PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): o304.
Published online 2007 December 18. doi:  10.1107/S1600536807066561
PMCID: PMC2915352

Nicotinohydrazide

Abstract

In the title compound (alternative name: pyridine-3-carbo­hydrazide, C6H7N3O), the asymmetric unit contains a single mol­ecule. In contrast with nicotinic acid and nicotinamide, the C=O bond is found to be oriented cis with respect to the Cipso C N fragment in the pyridine ring. The pyridine ring and the hydrazide group make a dihedral angle of 34.0 (2)°. In the crystal structure, mol­ecules are associated into a three-dimensional framework by a combination of N—H(...)N and three-centre N—H(...)O hydrogen bonds.

Related literature

The structure of the same compound has been determined independently and is reported in the preceding paper (Priebe et al., 2008 [triangle]). For related literature, see: Bhat et al. (1974 [triangle]); Kutoglu & Scheringer (1983 [triangle]); Miwa et al. (1999 [triangle]); Portalone (2007 [triangle]); Portalone & Colapietro (2007 [triangle]). For computation of ring patterns formed by hydrogen bonds in crystal structures, see: Etter et al. (1990 [triangle]); Bernstein et al. (1995 [triangle]); Motherwell et al. (1999 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o304-scheme1.jpg

Experimental

Crystal data

  • C6H7N3O
  • M r = 137.15
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o304-efi1.jpg
  • a = 3.8727 (10) Å
  • b = 10.481 (2) Å
  • c = 15.855 (2) Å
  • V = 643.6 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 298 (2) K
  • 0.15 × 0.05 × 0.05 mm

Data collection

  • Oxford Diffraction Xcalibur S CCD diffractometer
  • Absorption correction: none
  • 3076 measured reflections
  • 1139 independent reflections
  • 695 reflections with I > 2σ(I)
  • R int = 0.019

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.131
  • S = 1.19
  • 1139 reflections
  • 93 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.22 e Å−3
  • Δρmin = −0.22 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2006 [triangle]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2006 [triangle]); program(s) used to solve structure: SIR97 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807066561/bh2149sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807066561/bh2149Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank MIUR (Rome) for 2006 financial support of the project ‘X-ray diffractometry and spectrometry’.

supplementary crystallographic information

Comment

As a part of a more general study of multiple-hydrogen-bonding N -heterocyclic systems as potential supramolecular reagents (Portalone, 2007; Portalone & Colapietro, 2007), we report here the structure of the title compound (I, Fig. 1). The asymmetric unit of (I) comprises one independent molecule, and the angle between the mean planes of the acid hydrazine group and the pyridine ring is 34.0 (2)°. Noteworthy, in contrast to nicotinic acid (Kutoglu & Scheringer, 1983) and nicotinamide (Miwa et al., 1999), the C?O bond is oriented cis with respect to the C2—C3 bond.

Analysis of the crystal packing of (I) shows that, at variance with isonicotinohydrazide (Bhat et al., 1974), for which the crystal structure is stabilized by a network of N—H···N hydrogen bonds, in compound (I) two of the three independent N—H bonds act as donor in three-centre N—H···O systems (Table 1, entries 2 and 3), and the third is involved in a N—H···N interaction (Table 1, entry 1). These hydrogen bonds delineate patterns in which rings are the most prominent features (Fig. 2). Two small rings with descriptor R22(10) (Etter et al., 1990; Bernstein et al., 1995; Motherwell et al., 1999) are then formed by NH2 functionalities and two symmetry-related carbonyl O atoms [O1ii and O1iii, symmetry codes: (ii) x + 1/2, -y + 1/2, -z; (iii) x - 1/2, -y + 1/2, -z]. The formation of the N—H···N hydrogen bonds between the N—H groups and the pyridyl N atoms [N1i, symmetry code: (i) -x + 1, y + 1/2, -z + 1/2] leads to the formation of larger R66(30) rings.

Experimental

1 mmol of the title compound (purchased from Sigma-Aldrich at 97% purity) was dissolved in a mixture benzene/ethanol (8:1, 50 ml) and refluxed for 1 h. After cooling the solution to ambient temperature, a colorless precipitate was formed, which was collected by filtration and washed with benzene/ethanol (8:1). Crystals suitable for single-crystal X-ray diffraction were grown from a benzene solution, by slow evaporation of the solvent.

Refinement

Diffraction from the very small crystals was weak; nevertheless, these data gave good structural results, albeit with a lower data/parameter ratio than usual. All H atoms were detected in a difference map, after the first cycles of the isotropic refinement. The final full-matrix least-squares refinement was carried out on F2 with anisotropic non-H atoms and isotropic H atoms. C-bonded H atoms were positioned with idealized geometry and refined using a riding model, with C—H bond lengths fixed to 0.95 Å and Uiso(H) = 1.2Ueq(carrier C). H atoms bonded to N atoms were refined freely with Uiso(H) = 1.2Ueq(carrier N). In the absence of significant anomalous scattering in this light-atom study, measured Friedel pairs were merged.

Figures

Fig. 1.
The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
Crystal packing diagram for (I) viewed down [100]. All atoms are shown as small spheres of arbitrary radii. For the sake of clarity, H atoms not involved in hydrogen bonding have been omitted. Hydrogen bonding is indicated by dashed lines.

Crystal data

C6H7N3OF000 = 288
Mr = 137.15Dx = 1.415 Mg m3
Orthorhombic, P212121Mo Kα radiation λ = 0.71069 Å
Hall symbol: P 2ac 2abCell parameters from 6060 reflections
a = 3.8727 (10) Åθ = 2.3–30.0º
b = 10.481 (2) ŵ = 0.10 mm1
c = 15.855 (2) ÅT = 298 (2) K
V = 643.6 (2) Å3Plate, colourless
Z = 40.15 × 0.05 × 0.05 mm

Data collection

Oxford Diffraction Xcalibur S CCD diffractometer1139 independent reflections
Radiation source: Enhance (Mo) X-ray source695 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.019
Detector resolution: 16.0696 pixels mm-1θmax = 30.0º
T = 298(2) Kθmin = 2.3º
ω and [var phi] scansh = −5→5
Absorption correction: nonek = −14→14
3076 measured reflectionsl = −22→22

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.131  w = 1/[σ2(Fo2) + (0.022P)2 + 0.3733P] where P = (Fo2 + 2Fc2)/3
S = 1.19(Δ/σ)max < 0.001
1139 reflectionsΔρmax = 0.22 e Å3
93 parametersΔρmin = −0.22 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O11.0228 (9)0.1920 (2)0.10123 (15)0.0690 (8)
N10.4952 (10)0.1249 (3)0.32513 (17)0.0622 (8)
N20.8838 (10)0.4009 (3)0.10818 (16)0.0613 (9)
H210.777 (5)0.464 (3)0.1359 (12)0.074*
N30.9984 (11)0.4321 (3)0.02617 (17)0.0670 (9)
H311.210 (6)0.4151 (6)0.0228 (2)0.080*
H320.889 (3)0.3722 (18)−0.0149 (13)0.080*
C20.6160 (10)0.1529 (3)0.2485 (2)0.0565 (9)
H20.59440.09020.20560.068*
C30.7709 (10)0.2678 (3)0.22785 (19)0.0517 (8)
C40.7961 (10)0.3597 (3)0.2905 (2)0.0574 (9)
H40.89540.44060.27860.069*
C50.6755 (12)0.3321 (3)0.3700 (2)0.0648 (11)
H50.69310.39320.41400.078*
C60.5291 (13)0.2149 (4)0.3845 (2)0.0673 (10)
H60.44740.19660.43970.081*
C70.9030 (11)0.2833 (3)0.14019 (19)0.0545 (8)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.089 (2)0.0590 (14)0.0593 (13)0.0139 (16)0.0077 (16)−0.0061 (11)
N10.075 (2)0.0528 (15)0.0586 (15)−0.0012 (19)0.0015 (17)0.0083 (13)
N20.083 (2)0.0536 (15)0.0468 (13)0.0037 (17)0.0062 (16)0.0023 (12)
N30.083 (2)0.0649 (17)0.0526 (14)−0.004 (2)0.0038 (18)0.0066 (13)
C20.071 (2)0.0457 (15)0.0528 (16)0.0009 (18)−0.0027 (18)0.0009 (13)
C30.062 (2)0.0440 (14)0.0496 (15)0.0019 (17)−0.0038 (16)−0.0007 (13)
C40.071 (2)0.0475 (16)0.0535 (16)0.0034 (19)−0.0040 (18)−0.0040 (14)
C50.089 (3)0.0574 (18)0.0480 (16)0.004 (2)−0.004 (2)−0.0041 (14)
C60.083 (3)0.066 (2)0.0526 (17)0.005 (2)0.002 (2)0.0060 (16)
C70.063 (2)0.0497 (15)0.0505 (15)0.0023 (18)−0.0032 (17)−0.0014 (14)

Geometric parameters (Å, °)

O1—C71.230 (4)C2—H20.9500
N1—C21.334 (4)C3—C41.387 (4)
N1—C61.340 (4)C3—C71.490 (4)
N2—C71.335 (4)C4—C51.375 (4)
N2—N31.412 (4)C4—H40.9500
N2—H210.89 (4)C5—C61.373 (5)
N3—H310.84 (5)C5—H50.9500
N3—H321.00 (5)C6—H60.9500
C2—C31.385 (4)
C2—N1—C6116.8 (3)C5—C4—C3119.1 (3)
C7—N2—N3123.1 (3)C5—C4—H4120.5
C7—N2—H21121.2C3—C4—H4120.5
N3—N2—H21115.4C6—C5—C4118.9 (3)
N2—N3—H31108.4C6—C5—H5120.6
N2—N3—H32108.7C4—C5—H5120.6
H31—N3—H32103.9N1—C6—C5123.5 (3)
N1—C2—C3124.0 (3)N1—C6—H6118.2
N1—C2—H2118.0C5—C6—H6118.2
C3—C2—H2118.0O1—C7—N2123.2 (3)
C2—C3—C4117.7 (3)O1—C7—C3120.9 (3)
C2—C3—C7117.6 (3)N2—C7—C3115.8 (3)
C4—C3—C7124.6 (3)
C6—N1—C2—C30.0 (6)C4—C5—C6—N1−0.3 (7)
N1—C2—C3—C4−1.1 (6)N3—N2—C7—O10.2 (7)
N1—C2—C3—C7178.1 (4)N3—N2—C7—C3179.8 (4)
C2—C3—C4—C51.5 (6)C2—C3—C7—O1−33.7 (6)
C7—C3—C4—C5−177.6 (4)C4—C3—C7—O1145.5 (4)
C3—C4—C5—C6−0.9 (6)C2—C3—C7—N2146.7 (4)
C2—N1—C6—C50.7 (7)C4—C3—C7—N2−34.2 (6)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H21···N1i0.89 (4)2.09 (4)2.964 (4)168 (4)
N3—H31···O1ii0.84 (5)2.57 (5)3.146 (4)127 (4)
N3—H32···O1iii1.00 (5)2.08 (5)3.027 (4)157 (4)

Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) x+1/2, −y+1/2, −z; (iii) x−1/2, −y+1/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2149).

References

  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bhat, T. N., Singh, T. P. & Vijayan, M. (1974). Acta Cryst. B30, 2921–2922.
  • Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Kutoglu, A. & Scheringer, C. (1983). Acta Cryst. C39, 232–234.
  • Miwa, Y., Mizuno, T., Tsuchida, K., Taga, T. & Iwata, Y. (1999). Acta Cryst. B55, 78–84. [PubMed]
  • Motherwell, W. D. S., Shields, G. P. & Allen, F. H. (1999). Acta Cryst. B55, 1044–1056. [PubMed]
  • Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED Versions 1.171.32.3. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
  • Portalone, G. (2007). Acta Cryst. E63, o3232.
  • Portalone, G. & Colapietro, M. (2007). Acta Cryst. C63, o655–o658. [PubMed]
  • Priebe, J. P., Mello, R. S., Nome, F. & Bortoluzzi, A. J. (2008). Acta Cryst. E64, o302–o303. [PMC free article] [PubMed]
  • Sheldrick, G. M. (1997). SHELXL97 University of Göttingen, Germany. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography