -y, -z; (ii)

Crystal data

C14H10N2OSF000 = 528
Mr = 254.30Dx = 1.418 Mg m3
Monoclinic, P21/cCu Kα radiation λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 7426 reflections
a = 7.6798 (4) Åθ = 5.3–72.9º
b = 9.8592 (4) ŵ = 2.31 mm1
c = 15.7512 (7) ÅT = 150 (2) K
β = 92.926 (2)ºBlock, yellow
V = 1191.07 (9) Å30.07 × 0.05 × 0.05 mm
Z = 4

Data collection

Bruker SMART 6000 diffractometer2377 independent reflections
Radiation source: Rotating Anode2152 reflections with I > 2σ(I)
Monochromator: Montel 200 opticsRint = 0.064
Detector resolution: 5.5 pixels mm-1θmax = 73.2º
T = 150(2) Kθmin = 5.3º
[var phi] and ω scansh = −9→9
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)k = −12→11
Tmin = 0.855, Tmax = 0.893l = −19→19
31904 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.139  w = 1/[σ2(Fo2) + (0.0968P)2 + 0.157P] where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
2377 reflectionsΔρmax = 0.42 e Å3
164 parametersΔρmin = −0.62 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.43366 (6)0.82399 (4)0.21499 (3)0.0464 (2)
O10.10263 (18)0.13156 (13)−0.09352 (7)0.0446 (3)
H10.05560.0746−0.06230.067*
N10.0099 (2)0.14942 (15)0.07194 (9)0.0394 (3)
N20.29207 (18)0.59227 (14)0.09825 (9)0.0406 (3)
C1−0.0336 (3)0.16030 (18)0.15190 (11)0.0449 (4)
H1A−0.09850.08860.17520.054*
C20.0107 (3)0.2718 (2)0.20431 (11)0.0460 (4)
H2−0.02250.27410.26160.055*
C30.1018 (2)0.37649 (19)0.17187 (11)0.0419 (4)
H30.13270.45240.20660.050*
C40.1505 (2)0.37229 (17)0.08639 (10)0.0361 (4)
C50.2413 (2)0.47908 (17)0.04695 (11)0.0373 (4)
C60.2810 (2)0.46462 (17)−0.03706 (11)0.0393 (4)
H60.34220.5352−0.06370.047*
C70.2332 (2)0.34810 (17)−0.08420 (11)0.0397 (4)
H70.26180.3414−0.14200.048*
C80.1456 (2)0.24404 (17)−0.04735 (10)0.0367 (4)
C90.1013 (2)0.25436 (16)0.03912 (9)0.0354 (4)
C100.3002 (2)0.70894 (18)0.06355 (12)0.0424 (4)
H100.26550.71760.00500.051*
C110.3600 (2)0.82854 (16)0.10947 (12)0.0420 (4)
C120.3671 (3)0.95730 (19)0.07858 (13)0.0529 (5)
H120.33120.98090.02190.063*
C130.4333 (3)1.0526 (2)0.13929 (14)0.0554 (5)
H130.44701.14650.12770.066*
C140.4751 (3)0.99469 (18)0.21584 (12)0.0474 (4)
H140.52161.04300.26400.057*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0614 (3)0.0305 (3)0.0465 (3)0.00053 (17)−0.0045 (2)−0.00223 (15)
O10.0632 (8)0.0393 (7)0.0312 (6)−0.0135 (6)0.0022 (5)−0.0040 (5)
N10.0495 (8)0.0376 (7)0.0305 (7)−0.0066 (6)−0.0034 (6)0.0002 (5)
N20.0402 (7)0.0350 (8)0.0461 (8)−0.0009 (6)−0.0026 (6)−0.0081 (6)
C10.0552 (10)0.0457 (10)0.0337 (9)−0.0069 (8)0.0013 (7)0.0017 (7)
C20.0556 (10)0.0502 (10)0.0321 (8)−0.0020 (8)0.0006 (7)−0.0043 (7)
C30.0462 (9)0.0418 (9)0.0371 (8)0.0000 (7)−0.0033 (7)−0.0080 (7)
C40.0356 (8)0.0356 (8)0.0365 (8)0.0022 (7)−0.0050 (6)−0.0033 (6)
C50.0358 (8)0.0332 (8)0.0424 (8)0.0004 (6)−0.0040 (6)−0.0045 (6)
C60.0392 (8)0.0358 (9)0.0427 (9)−0.0050 (6)0.0006 (6)0.0001 (6)
C70.0443 (9)0.0401 (9)0.0347 (8)−0.0039 (7)0.0011 (7)−0.0018 (7)
C80.0406 (8)0.0365 (8)0.0326 (8)−0.0032 (7)−0.0034 (6)−0.0032 (6)
C90.0371 (8)0.0361 (8)0.0325 (8)−0.0022 (6)−0.0046 (6)−0.0004 (6)
C100.0407 (9)0.0380 (9)0.0477 (10)0.0032 (7)−0.0068 (7)−0.0028 (7)
C110.0409 (9)0.0358 (9)0.0485 (10)0.0036 (7)−0.0051 (7)−0.0027 (7)
C120.0643 (12)0.0380 (10)0.0547 (11)0.0023 (9)−0.0136 (9)0.0024 (8)
C130.0691 (13)0.0313 (9)0.0639 (12)0.0002 (8)−0.0130 (10)0.0005 (8)
C140.0541 (10)0.0317 (9)0.0555 (11)0.0014 (8)−0.0064 (8)−0.0072 (7)

Geometric parameters (Å, °)

S1—C141.7127 (18)C4—C51.423 (2)
S1—C111.7289 (19)C5—C61.380 (2)
O1—C81.358 (2)C6—C71.406 (2)
O1—H10.8400C6—H60.9500
N1—C11.324 (2)C7—C81.372 (2)
N1—C91.367 (2)C7—H70.9500
N2—C101.276 (2)C8—C91.424 (2)
N2—C51.421 (2)C10—C111.446 (2)
C1—C21.406 (3)C10—H100.9500
C1—H1A0.9500C11—C121.362 (3)
C2—C31.361 (3)C12—C131.417 (3)
C2—H20.9500C12—H120.9500
C3—C41.416 (2)C13—C141.358 (3)
C3—H30.9500C13—H130.9500
C4—C91.421 (2)C14—H140.9500
C14—S1—C1191.92 (9)C8—C7—H7119.7
C8—O1—H1109.5C6—C7—H7119.7
C1—N1—C9117.25 (14)O1—C8—C7119.70 (14)
C10—N2—C5118.84 (15)O1—C8—C9120.47 (14)
N1—C1—C2123.84 (17)C7—C8—C9119.83 (15)
N1—C1—H1A118.1N1—C9—C4123.30 (14)
C2—C1—H1A118.1N1—C9—C8117.39 (14)
C3—C2—C1119.08 (16)C4—C9—C8119.30 (15)
C3—C2—H2120.5N2—C10—C11122.82 (17)
C1—C2—H2120.5N2—C10—H10118.6
C2—C3—C4120.04 (16)C11—C10—H10118.6
C2—C3—H3120.0C12—C11—C10126.81 (18)
C4—C3—H3120.0C12—C11—S1110.52 (14)
C3—C4—C9116.48 (15)C10—C11—S1122.67 (13)
C3—C4—C5123.54 (15)C11—C12—C13113.39 (18)
C9—C4—C5119.98 (15)C11—C12—H12123.3
C6—C5—N2123.97 (15)C13—C12—H12123.3
C6—C5—C4118.63 (15)C14—C13—C12112.38 (18)
N2—C5—C4117.35 (15)C14—C13—H13123.8
C5—C6—C7121.74 (16)C12—C13—H13123.8
C5—C6—H6119.1C13—C14—S1111.78 (14)
C7—C6—H6119.1C13—C14—H14124.1
C8—C7—C6120.53 (16)S1—C14—H14124.1
C9—N1—C1—C2−0.8 (3)C3—C4—C9—N10.8 (2)
N1—C1—C2—C30.8 (3)C5—C4—C9—N1−178.15 (15)
C1—C2—C3—C40.1 (3)C3—C4—C9—C8179.70 (15)
C2—C3—C4—C9−0.8 (2)C5—C4—C9—C80.7 (2)
C2—C3—C4—C5178.12 (16)O1—C8—C9—N1−2.1 (2)
C10—N2—C5—C633.6 (2)C7—C8—C9—N1178.23 (15)
C10—N2—C5—C4−149.15 (16)O1—C8—C9—C4178.95 (14)
C3—C4—C5—C6−179.47 (15)C7—C8—C9—C4−0.7 (2)
C9—C4—C5—C6−0.6 (2)C5—N2—C10—C11−176.40 (16)
C3—C4—C5—N23.2 (2)N2—C10—C11—C12−177.5 (2)
C9—C4—C5—N2−177.93 (14)N2—C10—C11—S12.4 (3)
N2—C5—C6—C7177.58 (15)C14—S1—C11—C12−0.57 (17)
C4—C5—C6—C70.4 (2)C14—S1—C11—C10179.52 (17)
C5—C6—C7—C8−0.4 (3)C10—C11—C12—C13−179.54 (19)
C6—C7—C8—O1−179.12 (15)S1—C11—C12—C130.6 (2)
C6—C7—C8—C90.5 (3)C11—C12—C13—C14−0.2 (3)
C1—N1—C9—C40.0 (2)C12—C13—C14—S1−0.2 (2)
C1—N1—C9—C8−178.93 (16)C11—S1—C14—C130.45 (17)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.842.272.927 (2)136

Symmetry codes: (i) −x, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2406).

References

  • Bruker (1997). SHELXTL Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2003). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2004). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chen, X., Zhu, X., Vittal, J. J. & You, X. (1999). Acta Cryst. C55, IUC9900095.
  • Dufresne, S., Bourgeaux, M. & Skene, W. G. (2006). Acta Cryst. E62, o5602–o5604.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Manecke, G., Wille, W. E. & Kossmehl, G. (1972). Macromol. Chem.160, 111–126.
  • Marris, T. (2004). UdMX Université de Montréal, Canada.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  • Skene, W. G. & Dufresne, S. (2006). Acta Cryst. E62, o1116–o1117.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography