PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): o274.
Published online 2007 December 18. doi:  10.1107/S1600536807065099
PMCID: PMC2915328

2-(9H-Fluoren-9-ylidenemeth­yl)thio­phene

Abstract

The title compound, C18H12S, contains a thio­phene ring which is disordered by rotation of 180° about the linking C—C bond. The site occupancies of the major and minor components of the disordered ring are 0.900 (3) and 0.100 (3), respectively. In one of these disordered components, the mol­ecule is stabilized by an intra­molecular C—H(...)S hydrogen bond. The compound was synthesized in good yield (80%) by a modified phase-transfer-catalysed condensation of fluorene with thio­phene-2-carbaldehyde.

Related literature

For a related structure, see: Fave et al., 2004 [triangle]. For related literature, see: Allen (2002 [triangle]); Lukeš et al. (2003 [triangle]); Mullen & Wegner (1998 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o274-scheme1.jpg

Experimental

Crystal data

  • C18H12S
  • M r = 260.34
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o274-efi1.jpg
  • a = 20.757 (4) Å
  • b = 44.434 (9) Å
  • c = 5.6260 (11) Å
  • V = 5189.0 (18) Å3
  • Z = 16
  • Mo Kα radiation
  • μ = 0.23 mm−1
  • T = 100 (2) K
  • 0.57 × 0.13 × 0.08 mm

Data collection

  • Oxford Diffraction Gemini R CCD diffractometer
  • Absorption correction: analytical (Clark & Reid, 1995 [triangle]) T min = 0.938, T max = 0.985
  • 11725 measured reflections
  • 3018 independent reflections
  • 1903 reflections with I > 2σ(I)
  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035
  • wR(F 2) = 0.090
  • S = 0.99
  • 3018 reflections
  • 180 parameters
  • 4 restraints
  • H-atom parameters constrained
  • Δρmax = 0.15 e Å−3
  • Δρmin = −0.17 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1110 Friedel pairs
  • Flack parameter: −0.07 (8)

Data collection: CrysAlis CCD (Oxford Diffraction, 2006 [triangle]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2006 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: DIAMOND (Brandenburg, 1998 [triangle]); software used to prepare material for publication: enCIFer (Allen et al., 2004 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807065099/fj2086sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807065099/fj2086Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Grant Agency of Slovak Republic (grant Nos. 1/2449/05, 1/4453/07 and APVT-20–007304) as well as the Structural Funds, Interreg IIIA, for financial support in purchasing the diffractometer.

supplementary crystallographic information

Comment

Our synthetic efforts have been focused on a set of multi-ring monomer systems based on thiophene and fluorene ring system. In this respect, the relationship between the charge transport properties in OFET devices (Mullen & Wegner, 1998) and molecular properties such as redox reversibility and crystal structure have been investigated. As active layers, we used oligomers based on molecules consisting of alternating thiophene and fluorene moieties.

In the title compound (1) the S1—C15 and S1—C18 bond lengths of 1.725 (3) Å and 1.692 (3) Å are in a quite good agreement with similar thiophene compounds in the Cambridge Structural Database (CSD; Version 5.27, 2006 release; Allen, 2002); for example, 2,2',5,5'-tetrakis(2-Thienyl)-3,4:3',4'- bis(tetramethylene)-1,1'-biphosphole (Fave et. al., 2004; CDS refcode BERCIL). The thiophene ring is disordered by rotation about the inter-ring C—C bond. There is one intramolecular C–H···S hydrogen bond.

Experimental

8.3 g (0.05 mol) of fluorene and 5.6 g (0.05 mol) of thiophene-2-carbaldehyde were dissolved in 70 ml of toluene. Then 70 ml 40% NaOH and 2.9 g (0.009 mol) (n-Bu)4N+Br- were added. The resulting heterogenous mixture was vigorously stirred at room temperature for 12 h. After completion of the reaction (TLC control), the water layer was separated, and the organic layer was washed with 100 ml 10% HCl, 300 ml water, 300 ml of brine and dried over Na2SO4. After evaporation of the solvent under reduced pressure, a dark oil was obtained, which was further dissolved in boiling MeOH, decolorized with Norit, filtered and left to cool to room temperature to obtain 10.4 g (80%) of yellow needles m.p.: 75°C (lit. 73–75°C) (Lukeš et al., 2003). The crude product could be purified by column chromatography using silica gel Merck 60 in toluene as an eluent Rf = 0.71 (toluene).

1H NMR (300 MHz, CDCl3 p.p.m.): δ = 8.11 (d, J=7.79 Hz, 1 H), 7.68 – 7.74 (m, 3 H), 7.60 (s, 1 H), 7.42 – 7.45 (m, 2 H), 7.27 – 7.38 (m, 3 H), 7.12 – 7.23 (m, 2 H).

13C-NMR (75 MHz, CDCl3, p.p.m.) δ = 141.19, 139.48, 139.06, 138.91, 136.51, 136.12, 129.25, 128.72, 128.22, 127.57, 127.32, 126.97, 126.82, 124.34, 120.14, 119.74, 119.58, 118.98.

Refinement

H atoms were placed in calculated positions and refined using a riding model, with C—H = 0.95 Å and Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.
The atomic numbering scheme of 2-(9H-fluoren-9-ylidenemethyl)thiophene. Only the major component of the disordered thiophene ring is shown. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen-bond interactions are indicated by dashed ...

Crystal data

C18H12SF000 = 2176
Mr = 260.34Dx = 1.333 Mg m3
Orthorhombic, Fdd2Mo Kα radiation λ = 0.71073 Å
Hall symbol: F 2 -2dCell parameters from 4617 reflections
a = 20.757 (4) Åθ = 3.7–29.1º
b = 44.434 (9) ŵ = 0.23 mm1
c = 5.6260 (11) ÅT = 100 (2) K
V = 5189.0 (18) Å3Block, yellow
Z = 160.57 × 0.13 × 0.08 mm

Data collection

Oxford Diffraction Gemini R CCD diffractometer3018 independent reflections
Radiation source: fine-focus sealed tube1903 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.029
T = 100(2) Kθmax = 29.1º
Rotation method data acquisition using ω and [var phi] scansθmin = 3.8º
Absorption correction: analytical(Clark & Reid, 1995)h = −27→25
Tmin = 0.938, Tmax = 0.985k = −59→58
11725 measured reflectionsl = −7→7

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.035  w = 1/[σ2(Fo2) + (0.0485P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.090(Δ/σ)max < 0.001
S = 0.99Δρmax = 0.15 e Å3
3018 reflectionsΔρmin = −0.17 e Å3
180 parametersExtinction correction: none
4 restraintsAbsolute structure: Flack (1983), 1110 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: −0.07 (8)
Secondary atom site location: difference Fourier map

Special details

Experimental. face-indexed (CrysAlis RED; Oxford Diffraction, 2006)
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
C10.35040 (9)0.03543 (4)−0.1480 (3)0.0504 (5)
C20.40287 (10)0.01668 (4)−0.1107 (4)0.0605 (6)
H2A0.42980.01940.02410.073*
C30.41552 (10)−0.00616 (5)−0.2727 (4)0.0656 (6)
H3A0.4516−0.0189−0.24750.079*
C40.37726 (11)−0.01069 (5)−0.4680 (4)0.0640 (6)
H4A0.3876−0.0262−0.57810.077*
C50.32362 (10)0.00724 (4)−0.5052 (4)0.0594 (5)
H5A0.29650.0040−0.63870.071*
C60.31044 (9)0.02985 (4)−0.3442 (3)0.0490 (5)
C70.25624 (9)0.05093 (4)−0.3394 (3)0.0493 (5)
C80.20399 (10)0.05396 (5)−0.4884 (4)0.0607 (5)
H8A0.19940.0413−0.62370.073*
C90.15827 (11)0.07574 (5)−0.4373 (4)0.0670 (6)
H9A0.12190.0780−0.53800.080*
C100.16522 (10)0.09415 (5)−0.2405 (4)0.0658 (6)
H10A0.13340.1090−0.20790.079*
C110.21746 (10)0.09134 (5)−0.0913 (4)0.0608 (5)
H11A0.22210.10430.04190.073*
C120.26339 (9)0.06932 (4)−0.1380 (3)0.0490 (5)
C130.32372 (9)0.06148 (4)−0.0145 (3)0.0490 (5)
C140.34399 (9)0.07789 (4)0.1761 (3)0.0518 (5)
H14A0.31250.09210.22560.062*
C15A0.40114 (9)0.07913 (4)0.3214 (3)0.0513 (5)0.900 (3)
C18A0.50774 (12)0.07874 (5)0.5125 (5)0.0731 (7)0.900 (3)
H18A0.55130.07590.55920.088*0.900 (3)
C17A0.46607 (12)0.09565 (5)0.6332 (4)0.0670 (6)0.900 (3)
H17A0.47670.10580.77670.080*0.900 (3)
C16A0.4056 (4)0.0970 (4)0.529 (3)0.0747 (14)0.900 (3)
H16A0.37100.10870.59000.090*0.900 (3)
S1A0.47511 (8)0.06280 (3)0.26734 (16)0.0755 (3)0.900 (3)
C15B0.40114 (9)0.07913 (4)0.3214 (3)0.0513 (5)0.100 (3)
C17B0.46607 (12)0.09565 (5)0.6332 (4)0.0670 (6)0.100 (3)
H17B0.47810.10580.77500.080*0.100 (3)
C18B0.50774 (12)0.07874 (5)0.5125 (5)0.0731 (7)0.100 (3)
H18B0.55120.07580.56020.088*0.100 (3)
C16B0.481 (3)0.0659 (10)0.311 (4)0.0755 (3)0.100 (3)
H16B0.50130.05320.19600.091*0.100 (3)
S1B0.3980 (11)0.0978 (10)0.532 (7)0.0747 (14)0.100 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0532 (11)0.0451 (11)0.0528 (11)−0.0072 (9)0.0047 (9)−0.0017 (9)
C20.0557 (12)0.0503 (12)0.0754 (13)−0.0021 (10)−0.0032 (11)−0.0117 (11)
C30.0575 (12)0.0517 (12)0.0874 (16)0.0001 (10)0.0055 (12)−0.0126 (12)
C40.0699 (14)0.0503 (13)0.0717 (13)−0.0051 (11)0.0093 (13)−0.0153 (12)
C50.0684 (13)0.0544 (12)0.0555 (11)−0.0128 (10)0.0014 (11)−0.0072 (11)
C60.0570 (11)0.0428 (11)0.0473 (10)−0.0082 (9)0.0039 (10)−0.0004 (9)
C70.0542 (11)0.0438 (11)0.0500 (11)−0.0054 (9)0.0035 (9)0.0041 (10)
C80.0657 (13)0.0608 (13)0.0557 (10)−0.0042 (11)−0.0049 (12)0.0017 (11)
C90.0649 (14)0.0688 (15)0.0673 (15)−0.0031 (11)−0.0130 (11)0.0128 (12)
C100.0643 (13)0.0580 (13)0.0750 (14)0.0076 (10)−0.0009 (12)0.0077 (13)
C110.0671 (13)0.0519 (12)0.0634 (12)0.0033 (10)0.0028 (12)−0.0026 (11)
C120.0520 (11)0.0468 (10)0.0483 (11)−0.0047 (9)0.0057 (8)0.0018 (9)
C130.0528 (10)0.0461 (10)0.0482 (11)−0.0072 (9)0.0042 (9)0.0000 (9)
C140.0555 (11)0.0487 (11)0.0513 (11)−0.0028 (9)0.0087 (9)−0.0005 (9)
C15A0.0598 (12)0.0461 (11)0.0480 (11)−0.0100 (9)−0.0005 (9)0.0023 (9)
C18A0.0757 (15)0.0666 (15)0.0771 (14)−0.0061 (12)−0.0193 (14)0.0019 (14)
C17A0.0865 (16)0.0614 (14)0.0531 (12)−0.0118 (13)−0.0108 (12)−0.0052 (12)
C16A0.082 (3)0.0744 (16)0.0680 (12)−0.022 (2)−0.005 (2)0.0022 (11)
S1A0.0667 (6)0.0868 (6)0.0731 (5)0.0098 (4)−0.0143 (4)−0.0252 (5)
C15B0.0598 (12)0.0461 (11)0.0480 (11)−0.0100 (9)−0.0005 (9)0.0023 (9)
C17B0.0865 (16)0.0614 (14)0.0531 (12)−0.0118 (13)−0.0108 (12)−0.0052 (12)
C18B0.0757 (15)0.0666 (15)0.0771 (14)−0.0061 (12)−0.0193 (14)0.0019 (14)
C16B0.0667 (6)0.0868 (6)0.0731 (5)0.0098 (4)−0.0143 (4)−0.0252 (5)
S1B0.082 (3)0.0744 (16)0.0680 (12)−0.022 (2)−0.005 (2)0.0022 (11)

Geometric parameters (Å, °)

C1—C21.387 (3)C10—C111.377 (3)
C1—C61.403 (3)C10—H10A0.9500
C1—C131.487 (3)C11—C121.391 (3)
C2—C31.389 (3)C11—H11A0.9500
C2—H2A0.9500C12—C131.474 (3)
C3—C41.371 (3)C13—C141.363 (3)
C3—H3A0.9500C14—C15A1.442 (3)
C4—C51.385 (3)C14—H14A0.9500
C4—H4A0.9500C15A—C16A1.416 (19)
C5—C61.380 (3)C15A—S1A1.725 (3)
C5—H5A0.9500C18A—C17A1.332 (3)
C6—C71.464 (3)C18A—S1A1.692 (3)
C7—C81.377 (3)C18A—H18A0.9500
C7—C121.405 (3)C17A—C16A1.388 (3)
C8—C91.386 (3)C17A—H17A0.9500
C8—H8A0.9500C16A—H16A0.9500
C9—C101.384 (3)C16B—H16B0.9500
C9—H9A0.9500
C2—C1—C6118.53 (18)C11—C10—H10A119.5
C2—C1—C13133.10 (18)C9—C10—H10A119.5
C6—C1—C13108.35 (17)C10—C11—C12119.2 (2)
C1—C2—C3119.2 (2)C10—C11—H11A120.4
C1—C2—H2A120.4C12—C11—H11A120.4
C3—C2—H2A120.4C11—C12—C7119.26 (19)
C4—C3—C2121.6 (2)C11—C12—C13131.25 (18)
C4—C3—H3A119.2C7—C12—C13109.45 (17)
C2—C3—H3A119.2C14—C13—C12120.45 (17)
C3—C4—C5120.2 (2)C14—C13—C1134.33 (19)
C3—C4—H4A119.9C12—C13—C1105.19 (16)
C5—C4—H4A119.9C13—C14—C15A136.09 (18)
C6—C5—C4118.6 (2)C13—C14—H14A112.0
C6—C5—H5A120.7C15A—C14—H14A112.0
C4—C5—H5A120.7C16A—C15A—C14122.8 (4)
C5—C6—C1121.84 (18)C16A—C15A—S1A108.9 (4)
C5—C6—C7129.06 (17)C14—C15A—S1A128.03 (14)
C1—C6—C7109.09 (16)C17A—C18A—S1A113.1 (2)
C8—C7—C12121.16 (18)C17A—C18A—H18A123.5
C8—C7—C6131.03 (19)S1A—C18A—H18A123.5
C12—C7—C6107.78 (17)C18A—C17A—C16A113.4 (9)
C7—C8—C9118.8 (2)C18A—C17A—H17A123.3
C7—C8—H8A120.6C16A—C17A—H17A123.3
C9—C8—H8A120.6C17A—C16A—C15A112.5 (12)
C10—C9—C8120.5 (2)C17A—C16A—H16A123.8
C10—C9—H9A119.8C15A—C16A—H16A123.8
C8—C9—H9A119.8C18A—S1A—C15A92.08 (13)
C11—C10—C9121.1 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C2—H2A···S1A0.952.553.311 (4)139

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2086).

References

  • Allen, F. H. (2002). Acta Cryst. B58, 380–388. [PubMed]
  • Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst.37, 335–338.
  • Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.
  • Fave, C., Hissler, M., Karpati, T., Rault-Berthelot, J., Deborde, V., Toupet, L., Nyulaszi, L. & Reau, R. (2004). J. Am. Chem. Soc.126, 6058–6059. [PubMed]
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Lukeš, V., Végh, D., Hrdlovič, P., Štefko, M., Matuszna, K. & Laurinc, V. (2003). Synth. Met. pp. 399–408.
  • Mullen, K. & Wegner, G. (1998). Electronic Materials: The Oligomer Approach. New York: Wiley.
  • Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
  • Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography