PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): o275.
Published online 2007 December 18. doi:  10.1107/S1600536807066305
PMCID: PMC2915329

4-Hydroxy-2,2,6,6-tetra­methyl­piperidinium trifluoro­acetate

Abstract

The title compound, C9H20NO+·C2F3O2 , is an important inter­mediate in the synthesis of hindered light stabilizers. The piperidinium ring adopts a chair conformation with the hydroxyl group in an equatorial position. The crystal packing is stabilized by O—H(...)O and N—H(...)O hydrogen bonds. The CF3 group is disordered over two positions with almost equal site occupancy factors.

Related literature

For general background, see: Borzatta & Carrozza (1991 [triangle]). For related structures, see: Nengfang et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o275-scheme1.jpg

Experimental

Crystal data

  • C9H20NO+·C2F3O2
  • M r = 271.28
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o275-efi1.jpg
  • a = 7.6204 (8) Å
  • b = 9.8939 (10) Å
  • c = 18.099 (2) Å
  • V = 1364.6 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.12 mm−1
  • T = 113 (2) K
  • 0.22 × 0.20 × 0.16 mm

Data collection

  • Rigaku Saturn diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005 [triangle]) T min = 0.974, T max = 0.981
  • 17989 measured reflections
  • 2039 independent reflections
  • 1993 reflections with I > 2σ(I)
  • R int = 0.057

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057
  • wR(F 2) = 0.132
  • S = 1.23
  • 2039 reflections
  • 202 parameters
  • 48 restraints
  • H-atom parameters constrained
  • Δρmax = 0.22 e Å−3
  • Δρmin = −0.21 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: SHELXTL (Bruker, 1997 [triangle]); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2005 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807066305/bt2664sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807066305/bt2664Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

4-hydroxyl-2,2,6,6-tetramethylpiperidine is a very important intermediate in the synthesis of hindered light stabilizers (Borzatta & Carrozza, 1991; She et al., 2005). The piperidium ring adopts a chair conformation with the hydroxyl group in an equatorial position. The crystal packing is stabilized by O—H···O and N—H···O hydrogen bonds.

Experimental

An ethanol solution (10 ml) of 2,2,6,6-tetramethylpiperidin-4-ol (3.2 mmol, 0.5 g) was added dropwise to a stirred aqueous solution (6 ml) of trifluoroacetic acid (3.8 mmol, 0.43 g) at 293 K. Then the reaction mixture was filtered and the filtrate stood for about five days until colourless needle shaped crystals were obtained.

Refinement

In the absence of anomalous scatterers, Friedel pairs had been merged and the absolute structure was arbitrarily assigned. All H atoms were positioned geometrically with C—H ranging from 0.98Å to 1.00Å and refined as riding with Uiso(H)=1.2Ueq(C,N,O) or 1.5eq(Cmethyl). The CF3 group is disordered over two position with a ratio of occupancy factors of 0.459 (1)/0.541 (1). The atoms of the CF3 group were restrained to an isotropic behaviour.

Figures

Fig. 1.
A perspective view of the title compound. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. Only the major occupied site of the disordered CF3 group is shown.

Crystal data

C9H20NO+·C2F3O2Dx = 1.320 Mg m3
Mr = 271.28Mo Kα radiation λ = 0.71070 Å
Orthorhombic, P212121Cell parameters from 4344 reflections
a = 7.6204 (8) Åθ = 2.1–28.7º
b = 9.8939 (10) ŵ = 0.12 mm1
c = 18.099 (2) ÅT = 113 (2) K
V = 1364.6 (2) Å3Needle, colourless
Z = 40.22 × 0.20 × 0.16 mm
F000 = 576

Data collection

Rigaku Saturn diffractometer2039 independent reflections
Radiation source: rotating anode1993 reflections with I > 2σ(I)
Monochromator: confocalRint = 0.057
Detector resolution: 14.63 pixels mm-1θmax = 28.7º
T = 113(2) Kθmin = 2.3º
ω scansh = −10→10
Absorption correction: multi-scan(CrystalClear; Rigaku/MSC, 2005)k = −13→13
Tmin = 0.974, Tmax = 0.981l = −24→24
17989 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.132  w = 1/[σ2(Fo2) + (0.0506P)2 + 0.4132P] where P = (Fo2 + 2Fc2)/3
S = 1.23(Δ/σ)max = 0.001
2039 reflectionsΔρmax = 0.22 e Å3
202 parametersΔρmin = −0.21 e Å3
48 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.028 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
O10.9028 (3)−0.20835 (18)0.73102 (11)0.0271 (5)
H10.8683−0.27690.70780.041*
O20.6874 (3)0.4099 (2)0.58896 (13)0.0394 (6)
O30.7885 (3)0.5590 (2)0.67201 (12)0.0398 (6)
N10.8175 (3)0.1997 (2)0.67551 (12)0.0226 (5)
H1A0.90120.23780.70560.027*
H1B0.76310.26950.65100.027*
C10.6801 (4)0.1339 (3)0.72563 (15)0.0244 (5)
C20.7571 (4)0.0022 (3)0.75609 (14)0.0241 (5)
H2A0.85030.02450.79220.029*
H2B0.6639−0.04750.78270.029*
C30.8336 (4)−0.0893 (3)0.69685 (14)0.0233 (5)
H30.7392−0.11520.66120.028*
C40.9789 (4)−0.0143 (3)0.65571 (15)0.0234 (5)
H4A1.0300−0.07530.61810.028*
H4B1.07290.00950.69110.028*
C50.9142 (4)0.1151 (3)0.61754 (14)0.0241 (6)
C60.6475 (4)0.2352 (3)0.78794 (18)0.0326 (7)
H6A0.75570.24770.81640.049*
H6B0.55490.20090.82050.049*
H6C0.61100.32200.76680.049*
C70.5089 (4)0.1126 (3)0.68236 (19)0.0335 (7)
H7A0.41410.08990.71680.050*
H7B0.52440.03870.64690.050*
H7C0.47890.19580.65580.050*
C81.0678 (4)0.2025 (3)0.59214 (16)0.0302 (6)
H8A1.02290.28520.56910.045*
H8B1.13840.15220.55620.045*
H8C1.14080.22620.63480.045*
C90.7963 (4)0.0851 (3)0.55106 (16)0.0331 (7)
H9A0.71120.01490.56430.050*
H9B0.86850.05360.50970.050*
H9C0.73380.16750.53660.050*
C100.7562 (4)0.5187 (3)0.60881 (16)0.0281 (6)
C110.8356 (12)0.6096 (9)0.5496 (5)0.037 (3)0.459 (14)
F10.7559 (17)0.7299 (6)0.5473 (4)0.067 (3)0.459 (14)
F21.0045 (10)0.6341 (15)0.5611 (4)0.086 (4)0.459 (14)
F30.8194 (18)0.5655 (13)0.4799 (6)0.070 (4)0.459 (14)
C11'0.7828 (13)0.6165 (8)0.5453 (4)0.042 (3)0.541 (14)
F1'0.6352 (15)0.6809 (12)0.5291 (5)0.126 (4)0.541 (14)
F2'0.900 (2)0.7116 (8)0.5599 (3)0.099 (5)0.541 (14)
F3'0.8406 (14)0.5571 (12)0.4839 (5)0.070 (4)0.541 (14)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0347 (11)0.0164 (8)0.0303 (10)0.0008 (8)−0.0069 (9)0.0017 (8)
O20.0504 (13)0.0219 (10)0.0458 (12)−0.0013 (10)−0.0187 (11)−0.0011 (9)
O30.0615 (15)0.0274 (10)0.0306 (11)−0.0091 (11)−0.0059 (11)−0.0024 (9)
N10.0236 (11)0.0177 (10)0.0266 (10)−0.0003 (9)−0.0010 (9)−0.0003 (9)
C10.0212 (12)0.0193 (11)0.0327 (14)−0.0006 (10)0.0012 (11)0.0002 (10)
C20.0220 (12)0.0239 (12)0.0266 (12)−0.0010 (11)0.0014 (10)0.0015 (10)
C30.0260 (13)0.0189 (11)0.0251 (12)0.0016 (10)−0.0050 (10)0.0015 (10)
C40.0242 (12)0.0226 (12)0.0235 (12)0.0017 (11)−0.0001 (10)−0.0021 (10)
C50.0278 (13)0.0202 (12)0.0244 (12)0.0020 (11)−0.0004 (11)−0.0008 (10)
C60.0298 (15)0.0269 (14)0.0412 (16)0.0004 (12)0.0098 (13)−0.0047 (13)
C70.0242 (13)0.0266 (13)0.0498 (18)0.0009 (11)−0.0036 (13)0.0032 (14)
C80.0356 (16)0.0263 (14)0.0286 (14)−0.0029 (13)0.0046 (12)0.0016 (12)
C90.0434 (18)0.0272 (14)0.0287 (14)0.0013 (13)−0.0109 (13)0.0016 (11)
C100.0292 (13)0.0200 (12)0.0351 (14)0.0032 (11)−0.0061 (12)−0.0015 (11)
C110.048 (5)0.030 (5)0.033 (5)−0.009 (4)−0.006 (4)−0.004 (4)
F10.132 (8)0.020 (3)0.049 (4)0.017 (4)0.014 (4)0.011 (2)
F20.064 (5)0.129 (9)0.065 (4)−0.058 (5)0.007 (3)0.005 (5)
F30.136 (10)0.043 (6)0.030 (5)−0.037 (6)−0.025 (5)0.002 (4)
C11'0.063 (6)0.037 (4)0.026 (4)0.000 (4)−0.010 (3)−0.001 (3)
F1'0.123 (7)0.136 (7)0.120 (6)0.051 (6)−0.004 (5)0.080 (5)
F2'0.198 (13)0.060 (5)0.039 (3)−0.082 (7)0.013 (6)−0.012 (3)
F3'0.105 (7)0.063 (7)0.042 (5)−0.025 (5)0.042 (4)−0.024 (4)

Geometric parameters (Å, °)

O1—C31.431 (3)C6—H6A0.9800
O1—H10.8400C6—H6B0.9800
O2—C101.250 (3)C6—H6C0.9800
O3—C101.236 (3)C7—H7A0.9800
N1—C11.531 (3)C7—H7B0.9800
N1—C51.531 (3)C7—H7C0.9800
N1—H1A0.9200C8—H8A0.9800
N1—H1B0.9200C8—H8B0.9800
C1—C61.529 (4)C8—H8C0.9800
C1—C21.531 (4)C9—H9A0.9800
C1—C71.537 (4)C9—H9B0.9800
C2—C31.519 (4)C9—H9C0.9800
C2—H2A0.9900C10—C11'1.516 (7)
C2—H2B0.9900C10—C111.525 (8)
C3—C41.526 (4)C11—F21.326 (9)
C3—H31.0000C11—F11.337 (8)
C4—C51.536 (4)C11—F31.339 (8)
C4—H4A0.9900C11'—F2'1.324 (8)
C4—H4B0.9900C11'—F1'1.325 (8)
C5—C81.527 (4)C11'—F3'1.333 (8)
C5—C91.530 (4)
C3—O1—H1109.5H6A—C6—H6B109.5
C1—N1—C5120.2 (2)C1—C6—H6C109.5
C1—N1—H1A107.3H6A—C6—H6C109.5
C5—N1—H1A107.3H6B—C6—H6C109.5
C1—N1—H1B107.3C1—C7—H7A109.5
C5—N1—H1B107.3C1—C7—H7B109.5
H1A—N1—H1B106.9H7A—C7—H7B109.5
C6—C1—N1105.6 (2)C1—C7—H7C109.5
C6—C1—C2110.8 (2)H7A—C7—H7C109.5
N1—C1—C2108.2 (2)H7B—C7—H7C109.5
C6—C1—C7109.1 (2)C5—C8—H8A109.5
N1—C1—C7109.7 (2)C5—C8—H8B109.5
C2—C1—C7113.1 (2)H8A—C8—H8B109.5
C3—C2—C1113.6 (2)C5—C8—H8C109.5
C3—C2—H2A108.9H8A—C8—H8C109.5
C1—C2—H2A108.9H8B—C8—H8C109.5
C3—C2—H2B108.9C5—C9—H9A109.5
C1—C2—H2B108.9C5—C9—H9B109.5
H2A—C2—H2B107.7H9A—C9—H9B109.5
O1—C3—C2109.1 (2)C5—C9—H9C109.5
O1—C3—C4110.1 (2)H9A—C9—H9C109.5
C2—C3—C4109.5 (2)H9B—C9—H9C109.5
O1—C3—H3109.4O3—C10—O2128.9 (3)
C2—C3—H3109.4O3—C10—C11'117.9 (4)
C4—C3—H3109.4O2—C10—C11'112.8 (4)
C3—C4—C5113.1 (2)O3—C10—C11112.4 (4)
C3—C4—H4A109.0O2—C10—C11118.2 (4)
C5—C4—H4A109.0F2—C11—F1106.4 (8)
C3—C4—H4B109.0F2—C11—F3107.3 (8)
C5—C4—H4B109.0F1—C11—F3102.6 (8)
H4A—C4—H4B107.8F2—C11—C10112.5 (7)
C8—C5—C9108.9 (2)F1—C11—C10111.5 (7)
C8—C5—N1105.4 (2)F3—C11—C10115.7 (9)
C9—C5—N1111.2 (2)F2'—C11'—F1'106.0 (8)
C8—C5—C4111.2 (2)F2'—C11'—F3'104.8 (8)
C9—C5—C4112.4 (2)F1'—C11'—F3'107.9 (8)
N1—C5—C4107.6 (2)F2'—C11'—C10113.2 (6)
C1—C6—H6A109.5F1'—C11'—C10111.2 (6)
C1—C6—H6B109.5F3'—C11'—C10113.3 (8)
C5—N1—C1—C6165.7 (2)O2—C10—C11—F2−121.8 (8)
C5—N1—C1—C247.0 (3)C11'—C10—C11—F2164 (3)
C5—N1—C1—C7−76.9 (3)O3—C10—C11—F1−69.1 (8)
C6—C1—C2—C3−166.0 (2)O2—C10—C11—F1118.7 (8)
N1—C1—C2—C3−50.6 (3)C11'—C10—C11—F145 (2)
C7—C1—C2—C371.2 (3)O3—C10—C11—F3174.2 (8)
C1—C2—C3—O1179.6 (2)O2—C10—C11—F32.0 (11)
C1—C2—C3—C459.1 (3)C11'—C10—C11—F3−72 (2)
O1—C3—C4—C5−180.0 (2)O3—C10—C11'—F2'25.7 (9)
C2—C3—C4—C5−60.1 (3)O2—C10—C11'—F2'−160.6 (8)
C1—N1—C5—C8−166.6 (2)C11—C10—C11'—F2'−47 (2)
C1—N1—C5—C975.6 (3)O3—C10—C11'—F1'−93.5 (8)
C1—N1—C5—C4−47.8 (3)O2—C10—C11'—F1'80.2 (9)
C3—C4—C5—C8167.3 (2)C11—C10—C11'—F1'−167 (3)
C3—C4—C5—C9−70.4 (3)O3—C10—C11'—F3'144.8 (8)
C3—C4—C5—N152.4 (3)O2—C10—C11'—F3'−41.5 (10)
O3—C10—C11—F250.4 (9)C11—C10—C11'—F3'72 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1B···O20.921.882.786 (3)169
N1—H1A···O1i0.921.962.869 (3)171
O1—H1···O3ii0.841.852.682 (3)171

Symmetry codes: (i) −x+2, y+1/2, −z+3/2; (ii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2664).

References

  • Borzatta, V. & Carrozza, P. (1991). European Patent EP 0 462 069.
  • Bruker (1997). SHELXTL Bruker AXS Inc., Madison, Wisconsin, USA.
  • Rigaku/MSC (2005). CrystalClear and CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  • Nengfang, S., Guo, H. Z., Yin, G. & Wu, A. (2005). Acta Cryst E61, o2902–o2903.
  • Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography