PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): o296.
Published online 2007 December 18. doi:  10.1107/S160053680706093X
PMCID: PMC2915346

Methyl 2-(1,3-dioxoisoindolin-2-yl)acrylate

Abstract

In the title compound, C12H9NO4, an important dehydro­amino acid, the acrylate C=C double bond is not parallel to the adjacent carbonyl group and an s-trans configuration is also observed.

Related literature

For related literature, see: Cativiela et al. (2000 [triangle]); Clausen et al. (2002 [triangle]); Schmidt et al. (1988 [triangle]); Trost & Dake, (1997 [triangle]); Wirth (1997 [triangle]); Osborn et al. (1966 [triangle]). For related structures, see: Ajò et al. (1984 [triangle]; 1979 [triangle]); Busetti et al. (1984 [triangle]; 1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o296-scheme1.jpg

Experimental

Crystal data

  • C12H9NO4
  • M r = 231.20
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o296-efi1.jpg
  • a = 6.5179 (3) Å
  • b = 7.4817 (4) Å
  • c = 11.7322 (6) Å
  • α = 80.954 (2)°
  • β = 78.866 (2)°
  • γ = 76.723 (2)°
  • V = 542.52 (5) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 294 (2) K
  • 0.20 × 0.18 × 0.15 mm

Data collection

  • Bruker APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.979, T max = 0.984
  • 2932 measured reflections
  • 1984 independent reflections
  • 1497 reflections with I > 2σ(I)
  • R int = 0.016

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.114
  • S = 1.04
  • 1984 reflections
  • 156 parameters
  • H-atom parameters constrained
  • Δρmax = 0.18 e Å−3
  • Δρmin = −0.14 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: SHELXTL (Bruker, 2000 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680706093X/hg2354sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680706093X/hg2354Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We acknowledge financial support from the Research Fund for the new faculty at the State Key Laboratory of Applied Organic Chemstry.

supplementary crystallographic information

Comment

Optical active nonproteinogenic amino acids (Clausen et al., 2002) are valuable compounds of high interest not only due to their remarkable pharmacological and biological activities but also for their role as a topographic probe for investigation of bioactive conformations of peptides and the mechanisms of enzyme reactions. Consequently, efficient and convenient methods for the preparation of optically pure enantiomers of amino acids are be general interest (Cativiela & Diaz-de-Villegas, 2000; Wirth, 1997). It is noteworthy that extraordinary progress has been made in the asymmetric hydrogenation of dehydroamino acids (Osborn et al., 1966; Schmidt et al., 1988), which serve as important precursors of saturated ones.

The title compound belong to one of dehydroamino acids mentioned above. Its molecular structure is shown in Fig.1 and can be prepared conveniently through nucleophilic addition of phthalimide to propiolate according to the precedent procedure (Trost & Dake, 1997). The exceptionally large difference (Δ δ= 0.68 p.p.m.) between the chemical shifts of the two protons (Ha and Hb) on the double bond suggest that the chemical environments (e.g., deshielding effect of the phthalimidyl group) of them are considerably different. As shown in Fig. 1, An s-trans conformation is observed, which was discussed in detail other groups previously (Ajò et al., 1984; Ajò et al., 1979; Busetti, et al., 1984; Busetti, et al., 1986). The double bond (C9–C12) is not parallel with the carbonyl (C10–O1) group with the C12-C9_C10-O1 torsion angle -142.3 (2)° while the double bond (C9–C12) lies out of the plane of the phthalimidyl group with the torsion angle C7—N1—C9—C12 44.7 (3)°.

Experimental

To a solution of phthalimide (740 mg, 5 mmol), triphenylphosphine (130 mg, 0.5 mmol) and sodium acetate (210 mg, 2.5 mmol) in 10 ml of toluene at 378 K were added sequentially acetic acid (0.14 ml, 2.5 mmol) and methyl propiolate (420 mg, 5 mmol). After 18 h, the reaction mixture was cooled and directly subjected to chromatograph on silica gel (Hexane: EtOAc = 2: 1) to yield 928 mg (80% yield) of the title compound. 1H NMR (200 MHz, CDCl3): δ = 7.94–7.90 (m, 2H), 7.83–7.77 (m, 2H), 6.69 (s, 1H), 6.01 (s, 1H), 3.82 (s, 3H) p.p.m.; 13C NMR (50 MHz, CDCl3): δ = 166.2, 162.6, 134.2 (2 C), 131.7, 129.0, 127.9 (2 C), 123.8 (2 C), 52.7 p.p.m.. Single crystals suitable for X-ray determination were obtained by slow evaporation of a EtOAc solution over a period of several days.

Refinement

All H atoms were placed geometrically (C—H values were set to 0.96 and 0.93 Å for atoms CH3, CH2, and CH (phenyl), respectively) and refined with a riding model, with Uiso(H) = 1.2 or 1.5 times Ueq(C).

Figures

Fig. 1.
The independent components of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Crystal data

C12H9NO4Z = 2
Mr = 231.20F000 = 240
Triclinic, P1Dx = 1.415 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 6.5179 (3) ÅCell parameters from 1079 reflections
b = 7.4817 (4) Åθ = 2.8–23.7º
c = 11.7322 (6) ŵ = 0.11 mm1
α = 80.954 (2)ºT = 294 (2) K
β = 78.866 (2)ºBlock, colorless
γ = 76.723 (2)º0.20 × 0.18 × 0.15 mm
V = 542.52 (5) Å3

Data collection

Bruker APEX CCD area-detector diffractometer1984 independent reflections
Radiation source: fine-focus sealed tube1497 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.016
T = 294(2) Kθmax = 25.5º
phi and ω scansθmin = 1.8º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −6→7
Tmin = 0.979, Tmax = 0.984k = −9→8
2932 measured reflectionsl = −14→14

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.041  w = 1/[σ2(Fo2) + (0.0506P)2 + 0.1136P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.114(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.18 e Å3
1984 reflectionsΔρmin = −0.14 e Å3
156 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.044 (7)
Secondary atom site location: difference Fourier map

Special details

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C50.3823 (3)0.8001 (2)0.03710 (15)0.0475 (4)
C60.5949 (3)0.7126 (2)0.02643 (15)0.0471 (4)
C10.7069 (3)0.6511 (3)−0.07723 (18)0.0594 (5)
H10.85020.5927−0.08410.071*
C20.5971 (4)0.6799 (3)−0.17070 (18)0.0667 (6)
H20.66770.6396−0.24180.080*
C40.2737 (3)0.8285 (3)−0.05580 (18)0.0618 (5)
H40.13030.8869−0.04890.074*
C30.3854 (4)0.7671 (3)−0.15998 (18)0.0673 (6)
H30.31570.7852−0.22420.081*
C70.6660 (3)0.6964 (3)0.14049 (16)0.0503 (5)
C80.3091 (3)0.8473 (2)0.15854 (16)0.0485 (4)
N10.4864 (2)0.7786 (2)0.21650 (12)0.0483 (4)
C90.4784 (3)0.7876 (3)0.33739 (16)0.0512 (5)
C100.2984 (3)0.7159 (3)0.41433 (16)0.0560 (5)
C110.0631 (4)0.7296 (4)0.59378 (18)0.0740 (7)
H11A−0.04730.72130.55250.111*
H11B0.00540.81400.65130.111*
H11C0.11820.60970.63180.111*
O20.2339 (2)0.7960 (2)0.51181 (11)0.0633 (4)
O10.2230 (3)0.5971 (3)0.39155 (13)0.0908 (6)
O40.1388 (2)0.9302 (2)0.20287 (13)0.0667 (4)
O30.8377 (2)0.6270 (2)0.16799 (13)0.0735 (5)
C120.6314 (3)0.8332 (3)0.3783 (2)0.0702 (6)
H12A0.75110.86120.32740.084*
H12B0.61980.83740.45820.084*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C50.0503 (10)0.0393 (9)0.0514 (10)−0.0052 (8)−0.0077 (8)−0.0076 (8)
C60.0462 (10)0.0416 (10)0.0507 (10)−0.0090 (8)−0.0008 (8)−0.0063 (8)
C10.0592 (12)0.0547 (12)0.0595 (12)−0.0115 (9)0.0063 (10)−0.0126 (9)
C20.0907 (17)0.0596 (13)0.0482 (12)−0.0221 (12)0.0054 (11)−0.0126 (9)
C40.0660 (13)0.0545 (12)0.0644 (13)−0.0011 (10)−0.0197 (10)−0.0114 (10)
C30.0923 (17)0.0585 (13)0.0547 (12)−0.0146 (12)−0.0202 (11)−0.0083 (10)
C70.0414 (10)0.0476 (10)0.0584 (11)−0.0055 (8)−0.0031 (8)−0.0081 (8)
C80.0426 (10)0.0459 (10)0.0554 (11)−0.0051 (8)−0.0056 (8)−0.0103 (8)
N10.0416 (8)0.0536 (9)0.0472 (9)−0.0035 (7)−0.0052 (7)−0.0102 (7)
C90.0530 (11)0.0514 (11)0.0500 (11)−0.0085 (8)−0.0091 (8)−0.0102 (8)
C100.0640 (12)0.0582 (12)0.0486 (11)−0.0144 (10)−0.0094 (9)−0.0116 (9)
C110.0720 (14)0.1010 (19)0.0505 (12)−0.0271 (13)0.0016 (10)−0.0143 (11)
O20.0649 (9)0.0775 (10)0.0517 (8)−0.0216 (7)−0.0003 (6)−0.0216 (7)
O10.1201 (14)0.1023 (13)0.0672 (10)−0.0674 (12)0.0164 (9)−0.0346 (9)
O40.0460 (8)0.0774 (10)0.0729 (9)0.0052 (7)−0.0061 (7)−0.0287 (7)
O30.0454 (8)0.0910 (11)0.0790 (10)0.0080 (7)−0.0149 (7)−0.0214 (8)
C120.0627 (13)0.0895 (17)0.0636 (13)−0.0207 (12)−0.0133 (10)−0.0135 (11)

Geometric parameters (Å, °)

C5—C41.375 (3)C8—O41.204 (2)
C5—C61.381 (2)C8—N11.408 (2)
C5—C81.483 (3)N1—C91.421 (2)
C6—C11.379 (3)C9—C121.317 (3)
C6—C71.477 (3)C9—C101.485 (3)
C1—C21.385 (3)C10—O11.196 (2)
C1—H10.9300C10—O21.326 (2)
C2—C31.375 (3)C11—O21.449 (2)
C2—H20.9300C11—H11A0.9600
C4—C31.384 (3)C11—H11B0.9600
C4—H40.9300C11—H11C0.9600
C3—H30.9300C12—H12A0.9300
C7—O31.203 (2)C12—H12B0.9300
C7—N11.408 (2)
C4—C5—C6120.94 (17)O4—C8—C5129.91 (17)
C4—C5—C8130.64 (17)N1—C8—C5105.68 (14)
C6—C5—C8108.42 (15)C8—N1—C7111.36 (15)
C1—C6—C5121.66 (18)C8—N1—C9123.22 (15)
C1—C6—C7129.53 (17)C7—N1—C9125.39 (15)
C5—C6—C7108.79 (15)C12—C9—N1122.78 (18)
C6—C1—C2117.30 (19)C12—C9—C10122.85 (18)
C6—C1—H1121.3N1—C9—C10113.85 (15)
C2—C1—H1121.3O1—C10—O2123.94 (19)
C3—C2—C1120.99 (19)O1—C10—C9123.63 (18)
C3—C2—H2119.5O2—C10—C9112.41 (16)
C1—C2—H2119.5O2—C11—H11A109.5
C5—C4—C3117.59 (19)O2—C11—H11B109.5
C5—C4—H4121.2H11A—C11—H11B109.5
C3—C4—H4121.2O2—C11—H11C109.5
C2—C3—C4121.5 (2)H11A—C11—H11C109.5
C2—C3—H3119.2H11B—C11—H11C109.5
C4—C3—H3119.2C10—O2—C11116.00 (16)
O3—C7—N1124.79 (18)C9—C12—H12A120.0
O3—C7—C6129.47 (18)C9—C12—H12B120.0
N1—C7—C6105.73 (15)H12A—C12—H12B120.0
O4—C8—N1124.39 (17)
C4—C5—C6—C10.3 (3)O4—C8—N1—C7−176.95 (18)
C8—C5—C6—C1179.59 (16)C5—C8—N1—C71.5 (2)
C4—C5—C6—C7−178.18 (16)O4—C8—N1—C95.0 (3)
C8—C5—C6—C71.11 (19)C5—C8—N1—C9−176.60 (15)
C5—C6—C1—C2−0.3 (3)O3—C7—N1—C8−179.88 (18)
C7—C6—C1—C2177.86 (18)C6—C7—N1—C8−0.8 (2)
C6—C1—C2—C30.3 (3)O3—C7—N1—C9−1.9 (3)
C6—C5—C4—C3−0.3 (3)C6—C7—N1—C9177.20 (15)
C8—C5—C4—C3−179.41 (19)C8—N1—C9—C12−137.6 (2)
C1—C2—C3—C4−0.3 (3)C7—N1—C9—C1244.7 (3)
C5—C4—C3—C20.3 (3)C8—N1—C9—C1050.6 (2)
C1—C6—C7—O30.5 (3)C7—N1—C9—C10−127.22 (19)
C5—C6—C7—O3178.8 (2)C12—C9—C10—O1−142.1 (2)
C1—C6—C7—N1−178.55 (18)N1—C9—C10—O129.7 (3)
C5—C6—C7—N1−0.22 (19)C12—C9—C10—O236.7 (3)
C4—C5—C8—O4−4.1 (3)N1—C9—C10—O2−151.46 (16)
C6—C5—C8—O4176.72 (19)O1—C10—O2—C110.8 (3)
C4—C5—C8—N1177.62 (18)C9—C10—O2—C11−178.04 (17)
C6—C5—C8—N1−1.57 (19)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2354).

References

  • Ajò, D., Busetti, V., Ottenheijm, H. C. J. & Plate, R. (1984). Acta Cryst. C40, 324–327.
  • Ajò, D., Granozzi, G., Tondello, E., Del Pra, A. & Zanotti, G. (1979). J. Chem. Soc. Perkin Trans. 2, pp. 927–929.
  • Bruker (2000). SMART (Version 5.050), SAINT (Version 6.12) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.
  • Busetti, V., Ajò, D. & Casarin, M. (1984). Acta Cryst. C40, 1245–1248.
  • Busetti, V., Ajò, D. & Vittadini, A. (1986). Acta Cryst. C42, 1178–1181.
  • Cativiela, C. & Diaz-de-Villegas, M. D. (2000). Tetrahedron Asymmetry, 11, 645–732.
  • Clausen, V., Frydenvang, K., Koopmann, R., Jorgensen, L. B., Abbiw, D. K., Ekpe, P. & Jaroszewski, J. W. (2002). J. Nat. Prod.65, 542–547. [PubMed]
  • Osborn, J. A., Jardine, F. H., Young, J. F. & Wilkinson, G. (1966). J. Chem. Soc. A, pp. 1711–1732.
  • Schmidt, U., Lieberknecht, A. & Wild, J. (1988). Synthesis, pp. 159–172.
  • Sheldrick, G. M. (1990). Acta Cryst. A46, 467–473.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (1997). SHELXL97 University of Göttingen, Germany. [PubMed]
  • Trost, B. M. & Dake, G. R. (1997). J. Am. Chem. Soc.119, 7595–7596.
  • Wirth, T. (1997). Angew. Chem. Int. Ed.36, 225–227.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography