PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): o283.
Published online 2007 December 18. doi:  10.1107/S1600536807065920
PMCID: PMC2915336

8-(Biphenyl-4-yl)-8-hydroxy­penta­cyclo­[5.4.0.02,6.03,10.05,9]undecan-11-one ethyl­ene ketal

Abstract

The title compound, C25H24O3, synthesized as a potential chiral catalyst, exhibits a range of C—C bond lengths in the penta­cyclo­undecane cage between 1.5144 (18) and 1.5856 (16) Å. The two benzene rings are not planar with respect to each other, but rather are twisted at a torsion angle of 34.67 (17)°. The mol­ecule has an intra­molecular O—H(...)O inter­action and participates in two C—H(...)O inter­molecular inter­actions to form a one-dimensional chain.

Related literature

For related literature, see: Flippen-Anderson et al. (1991 [triangle]); Linden et al. (2005 [triangle]); Kruger et al. (2005 [triangle], 2006 [triangle]); Boyle et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o283-scheme1.jpg

Experimental

Crystal data

  • C25H24O3
  • M r = 372.44
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o283-efi1.jpg
  • a = 10.2527 (2) Å
  • b = 16.9832 (3) Å
  • c = 10.3650 (2) Å
  • β = 90.5760 (10)°
  • V = 1804.70 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 173 (2) K
  • 0.47 × 0.45 × 0.37 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: none
  • 27563 measured reflections
  • 3904 independent reflections
  • 3358 reflections with I > 2σ(I)
  • R int = 0.037

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.109
  • S = 1.04
  • 3904 reflections
  • 257 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.31 e Å−3
  • Δρmin = −0.24 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT-Plus (Bruker, 1999 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Bruker, 1999 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: Mercury (Macrae et al., 2006 [triangle]) and WinGX (Farrugia, 1999 [triangle]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807065920/gg2055sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807065920/gg2055Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Dr Manuel Fernandes of the Jan Boeyens Structural Chemistry Laboratory at the University of the Witwatersrand for his assistance with the crystallographic data collection. This work was supported by grants from the National Research Foundation (South Africa) (grant No. GUN 2046819), Aspen Pharmacare and the University of KwaZulu-Natal.

supplementary crystallographic information

Comment

The molecule was synthesized as part of an ongoing study into the synthesis of chiral cage ligands for applications in asymmetric catalysis. The title molecule, which exists as a racemic mixture, has the potential to be a very unique ligand once it is resolved into an enantiopure compound.

A number of publications have focused on the molecular geometries of PCU cage derivatives as well as the bond lengths which deviate from the normal value of 1.54 Å (Flippen-Anderson et al., 1991; Linden et al.,2005; Kruger et al., 2005, 2006, Boyle et al., 2007). Certain bonds in the cage skeleton are longer (e.g. C9—C10, 1.5922 Å) while others are significantly shorter (e.g. C1—C11, 1.5106 Å). The molecule (I) consists of a large hydrophobic hydrocarbon skeleton as well as a hydrophilic ketal group and hydroxyl moiety. The two aromatic rings attached to C8 are not planar with respect to each other, but rather twisted at a torsion angle of 34.67 (17)° as expected due to steric factors. Fig. 1 shows the molecular structure and the numbering scheme employed.

The molecule exhibits intramolecular hydrogen bonding (Fig. 2) between the hydroxyl group and the ketal group (O3—H3H···O2). There is no intermolecular hydrogen bonding present in the structure, however a complex network of weak Van der Waals interactions between neighbouring molecules (Fig. 3) results in a layered packing effect with alternating hydrophilic and hydrophobic layers made up of the hydrophobic cage molecules and aromatic moeties, and the hydrophilic hydroxyl and ketal groups, respectively (Fig. 4).

Experimental

A solution of 4-bromobiphenyl in dry THF (3 mol eq) was cooled to -78°C using a dry-ice-acetone bath. Butyllithium solution (15% in hexane, 1.2 mole equivalents relative to bromobiphenyl) was added and the solution stirred for 10 minutes. A solution of pentacyclo-[5.4.0.02,6.03,10.05.,9]-undecane-8,11-dione-mono-ethylene ketal (1 mol eq-up to 1 g scale) in dry THF was added and the solution stirred at -78°C for 1 h then at room temperature overnight. The reaction was quenched by adding water dropwise. The solvent was removed in vacuo. The product was isolated using column chromatography (EtOAc/Hexane, 10:90). The oily product crystallized on standing at room temperature overnight.

Refinement

Non-hydrogen atoms were first refined isotropically followed by anisotropic refinement by full matrix least-squares calculations based on F2 using SHELXTL. Hydrogen atoms were first located in the difference map then positioned geometrically and allowed to ride on their respective parent atoms.

Figures

Fig. 1.
The asymmetric unit showing ellipsoids at the 50% probability level and the numbering scheme employed.
Fig. 2.
Diagram of the intermolecular hydrogen bonding.
Fig. 3.
Diagram of the short intermolecular contacts.
Fig. 4.
Depiction of the molecular packing. Hydrogen atoms have been ommited for clarity

Crystal data

C25H24O3F000 = 792
Mr = 372.44Dx = 1.371 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6796 reflections
a = 10.2527 (2) Åθ = 2.3–28.5º
b = 16.9832 (3) ŵ = 0.09 mm1
c = 10.3650 (2) ÅT = 173 (2) K
β = 90.5760 (10)ºBlock, colourless
V = 1804.70 (6) Å30.47 × 0.45 × 0.37 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer3358 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.037
Monochromator: graphiteθmax = 27.0º
T = 173(2) Kθmin = 2.0º
[var phi] and ω scansh = −13→13
Absorption correction: nonek = −21→21
27563 measured reflectionsl = −13→13
3904 independent reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.109  w = 1/[σ2(Fo2) + (0.0579P)2 + 0.5851P] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3904 reflectionsΔρmax = 0.31 e Å3
257 parametersΔρmin = −0.24 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
H3H0.2134 (18)−0.0511 (11)0.4718 (18)0.045 (5)*
C10.27294 (12)0.04517 (7)0.25422 (12)0.0243 (3)
H10.32410.01680.18700.029*
C20.25040 (13)0.13435 (8)0.22877 (13)0.0286 (3)
H20.28400.15660.14620.034*
C30.10706 (13)0.15304 (8)0.26439 (13)0.0316 (3)
H30.04620.16130.18960.038*
C40.12017 (15)0.22221 (8)0.35620 (15)0.0365 (3)
H4B0.15700.26950.31440.044*
H4A0.03710.23550.39890.044*
C50.21666 (13)0.18202 (7)0.44640 (13)0.0288 (3)
H50.24600.21420.52210.035*
C60.32659 (12)0.15486 (7)0.35544 (12)0.0267 (3)
H60.40500.18950.34800.032*
C70.35006 (11)0.06574 (7)0.38116 (11)0.0224 (2)
H70.44360.04910.38250.027*
C80.27605 (11)0.05050 (7)0.50638 (11)0.0208 (2)
C90.15361 (11)0.10184 (7)0.48020 (12)0.0242 (3)
H90.09560.10530.55700.029*
C100.07520 (12)0.08160 (8)0.35180 (12)0.0268 (3)
H10−0.02040.07470.36610.032*
C110.13428 (12)0.01565 (7)0.27329 (12)0.0252 (3)
C120.08855 (16)−0.06659 (9)0.10563 (14)0.0370 (3)
H12A0.1730−0.07010.06050.044*
H12B0.0177−0.08320.04600.044*
C130.08947 (14)−0.11551 (8)0.22633 (13)0.0321 (3)
H13A0.0026−0.13900.24130.038*
H13B0.1547−0.15830.22070.038*
C140.34966 (11)0.08247 (7)0.62415 (11)0.0215 (2)
C150.47065 (12)0.11841 (8)0.61578 (12)0.0274 (3)
H150.50850.12640.53350.033*
C160.53703 (12)0.14274 (8)0.72545 (12)0.0284 (3)
H160.61960.16750.71680.034*
C170.48648 (12)0.13201 (7)0.84792 (11)0.0234 (3)
C180.36431 (12)0.09680 (7)0.85637 (12)0.0254 (3)
H180.32640.08910.93870.031*
C190.29713 (12)0.07281 (7)0.74651 (12)0.0245 (3)
H190.21360.04930.75490.029*
C200.56860 (11)0.15326 (7)0.96176 (12)0.0237 (3)
C210.65359 (12)0.21726 (8)0.95569 (12)0.0276 (3)
H210.64960.25170.88350.033*
C220.74373 (13)0.23134 (8)1.05342 (13)0.0316 (3)
H220.80270.27421.04670.038*
C230.74797 (13)0.18301 (8)1.16083 (13)0.0319 (3)
H230.81110.19191.22690.038*
C240.66019 (13)0.12197 (8)1.17160 (13)0.0315 (3)
H240.66030.09021.24700.038*
C250.57148 (13)0.10685 (8)1.07246 (12)0.0280 (3)
H250.51200.06431.08030.034*
O10.06660 (10)0.01105 (6)0.15323 (9)0.0329 (2)
O20.12307 (9)−0.06169 (5)0.32656 (8)0.0302 (2)
O30.25380 (9)−0.02990 (5)0.53817 (8)0.0260 (2)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0280 (6)0.0256 (6)0.0193 (6)0.0020 (5)0.0011 (5)0.0009 (5)
C20.0352 (7)0.0264 (6)0.0242 (6)0.0020 (5)0.0004 (5)0.0051 (5)
C30.0322 (7)0.0296 (7)0.0328 (7)0.0073 (5)−0.0071 (5)0.0029 (5)
C40.0398 (7)0.0280 (7)0.0417 (8)0.0105 (6)−0.0041 (6)0.0013 (6)
C50.0344 (7)0.0218 (6)0.0302 (7)0.0045 (5)−0.0013 (5)−0.0027 (5)
C60.0276 (6)0.0238 (6)0.0288 (7)−0.0019 (5)−0.0007 (5)0.0048 (5)
C70.0221 (5)0.0246 (6)0.0205 (6)0.0005 (4)0.0006 (4)0.0010 (4)
C80.0219 (5)0.0207 (5)0.0198 (6)−0.0003 (4)−0.0001 (4)0.0011 (4)
C90.0225 (6)0.0268 (6)0.0232 (6)0.0036 (5)−0.0002 (5)−0.0027 (5)
C100.0227 (6)0.0309 (6)0.0266 (6)0.0032 (5)−0.0036 (5)−0.0017 (5)
C110.0292 (6)0.0264 (6)0.0200 (6)0.0001 (5)−0.0053 (5)0.0012 (5)
C120.0484 (8)0.0357 (7)0.0268 (7)0.0029 (6)−0.0085 (6)−0.0061 (6)
C130.0376 (7)0.0304 (7)0.0281 (7)−0.0008 (5)−0.0038 (5)−0.0082 (5)
C140.0232 (5)0.0208 (5)0.0207 (6)0.0020 (4)−0.0011 (4)0.0002 (4)
C150.0274 (6)0.0339 (7)0.0209 (6)−0.0046 (5)0.0017 (5)0.0014 (5)
C160.0255 (6)0.0347 (7)0.0248 (6)−0.0071 (5)−0.0006 (5)0.0010 (5)
C170.0262 (6)0.0219 (6)0.0221 (6)0.0020 (4)−0.0015 (5)−0.0004 (4)
C180.0272 (6)0.0288 (6)0.0204 (6)0.0007 (5)0.0037 (5)−0.0001 (5)
C190.0216 (5)0.0270 (6)0.0250 (6)−0.0011 (4)0.0013 (5)−0.0003 (5)
C200.0240 (6)0.0252 (6)0.0220 (6)0.0030 (4)0.0003 (5)−0.0030 (5)
C210.0315 (6)0.0279 (6)0.0234 (6)−0.0002 (5)0.0013 (5)−0.0018 (5)
C220.0300 (6)0.0331 (7)0.0317 (7)−0.0038 (5)0.0017 (5)−0.0093 (5)
C230.0294 (6)0.0396 (7)0.0266 (7)0.0066 (5)−0.0054 (5)−0.0118 (5)
C240.0380 (7)0.0339 (7)0.0224 (6)0.0077 (6)−0.0024 (5)−0.0012 (5)
C250.0311 (6)0.0277 (6)0.0252 (6)0.0002 (5)0.0006 (5)−0.0002 (5)
O10.0400 (5)0.0333 (5)0.0252 (5)0.0037 (4)−0.0122 (4)−0.0026 (4)
O20.0414 (5)0.0256 (5)0.0233 (5)−0.0076 (4)−0.0066 (4)−0.0006 (4)
O30.0343 (5)0.0222 (4)0.0214 (4)−0.0040 (3)−0.0041 (4)0.0024 (3)

Geometric parameters (Å, °)

C1—C111.5222 (17)C12—C131.502 (2)
C1—C21.5542 (17)C12—H12A0.9900
C1—C71.5677 (16)C12—H12B0.9900
C1—H11.0000C13—O21.4234 (15)
C2—C31.5517 (18)C13—H13A0.9900
C2—C61.5603 (17)C13—H13B0.9900
C2—H21.0000C14—C151.3860 (17)
C3—C41.5169 (19)C14—C191.3925 (17)
C3—C101.5510 (18)C15—C161.3823 (17)
C3—H31.0000C15—H150.9500
C4—C51.5166 (18)C16—C171.3879 (18)
C4—H4B0.9900C16—H160.9500
C4—H4A0.9900C17—C181.3917 (17)
C5—C61.5470 (18)C17—C201.4871 (16)
C5—C91.5490 (18)C18—C191.3861 (17)
C5—H51.0000C18—H180.9500
C6—C71.5551 (16)C19—H190.9500
C6—H61.0000C20—C251.3921 (18)
C7—C81.5321 (16)C20—C211.3949 (18)
C7—H71.0000C21—C221.3851 (18)
C8—O31.4236 (14)C21—H210.9500
C8—C141.5284 (15)C22—C231.383 (2)
C8—C91.5502 (16)C22—H220.9500
C9—C101.5856 (16)C23—C241.378 (2)
C9—H91.0000C23—H230.9500
C10—C111.5144 (17)C24—C251.3893 (18)
C10—H101.0000C24—H240.9500
C11—O11.4209 (14)C25—H250.9500
C11—O21.4299 (15)O3—H3H0.876 (19)
C12—O11.4265 (17)
C11—C1—C2101.86 (10)C9—C10—H10113.0
C11—C1—C7115.36 (10)O1—C11—O2104.31 (9)
C2—C1—C789.89 (9)O1—C11—C10108.47 (10)
C11—C1—H1115.4O2—C11—C10115.96 (10)
C2—C1—H1115.4O1—C11—C1110.66 (10)
C7—C1—H1115.4O2—C11—C1115.56 (10)
C3—C2—C1107.37 (10)C10—C11—C1101.85 (10)
C3—C2—C6102.79 (10)O1—C12—C13102.88 (11)
C1—C2—C690.14 (9)O1—C12—H12A111.2
C3—C2—H2117.5C13—C12—H12A111.2
C1—C2—H2117.5O1—C12—H12B111.2
C6—C2—H2117.5C13—C12—H12B111.2
C4—C3—C10104.90 (11)H12A—C12—H12B109.1
C4—C3—C2103.27 (11)O2—C13—C12104.61 (11)
C10—C3—C2100.63 (10)O2—C13—H13A110.8
C4—C3—H3115.4C12—C13—H13A110.8
C10—C3—H3115.4O2—C13—H13B110.8
C2—C3—H3115.4C12—C13—H13B110.8
C5—C4—C395.24 (10)H13A—C13—H13B108.9
C5—C4—H4B112.7C15—C14—C19117.61 (11)
C3—C4—H4B112.7C15—C14—C8122.78 (11)
C5—C4—H4A112.7C19—C14—C8119.55 (10)
C3—C4—H4A112.7C16—C15—C14120.91 (12)
H4B—C4—H4A110.2C16—C15—H15119.5
C4—C5—C6103.49 (11)C14—C15—H15119.5
C4—C5—C9105.31 (11)C15—C16—C17121.85 (12)
C6—C5—C9100.60 (9)C15—C16—H16119.1
C4—C5—H5115.2C17—C16—H16119.1
C6—C5—H5115.2C16—C17—C18117.30 (11)
C9—C5—H5115.2C16—C17—C20118.70 (11)
C5—C6—C7107.35 (10)C18—C17—C20123.85 (11)
C5—C6—C2102.58 (10)C19—C18—C17120.98 (11)
C7—C6—C290.13 (9)C19—C18—H18119.5
C5—C6—H6117.6C17—C18—H18119.5
C7—C6—H6117.6C18—C19—C14121.34 (11)
C2—C6—H6117.6C18—C19—H19119.3
C8—C7—C6103.45 (9)C14—C19—H19119.3
C8—C7—C1115.05 (9)C25—C20—C21118.05 (11)
C6—C7—C189.83 (9)C25—C20—C17121.59 (11)
C8—C7—H7115.1C21—C20—C17120.14 (11)
C6—C7—H7115.1C22—C21—C20120.93 (12)
C1—C7—H7115.1C22—C21—H21119.5
O3—C8—C14103.59 (9)C20—C21—H21119.5
O3—C8—C7116.11 (10)C23—C22—C21120.09 (12)
C14—C8—C7111.83 (9)C23—C22—H22120.0
O3—C8—C9116.65 (9)C21—C22—H22120.0
C14—C8—C9109.42 (9)C24—C23—C22119.75 (12)
C7—C8—C999.43 (9)C24—C23—H23120.1
C5—C9—C8101.24 (9)C22—C23—H23120.1
C5—C9—C10102.12 (10)C23—C24—C25120.16 (12)
C8—C9—C10115.33 (10)C23—C24—H24119.9
C5—C9—H9112.4C25—C24—H24119.9
C8—C9—H9112.4C24—C25—C20120.88 (12)
C10—C9—H9112.4C24—C25—H25119.6
C11—C10—C3100.19 (10)C20—C25—H25119.6
C11—C10—C9114.16 (10)C11—O1—C12106.04 (9)
C3—C10—C9102.28 (10)C13—O2—C11109.14 (9)
C11—C10—H10113.0C8—O3—H3H106.7 (12)
C3—C10—H10113.0
C11—C1—C2—C312.21 (12)C8—C9—C10—C3−108.23 (11)
C7—C1—C2—C3−103.71 (10)C3—C10—C11—O1−63.21 (12)
C11—C1—C2—C6115.67 (10)C9—C10—C11—O1−171.72 (10)
C7—C1—C2—C6−0.25 (9)C3—C10—C11—O2179.88 (10)
C1—C2—C3—C4127.66 (11)C9—C10—C11—O271.37 (14)
C6—C2—C3—C433.44 (12)C3—C10—C11—C153.55 (11)
C1—C2—C3—C1019.42 (12)C9—C10—C11—C1−54.96 (13)
C6—C2—C3—C10−74.81 (11)C2—C1—C11—O174.93 (12)
C10—C3—C4—C551.75 (12)C7—C1—C11—O1170.52 (10)
C2—C3—C4—C5−53.26 (12)C2—C1—C11—O2−166.82 (10)
C3—C4—C5—C653.65 (12)C7—C1—C11—O2−71.23 (13)
C3—C4—C5—C9−51.53 (13)C2—C1—C11—C10−40.23 (11)
C4—C5—C6—C7−128.13 (11)C7—C1—C11—C1055.37 (12)
C9—C5—C6—C7−19.40 (12)O1—C12—C13—O2−23.62 (14)
C4—C5—C6—C2−33.99 (12)O3—C8—C14—C15123.86 (12)
C9—C5—C6—C274.74 (11)C7—C8—C14—C15−1.91 (16)
C3—C2—C6—C50.29 (12)C9—C8—C14—C15−111.07 (13)
C1—C2—C6—C5−107.56 (10)O3—C8—C14—C19−53.41 (13)
C3—C2—C6—C7108.11 (10)C7—C8—C14—C19−179.18 (10)
C1—C2—C6—C70.25 (9)C9—C8—C14—C1971.66 (13)
C5—C6—C7—C8−12.78 (12)C19—C14—C15—C160.82 (19)
C2—C6—C7—C8−116.01 (9)C8—C14—C15—C16−176.51 (12)
C5—C6—C7—C1102.98 (10)C14—C15—C16—C170.4 (2)
C2—C6—C7—C1−0.25 (9)C15—C16—C17—C18−1.12 (19)
C11—C1—C7—C81.95 (15)C15—C16—C17—C20174.66 (12)
C2—C1—C7—C8105.05 (11)C16—C17—C18—C190.68 (18)
C11—C1—C7—C6−102.85 (11)C20—C17—C18—C19−174.86 (11)
C2—C1—C7—C60.25 (9)C17—C18—C19—C140.51 (19)
C6—C7—C8—O3165.61 (9)C15—C14—C19—C18−1.25 (18)
C1—C7—C8—O369.38 (13)C8—C14—C19—C18176.16 (11)
C6—C7—C8—C14−75.83 (11)C16—C17—C20—C25−139.90 (13)
C1—C7—C8—C14−172.06 (9)C18—C17—C20—C2535.57 (18)
C6—C7—C8—C939.61 (11)C16—C17—C20—C2134.67 (17)
C1—C7—C8—C9−56.62 (12)C18—C17—C20—C21−149.86 (12)
C4—C5—C9—C8151.54 (10)C25—C20—C21—C223.91 (18)
C6—C5—C9—C844.25 (11)C17—C20—C21—C22−170.85 (11)
C4—C5—C9—C1032.28 (12)C20—C21—C22—C23−1.9 (2)
C6—C5—C9—C10−75.02 (11)C21—C22—C23—C24−1.5 (2)
O3—C8—C9—C5−178.53 (10)C22—C23—C24—C252.8 (2)
C14—C8—C9—C564.36 (11)C23—C24—C25—C20−0.7 (2)
C7—C8—C9—C5−52.91 (11)C21—C20—C25—C24−2.62 (18)
O3—C8—C9—C10−69.21 (14)C17—C20—C25—C24172.06 (12)
C14—C8—C9—C10173.68 (10)O2—C11—O1—C12−34.19 (13)
C7—C8—C9—C1056.41 (12)C10—C11—O1—C12−158.35 (11)
C4—C3—C10—C11−150.89 (10)C1—C11—O1—C1290.71 (12)
C2—C3—C10—C11−43.93 (11)C13—C12—O1—C1135.81 (14)
C4—C3—C10—C9−33.20 (12)C12—C13—O2—C113.28 (14)
C2—C3—C10—C973.76 (11)O1—C11—O2—C1318.51 (13)
C5—C9—C10—C11107.79 (12)C10—C11—O2—C13137.71 (11)
C8—C9—C10—C11−1.01 (15)C1—C11—O2—C13−103.21 (12)
C5—C9—C10—C30.57 (11)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H3H···O20.877 (18)1.769 (19)2.6153 (12)161.6 (18)
C12—H12B···O1i0.992.543.2455 (18)128
C24—H24···O3ii0.952.603.4955 (16)158

Symmetry codes: (i) −x, −y, −z; (ii) −x+1, −y, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GG2055).

References

  • Boyle, G. A., Govender, T., Karpoormath, R. & Kruger, H. G. (2007). Acta Cryst. E63, o3977.
  • Bruker (1999). SAINT-Plus (Version 6.02) and SHELXTL (Version 5.1). Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2005). APEX2 Version 2.0-1. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Flippen-Anderson, J. L., George, C., Gilardi, R., Zajac, W. W., Walters, T. R., Marchand, A., Dave, P. R. & Arney, B. E. (1991). Acta Cryst. C47, 813–817.
  • Kruger, H. G., Rademeyer, M., Govender, T. & Gokul, V. (2006). Acta Cryst. E62, o42–o44.
  • Kruger, H. G., Rademeyer, M. & Ramdhani, R. (2005). Acta Cryst. E61, o3968–o3970.
  • Linden, A., Romański, J., Mlostoń, G. & Heimgartner, H. (2005). Acta Cryst. C61, o221–o226. [PubMed]
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography