PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): o305–o306.
Published online 2007 December 18. doi:  10.1107/S1600536807066548
PMCID: PMC2915353

3,3′-Diphenyl-1,1′-[2,2′-oxybis(2,1-phenyl­ene)]diurea N,N-dimethyl­formamide disolvate

Abstract

In the structure of the title compound, C26H22N4O3·2C3H7NO, one of the DMF solvent mol­ecules is disordered over two sets of positions in a 0.5:0.5 ratio. In the 1,1′-[2,2′-oxybis(2,1-phenyl­ene)]bis­(3-phenyl­urea) mol­ecule, the two diphenyl­urea segments are linked via an ether O atom and are inclined at an angle of 53.80 (4)° to one another. In the crystal structure, classical N—H(...)O hydrogen bonds link each mol­ecule to two DMF solvent mol­ecules and these aggregates form columns down a through C—H(...)π inter­actions. Additional C—H(...)O inter­actions link the main mol­ecule and the solvent mol­ecules, forming columns of independent zigzag chains along b.

Related literature

For information on anion binding agents, see: Gunnlaugsson et al. (2004 [triangle]); Kim & Kim (2005 [triangle]). To our knowledge, no structures of oxybis(phenyl­ene)phenyl­urea derivatives have been reported previously. However, for structures of N,N′-diphenyl­thio­urea, see: Dannecker et al. (1979 [triangle]); Galkin et al. (2006 [triangle]). For structures of oxybis(amino­benzene) derivatives, see: Bensemann et al. (2003 [triangle]); Ashton et al. (1996 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o305-scheme1.jpg

Experimental

Crystal data

  • C26H22N4O3·2C3H7NO
  • M r = 584.67
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o305-efi1.jpg
  • a = 11.1035 (2) Å
  • b = 8.1564 (2) Å
  • c = 16.8881 (3) Å
  • β = 103.429 (1)°
  • V = 1487.65 (5) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 180 (2) K
  • 0.46 × 0.35 × 0.23 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: multi-scan (SORTAV; Blessing, 1995 [triangle]) T min = 0.905, T max = 0.979
  • 16291 measured reflections
  • 3643 independent reflections
  • 3337 reflections with I > 2σ(I)
  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051
  • wR(F 2) = 0.140
  • S = 1.04
  • 3643 reflections
  • 385 parameters
  • 25 restraints
  • H-atom parameters constrained
  • Δρmax = 0.79 e Å−3
  • Δρmin = −0.36 e Å−3

Data collection: COLLECT (Nonius, 1998 [triangle]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO (Otwinowski & Minor, 1997 [triangle]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97, enCIFer (Allen et al., 2004 [triangle]) and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807066548/hb2678sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807066548/hb2678Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Dr John Davies, University of Cambridge, for the X-ray data collection.

supplementary crystallographic information

Comment

While a large amount of work has been done on organic-metal cation complexes, there is much less known about analogous organic-anion complexes. We are interested in looking at diureas as potential anion binding agents. Ureas and thioureas have previously shown some promise in this area, and bind to anions such as fluoride and chloride through the hydrogen atoms attached to the urea N atoms (Gunnlaugsson et al., 2004; Kim & Kim, 2005).

The title diurea compound, (I), was synthesized by the reaction of phenyl isocyanate and an aromatic diamine. The crystal structure shows that the bis-2,2-oxyphenyl motif used here may not be optimal for anion binding, as the urea units are splayed away from each other, though some of this may be due to binding to the solvent in the solid state. Initial NMR studies showed some affinity for both fluoride and chloride anions in chloroform.

The asymmetric unit of (I) comprises a 1,1'-(2,2'-oxybis(2,1-phenylene))bis(3-phenylurea) molecule and two molecules of dimethylformamide solvate, one of which is disordered equally over two positions (Fig. 1). The two diphenylurea segments of the molecule are linked via the ether O2 atom to form a V-shaped molecule with the arms inclined at an angle of 53.80 (4)° to one another. One 1,3-diphenylurea segment of the molecule, incorporating atoms C1···O2, is reasonably planar with an r.m.s. deviation from the plane through all 17 atoms of 0.029 Å. Also, the C1···C6 ring makes a dihedral angle of only 2.8 (2)° with the C8···C13 ring plane. In contrast, the correponding deviation from the plane through the 17 atoms that make up the second O2···C26 diphenylurea unit is 0.241Å with the C41···C19 and C21···C26 rings inclined at 24.08 (18)°. This variation is undoubtedly due to crystal packing effects.

In the crystal, classical N—H···O hydrogen bonds link each molecule to two DMF solvates (Table 1) and these aggregates form columns down a through an additional C31—H31A···Cg1 interaction, where Cg1 is the centroid of the C1···C6 ring. Then, C—H···O interactions further link the molecule and solvates into zigzag chains along b. The combination of these interactions stacks the chains into independent but interleaving columns, down a, as shown in Fig. 2.

Experimental

To a solution of bis(2-aminophenyl)ether (1.00 g, 5.00 mmol) in dry distilled CH2Cl2 (30 ml) was added phenyl isocyanate (1.20 g, 10.00 mmol) and the reaction stirred under nitrogen at room temperature for 24 h. Following evaporation of the solvent a beige crystalline solid was obtained. Recrystallization from dimethylformamide layered with hexane afforded (I) (1.92 g, 88%) as colourless blocks: mp 388–390 K; νmax(MeCN) 258 nm; Found: C, 70.61%; H, 5.08%; N, 12.60%; M+ 438.16958 (EI). C26H22N4O3 requires C, 71.22%; H, 5.06%; N, 12.75; M+ 438.16919]; νmax/cm-1 3337 (NH), 1656 (NHCONH), 1599 (aromatic); δH (400 MHz, DMSO-d6) 9.26 (2H, s, (NH)2), 8.60 (2H, s, (NH)2) 8.30 (2H, d, J 8.1, ArH), 7.42 (4H, d, J 8.4, ArH), 7.25 (4H, t, J 7.9, ArH), 7.10 (2H, t, J 7.5, ArH), 6.94 (4H, t, J 7.4, ArH), 6.76 (2H, d, J 8.1, ArH); δC (125 MHz, CDCl3) 154.6, 147.7, 138.1, 129.0, 128.9, 125.1, 124.3, 124.1, 123.7, 120.7, 117.9.

Refinement

In the absence of significant anomalous scattering effects, 2780 Friedel pairs were averaged for the refinement. One of the DMF solvate molecules is disordered over two sites and, in the final refinement cycles, the occupancy factors of the two disorder components were each fixed at 0.5. Common, isotropic temperature factors were applied to the non-H atoms of these components. In the final difference map, two peaks > 0.7 e Å-3 in the vicinity of the O5 and O5' atoms of the two components of the disordered dimethylformamide solvate were apparent.

All the H atoms were positioned geometrically (C—H = 0.95–0.98 Å, N—H = 0.88 Å) and refined as riding model with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C, N).

Figures

Fig. 1.
The structure of (I) showing displacement ellipsoids drawn at the 50% probability level. For clarity, only one of the disorder components of the N6 dimethylformamide solvate molecule is shown.
Fig. 2.
Crystal packing for (I) with hydrogen bonds drawn as dashed lines and the second disorder component of the N6 dimethylformamide solvate molecule omitted.

Crystal data

C26H22N4O3·2(C3H7NO)F000 = 620
Mr = 584.67Dx = 1.305 Mg m3
Monoclinic, P21Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 11759 reflections
a = 11.1035 (2) Åθ = 1.0–27.5º
b = 8.1564 (2) ŵ = 0.09 mm1
c = 16.8881 (3) ÅT = 180 (2) K
β = 103.429 (1)ºBlock, colourless
V = 1487.65 (5) Å30.46 × 0.35 × 0.23 mm
Z = 2

Data collection

Nonius KappaCCD diffractometer3337 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.032
T = 180(2) Kθmax = 27.5º
Thin–slice ω and [var phi] scansθmin = 3.5º
Absorption correction: multi-scan(SORTAV; Blessing, 1995)h = −14→14
Tmin = 0.905, Tmax = 0.979k = −9→10
16291 measured reflectionsl = −21→21
3643 independent reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.140  w = 1/[σ2(Fo2) + (0.0791P)2 + 0.5832P] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3643 reflectionsΔρmax = 0.79 e Å3
385 parametersΔρmin = −0.36 e Å3
25 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.036 (6)

Special details

Experimental. One of the DMF solvate molecules is disordered over two sites: common, isotropic temperature factors were applied to the non-H atoms of this moiety.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
N10.0475 (2)0.8656 (4)0.19863 (16)0.0384 (6)
H1N0.11900.89250.18820.046*
O1−0.0703 (2)0.9052 (4)0.29150 (15)0.0546 (7)
C1−0.1737 (3)0.5733 (5)0.0162 (2)0.0487 (8)
H1−0.22250.5077−0.02570.058*
N20.1272 (2)1.0072 (3)0.31451 (15)0.0343 (6)
H2N0.19371.00890.29460.041*
O20.33284 (17)1.1674 (3)0.37323 (11)0.0365 (5)
C2−0.2174 (3)0.6157 (4)0.0830 (2)0.0436 (8)
H2−0.29660.57800.08720.052*
O30.56816 (19)1.4761 (4)0.21808 (13)0.0506 (7)
N30.4261 (2)1.3857 (4)0.28714 (16)0.0381 (6)
H3N0.34611.37810.28410.046*
C3−0.1478 (3)0.7131 (4)0.14500 (19)0.0385 (7)
H3−0.17980.74210.19060.046*
N40.3619 (2)1.4974 (4)0.16115 (17)0.0446 (7)
H4N0.28801.47670.16940.054*
C4−0.0314 (3)0.7675 (4)0.13956 (17)0.0327 (6)
C50.0135 (3)0.7227 (4)0.07149 (19)0.0409 (7)
H50.09330.75830.06740.049*
C6−0.0570 (3)0.6275 (5)0.0104 (2)0.0491 (8)
H6−0.02600.5988−0.03560.059*
C70.0261 (3)0.9232 (4)0.26955 (18)0.0348 (6)
C80.1356 (2)1.0902 (4)0.38836 (16)0.0305 (6)
C90.0432 (3)1.0957 (4)0.43132 (18)0.0367 (6)
H9−0.03291.04010.41080.044*
C100.0610 (3)1.1817 (5)0.50385 (19)0.0435 (8)
H10−0.00321.18420.53250.052*
C110.1701 (3)1.2635 (5)0.53523 (18)0.0418 (7)
H110.18141.32110.58530.050*
C120.2634 (3)1.2609 (4)0.49290 (18)0.0359 (6)
H120.33861.31830.51340.043*
C130.2462 (2)1.1743 (4)0.42062 (16)0.0297 (5)
C140.4548 (2)1.2147 (4)0.40545 (17)0.0312 (6)
C150.5259 (3)1.1477 (4)0.47623 (18)0.0375 (6)
H150.49081.07050.50650.045*
C160.6488 (3)1.1939 (5)0.50276 (19)0.0417 (7)
H160.69791.15000.55180.050*
C170.6997 (3)1.3043 (5)0.45735 (19)0.0407 (7)
H170.78401.33580.47570.049*
C180.6295 (3)1.3696 (4)0.38541 (18)0.0374 (6)
H180.66581.44430.35460.045*
C190.5055 (3)1.3254 (4)0.35856 (17)0.0319 (6)
C200.4606 (3)1.4552 (4)0.22158 (18)0.0345 (6)
C210.3665 (3)1.5712 (4)0.08639 (19)0.0346 (6)
C220.4558 (3)1.6869 (4)0.08045 (19)0.0391 (7)
H220.51721.71730.12730.047*
C230.4548 (3)1.7576 (5)0.0059 (2)0.0449 (7)
H230.51621.83640.00210.054*
C240.3659 (3)1.7156 (5)−0.0634 (2)0.0448 (8)
H240.36581.7652−0.11430.054*
C250.2777 (3)1.6003 (5)−0.0568 (2)0.0468 (8)
H250.21641.5703−0.10380.056*
C260.2771 (3)1.5281 (4)0.0171 (2)0.0417 (7)
H260.21571.44910.02070.050*
O40.2870 (2)0.9862 (5)0.19570 (14)0.0576 (8)
N50.4865 (2)0.9358 (4)0.25860 (15)0.0422 (6)
C270.3979 (3)1.0063 (5)0.20292 (18)0.0436 (8)
H270.42271.07860.16550.065*
C280.4566 (4)0.8214 (5)0.3171 (2)0.0520 (9)
H28A0.37260.77900.29630.078*
H28B0.46130.87780.36890.078*
H28C0.51570.73030.32530.078*
C290.6164 (3)0.9735 (7)0.2665 (3)0.0654 (12)
H29A0.62441.05930.22740.098*
H29B0.66010.87470.25560.098*
H29C0.65241.01210.32190.098*
O50.1857 (6)0.5004 (9)0.2790 (4)0.0671 (11)*0.50
N6−0.0062 (7)0.3841 (11)0.2555 (5)0.0401 (9)*0.50
C300.0876 (6)0.4795 (10)0.3014 (4)0.0455 (11)*0.50
H300.07700.52920.35020.055*0.50
C310.0181 (8)0.3207 (12)0.1803 (5)0.0566 (10)*0.50
H31A−0.01170.39920.13620.085*0.50
H31B−0.02510.21590.16680.085*0.50
H31C0.10730.30410.18710.085*0.50
C32−0.1324 (8)0.3298 (12)0.2555 (5)0.0566 (10)*0.50
H32A−0.15760.24360.21460.085*0.50
H32B−0.18940.42290.24240.085*0.50
H32C−0.13430.28690.30940.085*0.50
O5'0.1596 (5)0.3843 (9)0.2144 (4)0.0671 (11)*0.50
N6'−0.0096 (7)0.4027 (12)0.2653 (5)0.0401 (9)*0.50
C30'0.0532 (7)0.3524 (10)0.2138 (5)0.0455 (11)*0.50
H30'0.01080.28310.17120.055*0.50
C31'0.0366 (7)0.5061 (11)0.3332 (5)0.0566 (10)*0.50
H31D0.11450.55610.32780.085*0.50
H31E0.05110.44120.38340.085*0.50
H31F−0.02400.59240.33530.085*0.50
C32'−0.1265 (8)0.3719 (13)0.2756 (5)0.0566 (10)*0.50
H32D−0.14330.25400.27020.085*0.50
H32E−0.18720.43130.23420.085*0.50
H32F−0.13230.40860.32990.085*0.50

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0290 (11)0.0458 (15)0.0429 (13)−0.0094 (11)0.0133 (10)−0.0104 (12)
O10.0420 (12)0.0728 (19)0.0552 (13)−0.0216 (13)0.0239 (11)−0.0253 (13)
C10.0487 (18)0.0443 (19)0.0481 (18)−0.0029 (16)0.0009 (15)−0.0107 (16)
N20.0282 (11)0.0417 (14)0.0357 (12)−0.0061 (11)0.0129 (9)−0.0054 (11)
O20.0290 (9)0.0486 (13)0.0329 (9)−0.0108 (10)0.0093 (7)−0.0012 (10)
C20.0309 (14)0.0406 (18)0.0566 (19)−0.0002 (13)0.0050 (13)−0.0065 (15)
O30.0309 (10)0.080 (2)0.0430 (11)−0.0025 (12)0.0138 (9)0.0070 (13)
N30.0253 (11)0.0438 (15)0.0477 (14)0.0001 (11)0.0136 (10)0.0085 (13)
C30.0318 (13)0.0387 (17)0.0445 (15)0.0010 (12)0.0082 (12)−0.0058 (13)
N40.0274 (11)0.0579 (19)0.0509 (15)−0.0042 (13)0.0138 (10)0.0129 (14)
C40.0293 (13)0.0287 (14)0.0388 (14)0.0008 (11)0.0056 (11)−0.0028 (12)
C50.0438 (16)0.0362 (17)0.0448 (16)−0.0041 (14)0.0149 (13)−0.0051 (13)
C60.059 (2)0.048 (2)0.0433 (17)−0.0045 (17)0.0180 (15)−0.0097 (15)
C70.0295 (13)0.0336 (15)0.0424 (15)−0.0048 (12)0.0104 (11)−0.0027 (12)
C80.0305 (13)0.0286 (13)0.0329 (13)0.0006 (11)0.0081 (10)0.0029 (11)
C90.0294 (13)0.0417 (16)0.0404 (15)−0.0019 (13)0.0111 (11)0.0019 (13)
C100.0358 (14)0.056 (2)0.0409 (15)0.0076 (15)0.0140 (12)−0.0029 (16)
C110.0383 (15)0.0491 (19)0.0377 (14)0.0090 (14)0.0084 (12)−0.0040 (14)
C120.0320 (14)0.0356 (15)0.0384 (14)0.0013 (13)0.0046 (11)−0.0037 (13)
C130.0285 (12)0.0290 (13)0.0322 (12)0.0021 (11)0.0085 (10)0.0041 (11)
C140.0255 (12)0.0305 (14)0.0383 (13)−0.0043 (10)0.0088 (10)−0.0060 (11)
C150.0385 (14)0.0375 (16)0.0372 (14)−0.0016 (13)0.0098 (11)−0.0032 (13)
C160.0361 (15)0.0473 (19)0.0386 (14)0.0044 (14)0.0025 (12)−0.0050 (14)
C170.0265 (13)0.0485 (19)0.0465 (16)−0.0034 (13)0.0069 (11)−0.0128 (15)
C180.0318 (14)0.0386 (16)0.0443 (15)−0.0065 (13)0.0139 (12)−0.0073 (14)
C190.0302 (13)0.0308 (14)0.0369 (13)0.0012 (11)0.0120 (11)−0.0042 (12)
C200.0311 (13)0.0339 (15)0.0419 (15)−0.0003 (12)0.0153 (11)−0.0039 (13)
C210.0298 (13)0.0320 (15)0.0445 (15)0.0031 (11)0.0137 (11)0.0029 (13)
C220.0374 (14)0.0390 (17)0.0427 (15)−0.0049 (13)0.0130 (12)−0.0020 (14)
C230.0437 (17)0.0413 (18)0.0542 (18)−0.0043 (15)0.0204 (14)0.0034 (16)
C240.0440 (16)0.0453 (19)0.0475 (17)0.0057 (14)0.0155 (14)0.0110 (15)
C250.0440 (17)0.0413 (18)0.0506 (18)0.0042 (15)0.0015 (14)0.0056 (15)
C260.0308 (14)0.0353 (16)0.0566 (18)−0.0011 (13)0.0057 (13)0.0050 (14)
O40.0337 (11)0.097 (2)0.0431 (12)−0.0073 (14)0.0105 (9)−0.0005 (15)
N50.0361 (13)0.0534 (18)0.0373 (12)0.0007 (13)0.0085 (10)−0.0056 (13)
C270.0353 (15)0.065 (2)0.0325 (14)−0.0025 (15)0.0118 (12)0.0009 (15)
C280.071 (2)0.0381 (18)0.0484 (18)0.0005 (17)0.0160 (17)−0.0008 (16)
C290.0347 (16)0.098 (4)0.061 (2)0.007 (2)0.0054 (15)−0.007 (3)

Geometric parameters (Å, °)

N1—C71.358 (4)C18—H180.9500
N1—C41.413 (4)C21—C221.389 (4)
N1—H1N0.8800C21—C261.393 (5)
O1—C71.220 (4)C22—C231.382 (5)
C1—C21.372 (5)C22—H220.9500
C1—C61.393 (5)C23—C241.387 (5)
C1—H10.9500C23—H230.9500
N2—C71.383 (4)C24—C251.381 (5)
N2—C81.403 (4)C24—H240.9500
N2—H2N0.8800C25—C261.382 (5)
O2—C131.388 (3)C25—H250.9500
O2—C141.392 (3)C26—H260.9500
C2—C31.396 (4)O4—C271.220 (4)
C2—H20.9500N5—C271.324 (4)
O3—C201.221 (3)N5—C291.450 (4)
N3—C201.375 (4)N5—C281.452 (5)
N3—C191.407 (4)C27—H270.9500
N3—H3N0.8800C28—H28A0.9800
C3—C41.390 (4)C28—H28B0.9800
C3—H30.9500C28—H28C0.9800
N4—C201.357 (4)C29—H29A0.9800
N4—C211.410 (4)C29—H29B0.9800
N4—H4N0.8800C29—H29C0.9800
C4—C51.403 (4)O5—C301.245 (8)
C5—C61.380 (5)N6—C301.383 (10)
C5—H50.9500N6—C311.454 (11)
C6—H60.9500N6—C321.469 (9)
C8—C91.389 (4)C30—H300.9500
C8—C131.402 (4)C31—H31A0.9800
C9—C101.385 (5)C31—H31B0.9800
C9—H90.9500C31—H31C0.9800
C10—C111.376 (5)C32—H32A0.9800
C10—H100.9500C32—H32B0.9800
C11—C121.389 (4)C32—H32C0.9800
C11—H110.9500O5'—C30'1.208 (8)
C12—C131.385 (4)N6'—C30'1.301 (10)
C12—H120.9500N6'—C32'1.372 (9)
C14—C151.383 (4)N6'—C31'1.420 (10)
C14—C191.402 (4)C30'—H30'0.9500
C15—C161.385 (4)C31'—H31D0.9800
C15—H150.9500C31'—H31E0.9800
C16—C171.386 (5)C31'—H31F0.9800
C16—H160.9500C32'—H32D0.9800
C17—C181.389 (5)C32'—H32E0.9800
C17—H170.9500C32'—H32F0.9800
C18—C191.393 (4)
C7—N1—C4127.7 (2)C18—C19—C14118.6 (3)
C7—N1—H1N116.1C18—C19—N3124.3 (3)
C4—N1—H1N116.1C14—C19—N3117.1 (2)
C2—C1—C6119.3 (3)O3—C20—N4123.8 (3)
C2—C1—H1120.3O3—C20—N3123.7 (3)
C6—C1—H1120.3N4—C20—N3112.5 (2)
C7—N2—C8127.3 (2)C22—C21—C26119.5 (3)
C7—N2—H2N116.4C22—C21—N4122.0 (3)
C8—N2—H2N116.4C26—C21—N4118.5 (3)
C13—O2—C14120.3 (2)C23—C22—C21119.6 (3)
C1—C2—C3121.3 (3)C23—C22—H22120.2
C1—C2—H2119.3C21—C22—H22120.2
C3—C2—H2119.3C22—C23—C24121.3 (3)
C20—N3—C19126.7 (2)C22—C23—H23119.3
C20—N3—H3N116.6C24—C23—H23119.3
C19—N3—H3N116.6C25—C24—C23118.6 (3)
C4—C3—C2119.6 (3)C25—C24—H24120.7
C4—C3—H3120.2C23—C24—H24120.7
C2—C3—H3120.2C24—C25—C26121.1 (3)
C20—N4—C21126.2 (2)C24—C25—H25119.5
C20—N4—H4N116.9C26—C25—H25119.5
C21—N4—H4N116.9C25—C26—C21119.9 (3)
C3—C4—C5118.9 (3)C25—C26—H26120.0
C3—C4—N1124.6 (3)C21—C26—H26120.0
C5—C4—N1116.5 (3)C27—N5—C29122.2 (3)
C6—C5—C4120.7 (3)C27—N5—C28120.8 (3)
C6—C5—H5119.6C29—N5—C28116.9 (3)
C4—C5—H5119.6O4—C27—N5125.4 (3)
C5—C6—C1120.1 (3)O4—C27—H27117.3
C5—C6—H6120.0N5—C27—H27117.3
C1—C6—H6120.0N5—C28—H28A109.5
O1—C7—N1124.9 (3)N5—C28—H28B109.5
O1—C7—N2123.4 (3)H28A—C28—H28B109.5
N1—C7—N2111.7 (2)N5—C28—H28C109.5
C9—C8—C13117.9 (3)H28A—C28—H28C109.5
C9—C8—N2125.1 (3)H28B—C28—H28C109.5
C13—C8—N2117.0 (2)N5—C29—H29A109.5
C10—C9—C8120.4 (3)N5—C29—H29B109.5
C10—C9—H9119.8H29A—C29—H29B109.5
C8—C9—H9119.8N5—C29—H29C109.5
C11—C10—C9121.2 (3)H29A—C29—H29C109.5
C11—C10—H10119.4H29B—C29—H29C109.5
C9—C10—H10119.4C30—N6—C31114.9 (7)
C10—C11—C12119.3 (3)C30—N6—C32139.8 (8)
C10—C11—H11120.4C31—N6—C32105.2 (7)
C12—C11—H11120.4O5—C30—N6120.3 (7)
C13—C12—C11119.7 (3)O5—C30—H30119.8
C13—C12—H12120.2N6—C30—H30119.8
C11—C12—H12120.2C30'—N6'—C32'134.2 (8)
C12—C13—O2123.9 (2)C30'—N6'—C31'125.3 (7)
C12—C13—C8121.4 (3)C32'—N6'—C31'100.4 (7)
O2—C13—C8114.7 (2)O5'—C30'—N6'127.0 (8)
C15—C14—O2122.5 (3)O5'—C30'—H30'116.5
C15—C14—C19121.3 (3)N6'—C30'—H30'116.5
O2—C14—C19116.1 (2)N6'—C31'—H31D109.5
C14—C15—C16119.6 (3)N6'—C31'—H31E109.5
C14—C15—H15120.2H31D—C31'—H31E109.5
C16—C15—H15120.2N6'—C31'—H31F109.5
C15—C16—C17119.7 (3)H31D—C31'—H31F109.5
C15—C16—H16120.1H31E—C31'—H31F109.5
C17—C16—H16120.1N6'—C32'—H32D109.5
C16—C17—C18121.0 (3)N6'—C32'—H32E109.5
C16—C17—H17119.5H32D—C32'—H32E109.5
C18—C17—H17119.5N6'—C32'—H32F109.5
C17—C18—C19119.8 (3)H32D—C32'—H32F109.5
C17—C18—H18120.1H32E—C32'—H32F109.5
C19—C18—H18120.1
C6—C1—C2—C30.5 (6)C19—C14—C15—C161.8 (5)
C1—C2—C3—C4−0.5 (5)C14—C15—C16—C17−1.2 (5)
C2—C3—C4—C50.0 (5)C15—C16—C17—C18−0.1 (5)
C2—C3—C4—N1−179.6 (3)C16—C17—C18—C190.7 (5)
C7—N1—C4—C30.2 (5)C17—C18—C19—C14−0.1 (4)
C7—N1—C4—C5−179.4 (3)C17—C18—C19—N3179.3 (3)
C3—C4—C5—C60.6 (5)C15—C14—C19—C18−1.1 (4)
N1—C4—C5—C6−179.8 (3)O2—C14—C19—C18−176.3 (3)
C4—C5—C6—C1−0.6 (6)C15—C14—C19—N3179.4 (3)
C2—C1—C6—C50.0 (6)O2—C14—C19—N34.3 (4)
C4—N1—C7—O1−4.1 (6)C20—N3—C19—C1820.4 (5)
C4—N1—C7—N2176.4 (3)C20—N3—C19—C14−160.2 (3)
C8—N2—C7—O1−3.1 (5)C21—N4—C20—O3−0.4 (6)
C8—N2—C7—N1176.4 (3)C21—N4—C20—N3179.9 (3)
C7—N2—C8—C93.0 (5)C19—N3—C20—O3−1.3 (5)
C7—N2—C8—C13−176.7 (3)C19—N3—C20—N4178.4 (3)
C13—C8—C9—C10−0.2 (5)C20—N4—C21—C22−36.4 (5)
N2—C8—C9—C10−179.9 (3)C20—N4—C21—C26144.9 (3)
C8—C9—C10—C110.0 (5)C26—C21—C22—C23−0.1 (5)
C9—C10—C11—C120.6 (5)N4—C21—C22—C23−178.8 (3)
C10—C11—C12—C13−1.0 (5)C21—C22—C23—C240.2 (5)
C11—C12—C13—O2178.6 (3)C22—C23—C24—C25−0.2 (5)
C11—C12—C13—C80.8 (5)C23—C24—C25—C260.2 (5)
C14—O2—C13—C1215.8 (4)C24—C25—C26—C21−0.1 (5)
C14—O2—C13—C8−166.3 (3)C22—C21—C26—C250.0 (5)
C9—C8—C13—C12−0.2 (4)N4—C21—C26—C25178.8 (3)
N2—C8—C13—C12179.5 (3)C29—N5—C27—O4−176.1 (4)
C9—C8—C13—O2−178.2 (3)C28—N5—C27—O41.2 (6)
N2—C8—C13—O21.6 (4)C31—N6—C30—O5−2.7 (13)
C13—O2—C14—C1554.7 (4)C32—N6—C30—O5−178.0 (11)
C13—O2—C14—C19−130.2 (3)C32'—N6'—C30'—O5'−176.1 (11)
O2—C14—C15—C16176.6 (3)C31'—N6'—C30'—O5'−0.2 (16)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O40.881.992.847 (4)163
N2—H2N···O40.882.172.977 (4)153
N3—H3N···O5i0.882.032.809 (8)147
N3—H3N···O5'i0.882.142.935 (7)150
N4—H4N···O5'i0.881.922.765 (8)161
N4—H4N···O5i0.882.403.101 (8)137
C24—H24···O3ii0.952.683.573 (5)157
C32—H32B···O3iii0.982.673.455 (11)138
C31—H31A···Cg10.982.533.440 (4)154

Symmetry codes: (i) x, y+1, z; (ii) −x+1, y+1/2, −z; (iii) x−1, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2678).

References

  • Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst.37, 335–338.
  • Ashton, P. R., Hoerner, B., Kocian, O., Menzer, S., White, A. J. P., Stoddart, J. F. & Williams, D. J. (1996). Synthesis, pp. 930–940.
  • Bensemann, I., Gdaniec, M., Lakomecka, K., Milewska, M. J. & Polonski, T. (2003). Org. Biomol. Chem.1, 1425–1435. [PubMed]
  • Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [PubMed]
  • Dannecker, W., Kopf, J. & Rust, H. (1979). Cryst. Struct. Commun.8, 429–432.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Galkin, V. I., Bakhtiyarova, Yu. V., Sagdieva, R. I., Galkina, I. V., Cherkasov, R. A., Krivolapov, D. B., Gubaidullin, A. T. & Litvinov, I. A. (2006). Russ. J. Gen. Chem.76, 430–436.
  • Gunnlaugsson, T., Davis, A. P., Hussey, G. M., Tierney, J. & Glynn, M. (2004). Org. Biomol. Chem.2, 1856–1863. [PubMed]
  • Kim, K. S. & Kim, H.-S. (2005). Tetrahedron, 61, 12366–12370.
  • Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography