PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): o277.
Published online 2007 December 18. doi:  10.1107/S1600536807066093
PMCID: PMC2915330

4-Chloro-N-methyl-6-(morpholin-4-yl)-N-phenyl-1,3,5-triazin-2-amine

Abstract

In the title compound, C14H16ClN5O, the phenyl and triazine rings form a dihedral angle of 69.34 (8)°. The morpholine ring adopts a chair conformation. The structure is stabilized by C—H(...)N and intermolecular C—H(...)O hydrogen-bonding inter­actions.

Related literature

For related literature, see: Cremer & Pople (1975 [triangle]); Dong et al. (2005 [triangle]); Manasek & Hrdlovik (1990 [triangle]); Mathias & Simanek (1994 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o277-scheme1.jpg

Experimental

Crystal data

  • C14H16ClN5O
  • M r = 305.77
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o277-efi1.jpg
  • a = 17.121 (3) Å
  • b = 17.308 (3) Å
  • c = 10.0243 (17) Å
  • V = 2970.4 (9) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.26 mm−1
  • T = 294 (2) K
  • 0.22 × 0.20 × 0.10 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.944, T max = 0.974
  • 16109 measured reflections
  • 3053 independent reflections
  • 1607 reflections with I > 2σ(I)
  • R int = 0.065

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045
  • wR(F 2) = 0.136
  • S = 1.00
  • 3053 reflections
  • 192 parameters
  • H-atom parameters constrained
  • Δρmax = 0.19 e Å−3
  • Δρmin = −0.27 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: SHELXTL (Bruker, 1997 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807066093/rz2182sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807066093/rz2182Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge financial support from the Start Foundation for Doctors (grant No. HY071314) of Yantai University.

supplementary crystallographic information

Comment

2,4,6-Trichloro-1,3,5-triazine and its derivatives have been widely investigated, as a result of their importance as starting materials for many products. Moreover, these compounds possess valuable properties, as they are widely used as drugs and light stabilizers (Mathias & Simanek, 1994; Manasek & Hrdlovik, 1990). In the present paper, the crystal structure of the title compound, which has been synthesized from 2,4-dichloro-6-morpholin-4-yl-1,3,5-triazine and N-methylaniline, is reported.

In the title compound bond lengths and angles are within normal ranges (Table 1). The morpholine ring adopts a chair conformation with puckering parameters (Cremer and Pople, 1975) Q = 0.549 (2) Å, θ = 178.6 (2)° and [var phi] = 121 (12)°. The dihedral angle formed by the phenyl and triazine rings is 110.66 (8)°. The molecular conformation is stabilized by two intramolecular C—H···N hydrogen bonds (Table 2). In the crystal structure, the molecules are linked by intermolecular C—H···O hydrogen interactions (Table 2).

Experimental

2,4-Dichloro-6-morpholino-1,3,5-triazine (11.75 g, 0.05 mol), which was prepared from morpholine and 2,4,6-trichloro-1,3,5-triazine according to the literature method (Dong et al., 2005), and N-methylaniline (6.15 g, 0.05 mol) were dissolved in THF (60 ml) at 323 K with stirring for 2 h. A solution of Na2CO3 (2.76 g, 0.026 mol) in water (20 ml) was then added and the mixture stirred for a further 3 h. The solution was evaporated under reduced pressure and the precipitate was filtered off to give the title compound (12.69 g; yield 81.3%). Single crystals (m.p.371–372 K) suitable for X-ray analysis were obtained by slow evaporation of an ethyl acetate/ethanol (2:5 v/v) solution.

Refinement

All the H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.97 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms.

Figures

Fig. 1.
The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
Fig. 2.
Packing diagram of the title compound viewed along the c axis.

Crystal data

C14H16ClN5OF000 = 1280
Mr = 305.77Dx = 1.367 Mg m3
Orthorhombic, PnnaMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2a 2bcCell parameters from 2473 reflections
a = 17.121 (3) Åθ = 2.4–22.2º
b = 17.308 (3) ŵ = 0.26 mm1
c = 10.0243 (17) ÅT = 294 (2) K
V = 2970.4 (9) Å3Block, colourless
Z = 80.22 × 0.20 × 0.10 mm

Data collection

Bruker SMART CCD area-detector diffractometer3053 independent reflections
Radiation source: fine-focus sealed tube1607 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.065
T = 294(2) Kθmax = 26.4º
[var phi] and ω scansθmin = 2.4º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −21→14
Tmin = 0.944, Tmax = 0.974k = −21→21
16109 measured reflectionsl = −12→12

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.045  w = 1/[σ2(Fo2) + (0.062P)2 + 0.2969P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.136(Δ/σ)max = 0.003
S = 1.00Δρmax = 0.19 e Å3
3053 reflectionsΔρmin = −0.27 e Å3
192 parametersExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0011 (3)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.07523 (4)0.34130 (5)1.13890 (7)0.0763 (3)
O10.41747 (12)0.45017 (12)0.7735 (2)0.0843 (7)
N10.05798 (12)0.35026 (11)0.8833 (2)0.0534 (6)
N20.16659 (12)0.35391 (11)0.73300 (19)0.0518 (5)
N30.18823 (13)0.34704 (11)0.96853 (19)0.0523 (5)
N40.29091 (13)0.35119 (12)0.8197 (2)0.0582 (6)
N50.04129 (13)0.36020 (12)0.65470 (19)0.0570 (6)
C10.11173 (16)0.34659 (14)0.9766 (2)0.0510 (6)
C20.09049 (15)0.35471 (13)0.7589 (2)0.0491 (6)
C30.21311 (15)0.35082 (13)0.8403 (2)0.0481 (6)
C40.32424 (16)0.35968 (16)0.6869 (3)0.0645 (8)
H4A0.28370.35330.62020.077*
H4B0.36350.32020.67240.077*
C50.36033 (17)0.43769 (17)0.6733 (3)0.0701 (8)
H5A0.38440.44230.58610.084*
H5B0.32010.47690.68020.084*
C60.38457 (18)0.44244 (18)0.9033 (3)0.0780 (9)
H6A0.34550.48230.91610.094*
H6B0.42520.45010.96940.094*
C70.34768 (15)0.36491 (15)0.9247 (3)0.0602 (7)
H7A0.38740.32500.92300.072*
H7B0.32210.36351.01100.072*
C80.07219 (18)0.36424 (18)0.5184 (3)0.0752 (9)
H8A0.09360.41470.50270.113*
H8B0.03080.35460.45590.113*
H8C0.11240.32610.50730.113*
C9−0.04133 (16)0.36926 (16)0.6715 (2)0.0551 (7)
C10−0.07178 (18)0.43669 (17)0.7235 (3)0.0662 (8)
H10−0.03860.47620.75090.079*
C11−0.15150 (19)0.44530 (19)0.7346 (3)0.0780 (9)
H11−0.17210.49050.77030.094*
C12−0.20090 (18)0.3871 (2)0.6931 (3)0.0766 (9)
H12−0.25470.39290.70090.092*
C13−0.17014 (19)0.32093 (18)0.6404 (3)0.0698 (8)
H13−0.20340.28190.61160.084*
C14−0.09104 (17)0.31129 (16)0.6294 (3)0.0609 (7)
H14−0.07080.26590.59370.073*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0725 (5)0.1138 (7)0.0427 (4)−0.0041 (4)0.0069 (3)0.0068 (4)
O10.0782 (14)0.0923 (16)0.0824 (15)−0.0245 (12)−0.0001 (13)0.0206 (12)
N10.0602 (14)0.0568 (14)0.0432 (12)−0.0043 (11)−0.0018 (11)0.0057 (10)
N20.0591 (14)0.0527 (14)0.0435 (12)−0.0033 (11)0.0008 (11)0.0012 (9)
N30.0590 (15)0.0578 (14)0.0401 (12)−0.0032 (11)0.0019 (10)0.0050 (10)
N40.0584 (15)0.0670 (15)0.0492 (13)−0.0053 (12)0.0052 (11)−0.0005 (10)
N50.0653 (15)0.0653 (15)0.0405 (12)−0.0033 (11)−0.0040 (11)0.0007 (10)
C10.0616 (19)0.0485 (15)0.0430 (14)−0.0034 (13)0.0038 (13)0.0039 (12)
C20.0635 (18)0.0423 (15)0.0416 (14)−0.0059 (12)−0.0014 (13)0.0013 (11)
C30.0541 (17)0.0392 (15)0.0511 (16)−0.0017 (12)0.0043 (13)0.0019 (11)
C40.0618 (18)0.072 (2)0.0596 (17)−0.0030 (15)0.0131 (14)−0.0008 (14)
C50.072 (2)0.073 (2)0.0651 (19)0.0081 (17)0.0117 (16)0.0175 (15)
C60.079 (2)0.079 (2)0.076 (2)−0.0142 (17)−0.0108 (18)0.0022 (17)
C70.0547 (16)0.0635 (18)0.0623 (18)0.0032 (14)−0.0021 (14)0.0108 (13)
C80.085 (2)0.097 (2)0.0429 (15)−0.0017 (17)0.0013 (15)−0.0017 (15)
C90.0629 (18)0.0592 (18)0.0432 (15)−0.0050 (15)−0.0104 (13)0.0061 (12)
C100.076 (2)0.0608 (19)0.0621 (17)−0.0039 (16)−0.0125 (16)−0.0028 (14)
C110.073 (2)0.080 (2)0.081 (2)0.0114 (18)−0.0085 (18)−0.0052 (17)
C120.060 (2)0.095 (3)0.074 (2)0.0002 (19)−0.0110 (16)0.0061 (19)
C130.077 (2)0.070 (2)0.0625 (18)−0.0112 (16)−0.0200 (16)0.0075 (15)
C140.070 (2)0.0589 (18)0.0542 (16)−0.0014 (15)−0.0142 (14)0.0037 (13)

Geometric parameters (Å, °)

Cl1—C11.745 (2)C6—C71.498 (4)
O1—C51.419 (3)C6—H6A0.9700
O1—C61.424 (3)C6—H6B0.9700
N1—C11.314 (3)C7—H7A0.9700
N1—C21.368 (3)C7—H7B0.9700
N2—C21.328 (3)C8—H8A0.9600
N2—C31.339 (3)C8—H8B0.9600
N3—C11.312 (3)C8—H8C0.9600
N3—C31.356 (3)C9—C101.380 (4)
N4—C31.348 (3)C9—C141.382 (4)
N4—C71.452 (3)C10—C111.377 (4)
N4—C41.456 (3)C10—H100.9300
N5—C21.345 (3)C11—C121.379 (4)
N5—C91.433 (3)C11—H110.9300
N5—C81.467 (3)C12—C131.367 (4)
C4—C51.491 (4)C12—H120.9300
C4—H4A0.9700C13—C141.369 (4)
C4—H4B0.9700C13—H130.9300
C5—H5A0.9700C14—H140.9300
C5—H5B0.9700
C5—O1—C6111.1 (2)O1—C6—H6B109.1
C1—N1—C2111.5 (2)C7—C6—H6B109.1
C2—N2—C3115.3 (2)H6A—C6—H6B107.8
C1—N3—C3111.9 (2)N4—C7—C6109.0 (2)
C3—N4—C7123.5 (2)N4—C7—H7A109.9
C3—N4—C4121.8 (2)C6—C7—H7A109.9
C7—N4—C4112.6 (2)N4—C7—H7B109.9
C2—N5—C9122.3 (2)C6—C7—H7B109.9
C2—N5—C8120.0 (2)H7A—C7—H7B108.3
C9—N5—C8117.4 (2)N5—C8—H8A109.5
N3—C1—N1130.9 (2)N5—C8—H8B109.5
N3—C1—Cl1114.54 (19)H8A—C8—H8B109.5
N1—C1—Cl1114.6 (2)N5—C8—H8C109.5
N2—C2—N5117.6 (2)H8A—C8—H8C109.5
N2—C2—N1125.2 (2)H8B—C8—H8C109.5
N5—C2—N1117.2 (2)C10—C9—C14119.8 (3)
N2—C3—N4117.7 (2)C10—C9—N5120.6 (3)
N2—C3—N3125.2 (2)C14—C9—N5119.5 (3)
N4—C3—N3117.1 (2)C11—C10—C9119.8 (3)
N4—C4—C5109.7 (2)C11—C10—H10120.1
N4—C4—H4A109.7C9—C10—H10120.1
C5—C4—H4A109.7C10—C11—C12120.3 (3)
N4—C4—H4B109.7C10—C11—H11119.9
C5—C4—H4B109.7C12—C11—H11119.9
H4A—C4—H4B108.2C13—C12—C11119.5 (3)
O1—C5—C4111.0 (2)C13—C12—H12120.3
O1—C5—H5A109.4C11—C12—H12120.3
C4—C5—H5A109.4C12—C13—C14121.0 (3)
O1—C5—H5B109.4C12—C13—H13119.5
C4—C5—H5B109.4C14—C13—H13119.5
H5A—C5—H5B108.0C13—C14—C9119.8 (3)
O1—C6—C7112.4 (2)C13—C14—H14120.1
O1—C6—H6A109.1C9—C14—H14120.1
C7—C6—H6A109.1
C3—N3—C1—N1−1.1 (4)C3—N4—C4—C5108.2 (3)
C3—N3—C1—Cl1179.70 (16)C7—N4—C4—C5−55.8 (3)
C2—N1—C1—N30.5 (4)C6—O1—C5—C4−58.0 (3)
C2—N1—C1—Cl1179.67 (16)N4—C4—C5—O156.6 (3)
C3—N2—C2—N5178.0 (2)C5—O1—C6—C757.5 (3)
C3—N2—C2—N1−2.1 (3)C3—N4—C7—C6−109.5 (3)
C9—N5—C2—N2−173.7 (2)C4—N4—C7—C654.2 (3)
C8—N5—C2—N20.6 (3)O1—C6—C7—N4−54.6 (3)
C9—N5—C2—N16.4 (3)C2—N5—C9—C1068.3 (3)
C8—N5—C2—N1−179.3 (2)C8—N5—C9—C10−106.2 (3)
C1—N1—C2—N21.3 (3)C2—N5—C9—C14−114.8 (3)
C1—N1—C2—N5−178.8 (2)C8—N5—C9—C1470.8 (3)
C2—N2—C3—N4−178.9 (2)C14—C9—C10—C110.8 (4)
C2—N2—C3—N31.3 (3)N5—C9—C10—C11177.8 (2)
C7—N4—C3—N2166.1 (2)C9—C10—C11—C12−0.5 (4)
C4—N4—C3—N23.9 (3)C10—C11—C12—C13−0.2 (5)
C7—N4—C3—N3−14.1 (3)C11—C12—C13—C140.6 (4)
C4—N4—C3—N3−176.3 (2)C12—C13—C14—C9−0.3 (4)
C1—N3—C3—N20.1 (3)C10—C9—C14—C13−0.5 (4)
C1—N3—C3—N4−179.6 (2)N5—C9—C14—C13−177.4 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C4—H4A···N20.972.302.740 (3)107
C7—H7B···N30.972.352.782 (3)106
C10—H10···O1i0.932.443.327 (4)158

Symmetry codes: (i) −x+1/2, −y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2182).

References

  • Bruker (1997). SMART, SAINT and SHELXTL Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Dong, C.-M., Chen, L.-G., Duan, X.-M., Shu, X.-G., Zeng, T. & Yan, X.-L. (2005). Acta Cryst. E61, o1168–o1169.
  • Manasek, Z. & Hrdlovik, P. (1990). European Patent EP 0377324.
  • Mathias, P. J. & Simanek, E. E. (1994). J. Am. Chem. Soc.116, 4326–4340.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography