PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): o271.
Published online 2007 December 12. doi:  10.1107/S1600536807065750
PMCID: PMC2915326

N,N′-Bis(2-furylmethyl­ene)-1,1′-binaphthyl-2,2′-diamine

Abstract

In the title compound, C30H20N2O2, the orientation of the furyl group may induce a variety of coordination modes with this ligand. The dihedral angle between the two naphthyl rings is 79.25 (7)°. The furyl groups make dihedral angles of 62.0 (1) and 16.3 (2)° with the attached naphthyl groups. The dihedral angle between the two furyl rings is 49.3 (2)°.

Related literature

For related literature see: Chen et al. (1995 [triangle]); Dang et al. (1971 [triangle]); Grubbs et al. (1977 [triangle]); Horner et al. (1968 [triangle]); Miyashita et al. (1980 [triangle]); Nishinaga et al. (1988 [triangle]); Pertici et al. (1996 [triangle]); Rosini et al. (1992 [triangle]); Suda et al. (1983 [triangle]); Spassky et al. (1996 [triangle]); Suga et al. (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o271-scheme1.jpg

Experimental

Crystal data

  • C30H20N2O2
  • M r = 440.48
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o271-efi1.jpg
  • a = 8.2433 (2) Å
  • b = 15.5046 (3) Å
  • c = 17.7432 (3) Å
  • β = 91.309 (3)°
  • V = 2267.15 (8) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 293 (2) K
  • 0.23 × 0.15 × 0.12 mm

Data collection

  • Enraf–Nonius TurboCAD-4 diffractometer
  • Absorption correction: none
  • 4133 measured reflections
  • 4016 independent reflections
  • 1600 reflections with I > 2σ(I)
  • R int = 0.028
  • 2 standard reflections frequency: 120 min intensity decay: −1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.063
  • wR(F 2) = 0.146
  • S = 0.97
  • 4016 reflections
  • 331 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.17 e Å−3
  • Δρmin = −0.18 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994 [triangle]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999 [triangle]).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807065750/hj2001sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807065750/hj2001Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

The importance of axially chiral ligands in catalytic asymmetric reactions is well known in the development of stereoselective hydrogenation of olefins.The low enantiomeric excess induced by the first chiral monodentate phosphane ligands (Horner et al., 1968) was soon enhanced by chelating bisphosphanes (Dang et al., 1971). Axially chiral ligands were first reported in a hydrogenation reaction in 1977 and have gained ground ever since (Grubbs et al., 1977).In addition to the biaryl backbone bisphosphanes (2,2'-bis (diphenylphosphino)-1,1'-binaphthyl) (Miyashita et al., 1980), derivatives of the corresponding diamines (biphenyldiamine and binaphthyldiamine) have performed successfully in many asymmetric catalytic reactions (Rosini et al., 1992). These include stereoselective polymerizations of methacrylate (Suda et al., 1983) and lactate (Spassky et al., 1996) and numerous enantioselective modifications of olefins such as epoxidation (Nishinaga et al., 1988), aziridination (Suga et al., 2003), cyclopropanation (Chen et al., 1995) and hydrogenation (Pertici et al., 1996). With a structurally rigid binaphthyl ligand backbone, the configuration of the ligand is fixed and its axial chirality can efficiently be transmitted to the active site catalyst. We report here the crystal structure of (I) which was synthesized via condensation of the axially chiral binaphthyldiamine with the 2-furfuraldehyde. The centrosymmetric crystal structure shows that there is racemization which may occur during the reaction of condensation. The molecule of (I) has two imine groups with bond distances N1—C1 1.264 (5) Å and N2—C26 1.268 (4) Å. Each imine group is bound to a furfuryl group such that C1—C2 1.445 (5) and C26—C27 1.431 (5) Å. Variation between N—C (N1—C1 and N2—C26) and C—C (C1—C2 and C26—C27) bonds are statistically insignificant. The naphthyl rings make a dihedral angle of 79.25 (7) ° with one another. The furyl group C2C3C4C5O1 makes a dihedral angle of 62.0 (1) ° with its attached binaphthyl group. The other furyl makes a dihedral angle of 16.3 (2) ° with its binaphthyl group. The furyl groups make a dihedral angle of 49.3 (2) ° with one another.

Experimental

The title compound was obtained as follows: to a stirred solution of the 2-furfuraldehyde (0.067 g, 0.703 mmol) in absolute ethanol (10 ml) was added the enantiomerically pure 2,2'-diamino-1,1'-binaphthyl (0.1 g,0.35 mmol). The resulting suspension was heated at reflux for 24 h. The pure yellow ligand was obtained after crystallization in absolute ethanol.

Refinement

Hydrogen atoms H1, H3, H4, H5, H26, H28, H29 and H30 were located in a Fourier map and refined freely. All the other H atoms were placed in calculated positions and allowed to ride during subsequent refinement. The range of bond lengths to hydrogen is between 0.92 and 1.09 Å. Uiso of the H atoms were set to be equal to 1.2 Uiso of the parent atoms.

Figures

Fig. 1.
View of the molecule of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are omitted.

Crystal data

C30H20N2O2F000 = 920
Mr = 440.48Dx = 1.290 Mg m3
Monoclinic, P21/nMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 8.2433 (2) Åθ = 9.9–11.0º
b = 15.5046 (3) ŵ = 0.08 mm1
c = 17.7432 (3) ÅT = 293 (2) K
β = 91.309 (3)ºPrism, yellow
V = 2267.15 (8) Å30.23 × 0.15 × 0.12 mm
Z = 4

Data collection

Enraf–Nonius TurboCAD-4 diffractometerRint = 0.028
Radiation source: fine-focus sealed tubeθmax = 25º
Monochromator: graphiteθmin = 2.3º
T = 293(2) Kh = −10→10
non–profiled ω scansk = 0→18
Absorption correction: nonel = 0→21
4133 measured reflections2 standard reflections
4016 independent reflections every 120 min
1600 reflections with I > 2σ(I) intensity decay: −1%

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.063H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.146  w = 1/[σ2(Fo2) + (0.0464P)2] where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max < 0.001
4016 reflectionsΔρmax = 0.17 e Å3
331 parametersΔρmin = −0.18 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.9295 (4)0.7193 (2)−0.20480 (18)0.0883 (10)
O20.4942 (3)0.94701 (19)−0.06519 (15)0.0583 (7)
N11.0080 (4)0.7947 (2)−0.0674 (2)0.0614 (10)
N20.6396 (3)0.7971 (2)−0.00840 (18)0.0503 (9)
C11.0368 (5)0.8348 (3)−0.1278 (3)0.0640 (13)
H11.086 (4)0.900 (2)−0.128 (2)0.077*
C21.0049 (5)0.7968 (3)−0.2010 (3)0.0572 (11)
C31.0277 (6)0.8265 (3)−0.2713 (3)0.0731 (15)
H31.068 (5)0.882 (3)−0.281 (2)0.088*
C40.9647 (6)0.7628 (4)−0.3211 (3)0.0820 (16)
H40.959 (5)0.767 (3)−0.373 (2)0.098*
C50.9084 (6)0.7002 (4)−0.2798 (3)0.0917 (17)
H50.863 (5)0.635 (3)−0.284 (2)0.110*
C61.0290 (4)0.8361 (2)0.0035 (2)0.0510 (11)
C71.1278 (5)0.9100 (3)0.0148 (3)0.0685 (13)
H71.18380.9331−0.02540.082*
C81.1413 (5)0.9477 (3)0.0842 (3)0.0670 (12)
H81.20560.99650.09080.080*
C91.0583 (5)0.9130 (3)0.1462 (3)0.0530 (11)
C101.0706 (5)0.9520 (3)0.2183 (3)0.0677 (13)
H101.13381.00120.22520.081*
C110.9906 (6)0.9180 (3)0.2772 (3)0.0758 (14)
H111.00080.94320.32470.091*
C120.8931 (5)0.8453 (3)0.2669 (2)0.0688 (13)
H120.83630.82330.30730.083*
C130.8799 (5)0.8062 (3)0.1986 (2)0.0568 (11)
H130.81590.75710.19300.068*
C140.9628 (4)0.8395 (2)0.1355 (2)0.0461 (10)
C150.9504 (4)0.7992 (2)0.0629 (2)0.0440 (10)
C160.8575 (4)0.7176 (2)0.05238 (19)0.0417 (9)
C170.7078 (4)0.7177 (3)0.0167 (2)0.0475 (10)
C180.6187 (5)0.6405 (3)0.0082 (2)0.0637 (12)
H180.51710.6412−0.01560.076*
C190.6821 (5)0.5652 (3)0.0349 (2)0.0703 (13)
H190.61990.51520.03090.085*
C200.8384 (5)0.5600 (3)0.0684 (2)0.0585 (11)
C210.9119 (7)0.4816 (3)0.0909 (2)0.0769 (14)
H210.85410.43030.08590.092*
C221.0659 (7)0.4800 (3)0.1198 (3)0.0835 (16)
H221.11310.42800.13460.100*
C231.1524 (6)0.5562 (3)0.1273 (2)0.0754 (14)
H231.25810.55480.14670.090*
C241.0856 (5)0.6329 (3)0.1068 (2)0.0610 (12)
H241.14610.68310.11290.073*
C250.9267 (5)0.6381 (2)0.0765 (2)0.0472 (10)
C260.5987 (5)0.8037 (3)−0.0775 (2)0.0540 (11)
H260.619 (4)0.759 (2)−0.1130 (19)0.065*
C270.5253 (5)0.8786 (3)−0.1108 (2)0.0525 (11)
C280.4798 (7)0.8988 (3)−0.1816 (3)0.0823 (16)
H280.500 (5)0.863 (3)−0.223 (2)0.099*
C290.4167 (6)0.9820 (4)−0.1811 (3)0.0842 (17)
H290.370 (5)1.015 (3)−0.221 (2)0.102*
C300.4264 (6)1.0095 (3)−0.1108 (3)0.0713 (14)
H300.399 (5)1.066 (2)−0.082 (2)0.085*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C150.039 (2)0.042 (2)0.050 (3)−0.0070 (19)−0.009 (2)0.006 (2)
O20.0567 (17)0.0603 (19)0.0581 (17)0.0050 (16)0.0043 (14)0.0058 (17)
C140.037 (2)0.044 (3)0.056 (3)−0.004 (2)−0.013 (2)0.004 (2)
N20.0426 (19)0.057 (2)0.051 (2)−0.0002 (17)−0.0076 (17)−0.0008 (18)
C160.043 (2)0.041 (2)0.041 (2)−0.005 (2)−0.0010 (18)0.0004 (19)
C60.048 (3)0.047 (3)0.058 (3)−0.004 (2)−0.002 (2)0.003 (2)
C170.046 (2)0.047 (3)0.049 (3)−0.004 (2)−0.006 (2)0.000 (2)
N10.065 (2)0.065 (2)0.055 (2)−0.013 (2)0.0055 (19)0.011 (2)
O10.104 (3)0.089 (3)0.073 (2)−0.031 (2)0.0025 (19)0.001 (2)
C90.045 (3)0.045 (3)0.068 (3)−0.004 (2)−0.014 (2)−0.002 (2)
C180.058 (3)0.053 (3)0.079 (3)−0.011 (3)−0.014 (2)−0.009 (2)
C270.055 (3)0.055 (3)0.047 (3)−0.008 (2)−0.009 (2)0.007 (2)
C120.080 (3)0.073 (3)0.053 (3)−0.006 (3)−0.005 (2)−0.010 (3)
C250.055 (3)0.043 (3)0.044 (2)−0.006 (2)−0.001 (2)0.000 (2)
C20.056 (3)0.050 (3)0.066 (3)−0.002 (2)0.009 (2)0.007 (3)
C260.049 (3)0.059 (3)0.053 (3)−0.005 (2)−0.003 (2)−0.009 (2)
C200.068 (3)0.053 (3)0.055 (3)−0.009 (3)0.001 (2)0.002 (2)
C80.051 (3)0.056 (3)0.094 (4)−0.015 (2)−0.007 (3)−0.008 (3)
C130.062 (3)0.051 (3)0.057 (3)−0.008 (2)−0.007 (2)0.000 (2)
C240.068 (3)0.055 (3)0.059 (3)0.006 (2)−0.016 (2)0.005 (2)
C10.071 (3)0.055 (3)0.066 (3)0.001 (3)0.010 (3)−0.005 (3)
C70.059 (3)0.063 (3)0.084 (4)−0.021 (2)0.007 (3)0.005 (3)
C300.066 (3)0.067 (3)0.081 (4)0.005 (3)0.009 (3)0.024 (3)
C110.089 (4)0.072 (4)0.065 (3)−0.002 (3)−0.019 (3)−0.015 (3)
C100.067 (3)0.051 (3)0.084 (3)−0.009 (2)−0.024 (3)−0.011 (3)
C210.117 (4)0.049 (3)0.065 (3)−0.003 (3)0.004 (3)0.009 (2)
C230.085 (3)0.064 (3)0.076 (3)0.010 (3)−0.017 (3)0.008 (3)
C190.079 (3)0.048 (3)0.084 (3)−0.022 (3)−0.002 (3)−0.003 (3)
C290.089 (4)0.081 (4)0.082 (4)−0.009 (3)−0.025 (3)0.026 (3)
C50.095 (4)0.110 (5)0.071 (4)−0.016 (4)−0.001 (3)−0.014 (4)
C40.073 (3)0.115 (5)0.058 (3)0.016 (3)0.010 (3)0.003 (4)
C30.092 (4)0.062 (3)0.067 (3)0.005 (3)0.023 (3)0.010 (3)
C280.112 (4)0.071 (4)0.062 (4)0.000 (3)−0.013 (3)0.001 (3)
C220.115 (5)0.067 (4)0.068 (3)0.028 (4)−0.003 (3)0.017 (3)

Geometric parameters (Å, °)

C15—C61.374 (5)C26—H260.95 (3)
C15—C141.434 (5)C20—C191.409 (5)
C15—C161.488 (5)C20—C211.413 (6)
O2—C271.363 (4)C8—C71.366 (5)
O2—C301.373 (5)C8—H80.9300
C14—C91.395 (5)C13—H130.9300
C14—C131.421 (5)C24—C231.357 (5)
N2—C261.268 (4)C24—H240.9300
N2—C171.421 (4)C1—H11.09 (4)
C16—C171.374 (4)C7—H70.9300
C16—C251.420 (5)C30—C291.320 (6)
C6—C71.418 (5)C30—H301.04 (4)
C6—N11.420 (4)C11—C101.356 (6)
C17—C181.410 (5)C11—H110.9300
N1—C11.264 (5)C10—H100.9300
O1—C21.354 (5)C21—C221.359 (6)
O1—C51.370 (5)C21—H210.9300
C9—C81.415 (5)C23—C221.385 (6)
C9—C101.416 (5)C23—H230.9300
C18—C191.361 (5)C19—H190.9300
C18—H180.9300C29—C281.392 (6)
C27—C281.339 (5)C29—H290.95 (4)
C27—C261.431 (5)C5—C41.308 (7)
C12—C131.357 (5)C5—H51.08 (4)
C12—C111.394 (5)C4—C31.416 (7)
C12—H120.9300C4—H40.92 (4)
C25—C241.407 (5)C3—H30.94 (4)
C25—C201.418 (5)C28—H280.93 (4)
C2—C31.348 (5)C22—H220.9300
C2—C11.445 (5)
C6—C15—C14118.8 (4)C12—C13—H13119.6
C6—C15—C16120.6 (3)C14—C13—H13119.6
C14—C15—C16120.6 (4)C23—C24—C25121.4 (4)
C27—O2—C30106.2 (3)C23—C24—H24119.3
C9—C14—C13118.0 (4)C25—C24—H24119.3
C9—C14—C15120.4 (4)N1—C1—C2121.8 (4)
C13—C14—C15121.6 (4)N1—C1—H1122 (2)
C26—N2—C17117.9 (3)C2—C1—H1115.8 (19)
C17—C16—C25119.3 (3)C8—C7—C6120.5 (4)
C17—C16—C15120.8 (3)C8—C7—H7119.8
C25—C16—C15119.9 (3)C6—C7—H7119.8
C15—C6—C7120.6 (4)C29—C30—O2110.1 (5)
C15—C6—N1116.2 (4)C29—C30—H30136 (2)
C7—C6—N1123.2 (4)O2—C30—H30114 (2)
C16—C17—C18120.6 (4)C10—C11—C12120.2 (4)
C16—C17—N2119.3 (3)C10—C11—H11119.9
C18—C17—N2120.0 (3)C12—C11—H11119.9
C1—N1—C6120.5 (4)C11—C10—C9120.2 (4)
C2—O1—C5106.8 (4)C11—C10—H10119.9
C14—C9—C8119.1 (4)C9—C10—H10119.9
C14—C9—C10120.1 (4)C22—C21—C20120.9 (5)
C8—C9—C10120.9 (4)C22—C21—H21119.6
C19—C18—C17119.8 (4)C20—C21—H21119.6
C19—C18—H18120.1C24—C23—C22121.2 (4)
C17—C18—H18120.1C24—C23—H23119.4
C28—C27—O2108.8 (4)C22—C23—H23119.4
C28—C27—C26133.2 (5)C18—C19—C20122.4 (4)
O2—C27—C26118.0 (4)C18—C19—H19118.8
C13—C12—C11120.9 (4)C20—C19—H19118.8
C13—C12—H12119.6C30—C29—C28106.9 (5)
C11—C12—H12119.6C30—C29—H29123 (3)
C24—C25—C20117.4 (4)C28—C29—H29130 (3)
C24—C25—C16121.9 (4)C4—C5—O1110.2 (5)
C20—C25—C16120.6 (4)C4—C5—H5142 (2)
C3—C2—O1109.3 (4)O1—C5—H5107 (2)
C3—C2—C1131.9 (5)C5—C4—C3107.3 (5)
O1—C2—C1118.7 (4)C5—C4—H4127 (3)
N2—C26—C27124.5 (4)C3—C4—H4126 (3)
N2—C26—H26122 (2)C2—C3—C4106.4 (4)
C27—C26—H26113 (2)C2—C3—H3123 (3)
C19—C20—C21123.4 (4)C4—C3—H3130 (3)
C19—C20—C25117.2 (4)C27—C28—C29107.9 (5)
C21—C20—C25119.4 (4)C27—C28—H28123 (3)
C7—C8—C9120.5 (4)C29—C28—H28129 (3)
C7—C8—H8119.7C21—C22—C23119.7 (5)
C9—C8—H8119.7C21—C22—H22120.2
C12—C13—C14120.7 (4)C23—C22—H22120.2
C6—C15—C14—C9−2.4 (5)C16—C25—C20—C190.8 (5)
C16—C15—C14—C9176.0 (3)C24—C25—C20—C210.2 (5)
C6—C15—C14—C13177.8 (3)C16—C25—C20—C21178.3 (4)
C16—C15—C14—C13−3.8 (5)C14—C9—C8—C70.3 (6)
C6—C15—C16—C17−76.0 (5)C10—C9—C8—C7−179.5 (4)
C14—C15—C16—C17105.6 (4)C11—C12—C13—C14−1.2 (6)
C6—C15—C16—C25101.2 (4)C9—C14—C13—C120.3 (5)
C14—C15—C16—C25−77.2 (4)C15—C14—C13—C12−179.9 (4)
C14—C15—C6—C73.3 (5)C20—C25—C24—C230.3 (6)
C16—C15—C6—C7−175.1 (4)C16—C25—C24—C23−177.8 (4)
C14—C15—C6—N1−178.1 (3)C6—N1—C1—C2−175.2 (4)
C16—C15—C6—N13.5 (5)C3—C2—C1—N1−179.0 (5)
C25—C16—C17—C184.0 (5)O1—C2—C1—N15.7 (7)
C15—C16—C17—C18−178.7 (4)C9—C8—C7—C60.6 (6)
C25—C16—C17—N2−179.1 (3)C15—C6—C7—C8−2.5 (6)
C15—C16—C17—N2−1.8 (5)N1—C6—C7—C8179.1 (4)
C26—N2—C17—C16124.2 (4)C27—O2—C30—C29−0.4 (5)
C26—N2—C17—C18−58.9 (5)C13—C12—C11—C101.7 (7)
C15—C6—N1—C1160.8 (4)C12—C11—C10—C9−1.3 (6)
C7—C6—N1—C1−20.7 (6)C14—C9—C10—C110.4 (6)
C13—C14—C9—C8−179.6 (3)C8—C9—C10—C11−179.9 (4)
C15—C14—C9—C80.6 (5)C19—C20—C21—C22177.0 (4)
C13—C14—C9—C100.1 (5)C25—C20—C21—C22−0.3 (6)
C15—C14—C9—C10−179.6 (3)C25—C24—C23—C22−0.7 (7)
C16—C17—C18—C19−0.6 (6)C17—C18—C19—C20−2.8 (6)
N2—C17—C18—C19−177.5 (4)C21—C20—C19—C18−174.6 (4)
C30—O2—C27—C280.6 (5)C25—C20—C19—C182.7 (6)
C30—O2—C27—C26179.4 (3)O2—C30—C29—C280.1 (6)
C17—C16—C25—C24173.9 (3)C2—O1—C5—C4−1.1 (6)
C15—C16—C25—C24−3.4 (5)O1—C5—C4—C30.5 (7)
C17—C16—C25—C20−4.1 (5)O1—C2—C3—C4−0.9 (5)
C15—C16—C25—C20178.6 (3)C1—C2—C3—C4−176.6 (5)
C5—O1—C2—C31.2 (5)C5—C4—C3—C20.2 (6)
C5—O1—C2—C1177.5 (4)O2—C27—C28—C29−0.5 (6)
C17—N2—C26—C27178.6 (3)C26—C27—C28—C29−179.1 (4)
C28—C27—C26—N2177.2 (5)C30—C29—C28—C270.2 (6)
O2—C27—C26—N2−1.4 (6)C20—C21—C22—C23−0.1 (7)
C24—C25—C20—C19−177.3 (4)C24—C23—C22—C210.6 (7)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HJ2001).

References

  • Chen, G. M., Chen, F. & Zhou, C. (1995). Gaodeng Xuexiao Huaxue Xuebao, 16, 216–218.
  • Dang, T. P. & Kagan, H. B. (1971). J. Chem. Soc. Chem. Commun. pp. 481–482.
  • Enraf–Nonius (1994). CAD-4 EXPRESS Software Enraf–Nonius, Delft, The Netherlands.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Grubbs, R. H. & De Vries, R. A. (1977). Tetrahedron Lett.22, 1879–1880.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • Horner, L., Siegel, H. & Buthe, H. (1968). Angew. Chem. Int. Ed. Engl.7, 942–943.
  • Miyashita, A., Yasuda, A., Takaya, H., Toriumi, K., Ito, T., Souchi, T. & Noyori, R. (1980). J. Am. Chem. Soc.102, 7932–7934.
  • Nishinaga, A., Yamato, H., Abe, T., Maruyama, K. & Matsuura, T. (1988). Tetrahedron Lett.29, 6309–6312.
  • Pertici, P., DArata, F. & Rosini, C. (1996). J. Organomet. Chem.515, 163–171.
  • Rosini, C., Franzini, L., Raffaelli, A. & Salvadori, P. (1992). Synthesis, pp. 503–517.
  • Sheldrick, G. M. (1997). SHELXL97 and SHELXS97 University of Göttingen, Germany.
  • Spassky, N., Wisniewski, M., Pluta, C. & Le Borgne, A. (1996). Macromol. Chem. Phys.197, 2627–2637.
  • Suda, H., Kanoh, S., Murose, N., Goka, S. & Motoi, M. (1983). Polym. Bull.10, 162–167.
  • Suga, H., Kakehi, A., Ito, S., Ibata, T., Fudo, T., Watanabe, Y. & Kinoshita, Y. (2003). Bull. Chem. Soc. Jpn, 76, 189–199.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography