PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): o286.
Published online 2007 December 18. doi:  10.1107/S160053680706624X
PMCID: PMC2915338

2-Chloro-N-(2,6-dimethyl­phen­yl)acetamide

Abstract

The crystal structure of the title compound (26DMPCA), C10H12ClNO, is closely related to those of side-chain-unsubstituted N-(2,6-dimethyl­phen­yl)acetamide and side-chain-substituted 2,2,2-trichloro-N-(2,6-dimethyl­phen­yl)­acet­amide and N-(2,6-dimethyl­phen­yl)-2,2,2-trimethylacet­amide, with slightly different bond parameters. The mol­ecules in 26DMPCA are linked into chains through N—H(...)O hydrogen bonding.

Related literature

For related literature, see: Gowda et al. (2004 [triangle], 2007a [triangle],b [triangle],c [triangle],d [triangle],e [triangle],f [triangle]); Gowda, Kozisek et al. (2007 [triangle]); Gowda, Svoboda & Fuess (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o286-scheme1.jpg

Experimental

Crystal data

  • C10H12ClNO
  • M r = 197.66
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o286-efi1.jpg
  • a = 13.766 (3) Å
  • b = 8.911 (2) Å
  • c = 8.538 (2) Å
  • β = 99.00 (1)°
  • V = 1034.4 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.33 mm−1
  • T = 300 (2) K
  • 0.50 × 0.15 × 0.12 mm

Data collection

  • Stoe Stadi-4 diffractometer
  • Absorption correction: numerical (North et al., 1968 [triangle]) T min = 0.952, T max = 0.968
  • 1318 measured reflections
  • 1188 independent reflections
  • 1053 reflections with I > 2σ(I)
  • R int = 0.015
  • θmax = 22.5°
  • 3 standard reflections frequency: 200 min intensity decay: 2%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.104
  • S = 1.10
  • 1188 reflections
  • 123 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.18 e Å−3
  • Δρmin = −0.20 e Å−3

Data collection: STADI4 (Stoe & Cie, 1987 [triangle]); cell refinement: STADI4; data reduction: REDU4 (Stoe & Cie, 1987 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680706624X/lw2052sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680706624X/lw2052Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.

supplementary crystallographic information

Comment

In the present work, the structure of 2-chloro-N-(2,6-dimethylphenyl)- acetamide (26DMPCA) has been determined as part of a study of the effect of ring and side chain substitutions on the solid state geometry of chemically and biologically significant compounds such as acetanilides (Gowda et al., 2007a, 2007b, 2007c, 2007d, 2007e). The structure of 26DMPCA is closely related to the side chain unsubstituted N-(2,6-dimethylphenyl)-acetamide (26DMPA) (Gowda et al., 2007c) and side chain substituted, 2,2,2-trichloro-N-(2,6-dimethylphenyl)-acetamide (26DMPTCA) (Gowda et al., 2007b) and 2,2,2-trimethyl-N- (2,6-dimethylphenyl)-acetamide (26DMPTMA) (Gowda et al., 2007d). The bond parameters in 26DMPCA are similar to those in 26DMPA, 26DMPTCA, 26DMPTMA and other acetanilides (Gowda et al., 2007a, 2007b, 2007c, 2007d, 2007e). The molecules in 26DMPcA are linked into infinite chains through N—H···O hydrogen bonding (Table 1 and Fig.2).

Experimental

The title compound was prepared according to the literature method (Gowda et al., 2004). The purity of the compound was checked by determining its melting point. The compound was further characterized by recording its infrared and NMR spectra (Gowda et al., 2004). Single crystals of the title compound were obtained from a slow evaporation of an ethanolic solution and used for X-ray diffraction studies at room temperature.

Refinement

The H atoms were positioned with idealized geometry using a riding model with C—H = 0.93 Å (CH aromatic) or 0.96 Å (CH3) or 0.97 Å (CH2Cl) and N—H = 0.86 Å with Uiso(H) = 1.2 Ueq(CH or NH) and Uiso(H) = 1.4 Ueq(CH3).

Since the compound was prepared in a project that ended a few years ago, the measurement was performed using the theta range that was routinely applied at that time. In view of the fact that the structure is an organic compound, which scatters with minor intensity at high theta values we feel that the presented structural information on this compound is reliable enough in order to unambigiously solve the structure and refine the structure model reliably.

Figures

Fig. 1.
Molecular structure of the title compound showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
Fig. 2.
Molecular packing of the title compound with hydrogen bonding shown as dashed lines.

Crystal data

C10H12ClNOF000 = 416
Mr = 197.66Dx = 1.269 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 40 reflections
a = 13.766 (3) Åθ = 18.0–20.9º
b = 8.911 (2) ŵ = 0.33 mm1
c = 8.538 (2) ÅT = 300 (2) K
β = 99.00 (1)ºNeedle, colourless
V = 1034.4 (4) Å30.50 × 0.15 × 0.12 mm
Z = 4

Data collection

Stoe Stadi-4 diffractometerRint = 0.015
Radiation source: fine-focus sealed tubeθmax = 22.5º
Monochromator: graphiteθmin = 2.7º
T = 300(2) Kh = −14→14
Profile fitted scans 2θ/ω=1/1k = 0→9
Absorption correction: numerical(North et al., 1968)l = 0→9
Tmin = 0.952, Tmax = 0.9683 standard reflections
1318 measured reflections every 200 min
1188 independent reflections intensity decay: 2%
1053 reflections with I > 2σ(I)

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.104  w = 1/[σ2(Fo2) + (0.0457P)2 + 0.4775P] where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
1188 reflectionsΔρmax = 0.18 e Å3
123 parametersΔρmin = −0.20 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.57659 (6)0.28510 (10)0.14255 (11)0.0828 (3)
C20.49079 (17)0.1523 (3)0.1922 (3)0.0513 (6)
H2A0.51640.05160.18450.062*
H2B0.47980.16840.30050.062*
C30.39513 (17)0.1690 (3)0.0802 (3)0.0429 (6)
O40.39022 (12)0.1400 (2)−0.06122 (19)0.0558 (5)
N50.31738 (15)0.2133 (2)0.1451 (3)0.0453 (5)
H5N0.327 (2)0.249 (3)0.240 (4)0.054*
C60.22271 (18)0.2355 (3)0.0519 (3)0.0427 (6)
C70.19078 (19)0.3809 (3)0.0168 (3)0.0523 (6)
C80.0989 (2)0.3999 (3)−0.0760 (3)0.0649 (8)
H80.07530.4963−0.10020.078*
C90.0431 (2)0.2789 (4)−0.1320 (4)0.0708 (9)
H9−0.01760.2935−0.19520.085*
C100.0758 (2)0.1364 (4)−0.0957 (3)0.0646 (8)
H100.03690.0552−0.13420.077*
C110.16630 (19)0.1110 (3)−0.0023 (3)0.0520 (6)
C120.2526 (2)0.5139 (3)0.0770 (4)0.0811 (9)
H12A0.22180.60410.03220.097*
H12B0.31660.50440.04680.097*
H12C0.25880.51810.19050.097*
C130.2003 (2)−0.0464 (3)0.0398 (4)0.0719 (8)
H13A0.2543−0.0711−0.01430.086*
H13B0.1471−0.11520.00830.086*
H13C0.2211−0.05360.15220.086*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0568 (5)0.1009 (7)0.0869 (6)−0.0204 (4)−0.0005 (4)0.0113 (4)
C20.0438 (13)0.0629 (16)0.0463 (13)0.0064 (12)0.0042 (11)0.0048 (11)
C30.0452 (14)0.0458 (14)0.0374 (14)0.0021 (11)0.0058 (10)0.0056 (10)
O40.0506 (10)0.0790 (13)0.0375 (10)0.0091 (9)0.0060 (7)−0.0012 (8)
N50.0404 (12)0.0594 (13)0.0347 (10)0.0028 (9)0.0016 (9)−0.0026 (9)
C60.0374 (14)0.0539 (15)0.0372 (11)0.0012 (11)0.0073 (11)0.0023 (10)
C70.0493 (15)0.0548 (15)0.0522 (14)0.0009 (12)0.0062 (12)0.0040 (12)
C80.0547 (17)0.0666 (18)0.0711 (17)0.0146 (14)0.0022 (14)0.0140 (15)
C90.0447 (17)0.094 (2)0.0687 (18)0.0043 (16)−0.0070 (15)0.0096 (16)
C100.0479 (16)0.076 (2)0.0657 (17)−0.0097 (14)−0.0029 (14)−0.0065 (14)
C110.0483 (15)0.0563 (15)0.0505 (13)−0.0007 (12)0.0053 (12)−0.0026 (12)
C120.085 (2)0.0578 (18)0.096 (2)−0.0039 (16)−0.0008 (18)0.0036 (16)
C130.0662 (19)0.0567 (17)0.091 (2)−0.0056 (14)0.0051 (16)−0.0014 (15)

Geometric parameters (Å, °)

Cl1—C21.770 (3)C8—H80.9300
C2—C31.509 (3)C9—C101.366 (4)
C2—H2A0.9700C9—H90.9300
C2—H2B0.9700C10—C111.389 (4)
C3—O41.227 (3)C10—H100.9300
C3—N51.339 (3)C11—C131.505 (4)
N5—C61.431 (3)C12—H12A0.9600
N5—H5N0.86 (3)C12—H12B0.9600
C6—C71.386 (3)C12—H12C0.9600
C6—C111.391 (3)C13—H13A0.9600
C7—C81.394 (4)C13—H13B0.9600
C7—C121.501 (4)C13—H13C0.9600
C8—C91.367 (4)
C3—C2—Cl1109.33 (17)C10—C9—C8120.4 (3)
C3—C2—H2A109.8C10—C9—H9119.8
Cl1—C2—H2A109.8C8—C9—H9119.8
C3—C2—H2B109.8C9—C10—C11121.1 (3)
Cl1—C2—H2B109.8C9—C10—H10119.5
H2A—C2—H2B108.3C11—C10—H10119.5
O4—C3—N5123.0 (2)C10—C11—C6117.7 (2)
O4—C3—C2120.8 (2)C10—C11—C13120.4 (2)
N5—C3—C2116.2 (2)C6—C11—C13121.9 (2)
C3—N5—C6121.9 (2)C7—C12—H12A109.5
C3—N5—H5N119 (2)C7—C12—H12B109.5
C6—N5—H5N117.6 (19)H12A—C12—H12B109.5
C7—C6—C11122.1 (2)C7—C12—H12C109.5
C7—C6—N5118.7 (2)H12A—C12—H12C109.5
C11—C6—N5119.2 (2)H12B—C12—H12C109.5
C6—C7—C8117.7 (2)C11—C13—H13A109.5
C6—C7—C12121.3 (2)C11—C13—H13B109.5
C8—C7—C12120.9 (3)H13A—C13—H13B109.5
C9—C8—C7120.9 (3)C11—C13—H13C109.5
C9—C8—H8119.5H13A—C13—H13C109.5
C7—C8—H8119.5H13B—C13—H13C109.5
Cl1—C2—C3—O466.1 (3)C6—C7—C8—C9−0.9 (4)
Cl1—C2—C3—N5−115.4 (2)C12—C7—C8—C9179.4 (3)
O4—C3—N5—C6−2.4 (4)C7—C8—C9—C101.0 (5)
C2—C3—N5—C6179.1 (2)C8—C9—C10—C11−0.3 (5)
C3—N5—C6—C7−103.9 (3)C9—C10—C11—C6−0.5 (4)
C3—N5—C6—C1175.3 (3)C9—C10—C11—C13178.5 (3)
C11—C6—C7—C80.0 (4)C7—C6—C11—C100.7 (4)
N5—C6—C7—C8179.2 (2)N5—C6—C11—C10−178.5 (2)
C11—C6—C7—C12179.7 (3)C7—C6—C11—C13−178.4 (3)
N5—C6—C7—C12−1.1 (4)N5—C6—C11—C132.5 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N5—H5N···O4i0.86 (3)2.04 (3)2.866 (3)161 (3)

Symmetry codes: (i) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LW2052).

References

  • Gowda, B. T., Foro, S. & Fuess, H. (2007a). Acta Cryst. E63, o1975–o1976.
  • Gowda, B. T., Foro, S. & Fuess, H. (2007b). Acta Cryst. E63, o2333–o2334.
  • Gowda, B. T., Foro, S. & Fuess, H. (2007c). Acta Cryst. E63, o2335–o2336.
  • Gowda, B. T., Foro, S. & Fuess, H. (2007d). Acta Cryst. E63, o3364.
  • Gowda, B. T., Foro, S. & Fuess, H. (2007e). Acta Cryst. E63, o2343–o2344.
  • Gowda, B. T., Foro, S. & Fuess, H. (2007f). Acta Cryst. E63, o3154.
  • Gowda, B. T., Svoboda, I.. & Fuess, H. (2007). Acta Cryst. E63, o3324.
  • Gowda, B. T., Kozisek, J., Svoboda, I. & Fuess, H. (2007). Z. Naturforsch. Teil A, 62, 91–100.
  • Gowda, B. T., Usha, K. M. & Jyothi, K. (2004). Z. Naturforsch. Teil A, 59, 69–76.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Stoe & Cie (1987). STADI4 and REDU4 Stoe & Cie GmbH, Darmstadt, Germany.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography