PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): o259.
Published online 2007 December 12. doi:  10.1107/S1600536807065610
PMCID: PMC2915316

(E)-Ethyl 4-[4-(diethyl­amino)styr­yl]benzoate

Abstract

In the title mol­ecule, C21H25NO2, the dihedral angle between the two benzene rings is 4.8 (2)°. Both the ethyl group of the ester group and one of the ethyl groups attached to the N atom are disordered over two sites, the approximate occupancies being 66:34 and 81:19, respectively. In the cystal structure, there are no direction-specific inter­actions.

Related literature

For related literature, see: Boggess et al. (1986 [triangle]); Iwase et al. (2003 [triangle]); Marynaoff & Reitz (1989 [triangle]); Reinhardt et al. (1998 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o259-scheme1.jpg

Experimental

Crystal data

  • C21H25NO2
  • M r = 323.42
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o259-efi1.jpg
  • a = 7.8689 (11) Å
  • b = 8.8441 (11) Å
  • c = 26.404 (3) Å
  • V = 1837.6 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.07 mm−1
  • T = 292 (2) K
  • 0.25 × 0.20 × 0.18 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: none
  • 10027 measured reflections
  • 2043 independent reflections
  • 1118 reflections with I > 2σ(I)
  • R int = 0.121

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044
  • wR(F 2) = 0.112
  • S = 0.88
  • 2043 reflections
  • 261 parameters
  • 6 restraints
  • H-atom parameters constrained
  • Δρmax = 0.15 e Å−3
  • Δρmin = −0.14 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT-Plus (Bruker, 2001 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807065610/lh2575sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807065610/lh2575Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Two-photon absorption (TPA) of organic materials has attracted much attention because of its various applications in photonics (Iwase et al., 2003). For these applications, it is important to prepare materials having a TPA cross-section at the wavelength of available laser sources (Reinhardt et al.,1998). We report here the structure of a new compound containing a TPA cross-section. The measurement of the TPA cross-section was performed by the nonlinear transmission method (Boggess et al., 1986).

In the molecular structure, the two benzene rings are almost coplanar with a dihedral angle of only 4.8 (2)° between them (Fig.1). The bond lengths and angles in the molecule are as expected (Allen et al., 1987).

In the crystal structure, no H-bonding, C—H···π, or π-π interactions are observed. The crystal is stablized only by van der Waals interactions.

Experimental

All reagents and solvents were used as obtained without further purification. The title compound was prepared according to literature procedure (Marynaoff et al., 1989). The solid product was dissolved in ether and the solution kept in air for one week. Crystals of of the title compound suitable for single-crystal X-ray diffraction analysis were grown by slow evaporation of the solution at the bottom of the vessel.

Refinement

All H atoms were included in calculated positions with C—H = 0.93Å (aromatic and –CH=CH– moiety), 0.97Å (methylene), 0.96Å (methyl); Uiso(H)=1.2UeqC (aromatic, –CH=CH–, methylene) and Uiso(H)=1.5UeqC (methyl). Two ethyl groups (C16/C17/O2 & C20/C21/N1) are disordered over two sites and the corresponding N—C, C—C and O—C bond distances were refined by using the SHELXL97 (Sheldrick, 1997) commands; DFIX, EADP and EXYZ with the ratios of the refined occupancies being 0.66 (1):0.34 (1) and 0.81 (1):0.19 (1) for the major and minor components, respectively. In the absence of significant anomalous dispersion effects Fridel pairs were merged.

Figures

Fig. 1.
The molecular structure showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The disorder is not shown.

Crystal data

C21H25NO2F000 = 696
Mr = 323.42Dx = 1.169 Mg m3
Orthorhombic, Pna21Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 1356 reflections
a = 7.8689 (11) Åθ = 2.6–26.4º
b = 8.8441 (11) ŵ = 0.07 mm1
c = 26.404 (3) ÅT = 292 (2) K
V = 1837.6 (4) Å3Prism, orange
Z = 40.25 × 0.20 × 0.18 mm

Data collection

Bruker SMART CCD diffractometer1118 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.121
Monochromator: graphiteθmax = 27.0º
T = 292(2) Kθmin = 2.4º
[var phi] and ω scansh = −10→8
Absorption correction: nonek = −11→9
10027 measured reflectionsl = −33→33
2043 independent reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.112  w = 1/[σ2(Fo2) + (0.0476P)2] where P = (Fo2 + 2Fc2)/3
S = 0.88(Δ/σ)max = 0.001
2043 reflectionsΔρmax = 0.15 e Å3
261 parametersΔρmin = −0.14 e Å3
6 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0030 (12)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
C10.3128 (5)−0.0493 (5)0.53178 (16)0.0725 (10)
C20.4421 (5)−0.0245 (4)0.49197 (13)0.0623 (9)
C30.4259 (5)0.0791 (4)0.45313 (14)0.0757 (10)
H30.32820.13780.45080.091*
C40.5536 (5)0.0961 (4)0.41782 (14)0.0755 (11)
H40.53950.16590.39180.091*
C50.7031 (4)0.0120 (4)0.41986 (13)0.0600 (8)
C60.7157 (5)−0.0933 (4)0.45886 (14)0.0700 (10)
H60.8119−0.15400.46110.084*
C70.5887 (5)−0.1088 (4)0.49398 (14)0.0716 (10)
H70.6022−0.17860.52000.086*
C80.8356 (5)0.0350 (4)0.38217 (13)0.0636 (9)
H80.81290.10740.35750.076*
C90.9833 (5)−0.0335 (4)0.37851 (14)0.0652 (9)
H91.0058−0.10620.40310.078*
C101.1164 (4)−0.0102 (4)0.34089 (13)0.0576 (8)
C111.1104 (4)0.0989 (3)0.30381 (14)0.0613 (9)
H111.01810.16460.30310.074*
C121.2348 (4)0.1150 (4)0.26768 (13)0.0639 (9)
H121.22440.19010.24320.077*
C131.3780 (4)0.0193 (4)0.26715 (13)0.0598 (9)
C141.3851 (5)−0.0887 (4)0.30509 (15)0.0700 (9)
H141.4784−0.15310.30670.084*
C151.2587 (5)−0.1030 (4)0.34012 (14)0.0678 (9)
H151.2683−0.17820.36460.081*
O20.1775 (4)0.0376 (3)0.52482 (12)0.1001 (9)0.663 (19)
C160.0545 (15)0.0316 (14)0.5682 (5)0.076 (3)0.663 (19)
H16A−0.0044−0.06480.56910.091*0.663 (19)
H16B0.11270.04620.60020.091*0.663 (19)
C17−0.0668 (12)0.1578 (11)0.5583 (5)0.091 (4)0.663 (19)
H17A−0.00720.25240.55970.137*0.663 (19)
H17B−0.15480.15690.58350.137*0.663 (19)
H17C−0.11640.14530.52540.137*0.663 (19)
O2'0.1775 (4)0.0376 (3)0.52482 (12)0.1001 (9)0.337 (19)
C16'0.009 (5)0.025 (4)0.5492 (11)0.107 (10)0.337 (19)
H16C−0.0081−0.07250.56510.128*0.337 (19)
H16D−0.08330.04520.52570.128*0.337 (19)
C17'0.029 (5)0.149 (4)0.5871 (11)0.153 (12)0.337 (19)
H17D0.14120.14420.60150.230*0.337 (19)
H17E−0.05370.13710.61350.230*0.337 (19)
H17F0.01350.24480.57080.230*0.337 (19)
C181.4744 (5)0.1303 (4)0.18598 (12)0.0739 (10)
H18A1.58190.14480.16870.089*
H18B1.43490.22890.19700.089*
C191.3479 (5)0.0668 (5)0.14881 (15)0.0886 (11)
H19A1.3934−0.02320.13370.133*
H19B1.32550.14030.12290.133*
H19C1.24410.04290.16620.133*
N11.5034 (4)0.0366 (3)0.23066 (12)0.0738 (9)0.811 (11)
C201.6626 (7)−0.0480 (8)0.2327 (3)0.0763 (19)0.811 (11)
H20A1.6920−0.06650.26790.092*0.811 (11)
H20B1.75250.01260.21790.092*0.811 (11)
C211.6527 (8)−0.1943 (8)0.2057 (3)0.110 (2)0.811 (11)
H21A1.5812−0.26250.22430.166*0.811 (11)
H21B1.7645−0.23680.20270.166*0.811 (11)
H21C1.6059−0.17850.17250.166*0.811 (11)
N1'1.5034 (4)0.0366 (3)0.23066 (12)0.0738 (9)0.189 (11)
C20'1.599 (3)−0.1001 (14)0.2184 (12)0.083 (10)0.189 (11)
H20C1.5948−0.12090.18230.100*0.189 (11)
H20D1.5548−0.18670.23660.100*0.189 (11)
C21'1.775 (4)−0.065 (3)0.2346 (19)0.113 (19)0.189 (11)
H21D1.79600.04100.23070.170*0.189 (11)
H21E1.8538−0.12120.21410.170*0.189 (11)
H21F1.7893−0.09320.26950.170*0.189 (11)
O10.3244 (3)−0.1352 (3)0.56591 (12)0.0978 (9)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.064 (3)0.076 (2)0.078 (3)−0.010 (2)−0.002 (2)−0.003 (2)
C20.061 (2)0.063 (2)0.063 (2)−0.0091 (17)−0.0039 (18)0.0026 (18)
C30.065 (3)0.087 (2)0.075 (3)0.014 (2)0.010 (2)0.005 (2)
C40.081 (3)0.081 (2)0.065 (2)0.0169 (19)0.006 (2)0.0128 (19)
C50.069 (2)0.0576 (18)0.053 (2)−0.0048 (16)−0.0036 (19)−0.0054 (16)
C60.060 (2)0.078 (2)0.072 (2)0.0067 (17)0.001 (2)0.009 (2)
C70.071 (3)0.073 (2)0.071 (2)0.0006 (19)0.002 (2)0.0177 (18)
C80.072 (3)0.0589 (19)0.059 (2)−0.0024 (18)0.0006 (18)0.0005 (16)
C90.067 (2)0.062 (2)0.066 (2)−0.0011 (18)−0.0025 (19)0.0040 (18)
C100.059 (2)0.057 (2)0.057 (2)0.0024 (16)−0.0021 (18)−0.0014 (16)
C110.065 (2)0.056 (2)0.063 (2)0.0083 (16)0.0024 (19)0.0015 (18)
C120.068 (2)0.059 (2)0.065 (2)0.0102 (16)0.0009 (19)0.0066 (17)
C130.061 (2)0.0586 (19)0.059 (2)0.0038 (17)−0.0026 (19)−0.0067 (17)
C140.065 (2)0.073 (2)0.071 (2)0.0174 (18)−0.009 (2)0.007 (2)
C150.074 (2)0.066 (2)0.063 (2)0.0069 (18)−0.003 (2)0.0139 (18)
O20.080 (2)0.109 (2)0.111 (2)0.0086 (16)0.0270 (18)0.0163 (19)
C160.066 (6)0.091 (7)0.071 (8)−0.006 (4)0.011 (5)−0.001 (6)
C170.083 (6)0.080 (5)0.110 (7)0.008 (4)0.036 (5)0.004 (4)
O2'0.080 (2)0.109 (2)0.111 (2)0.0086 (16)0.0270 (18)0.0163 (19)
C16'0.11 (2)0.145 (19)0.070 (16)−0.042 (15)0.007 (11)−0.034 (13)
C17'0.15 (3)0.18 (2)0.13 (2)−0.044 (19)0.050 (18)−0.067 (18)
C180.071 (2)0.080 (2)0.071 (2)−0.0031 (18)0.007 (2)0.005 (2)
C190.088 (3)0.100 (3)0.078 (2)0.000 (2)−0.004 (2)0.005 (2)
N10.070 (2)0.082 (2)0.0688 (19)0.0183 (16)0.0061 (17)0.0071 (17)
C200.050 (5)0.090 (5)0.090 (4)0.003 (3)0.002 (3)0.002 (3)
C210.092 (4)0.113 (5)0.126 (5)0.035 (4)−0.013 (4)−0.026 (4)
N1'0.070 (2)0.082 (2)0.0688 (19)0.0183 (16)0.0061 (17)0.0071 (17)
C20'0.071 (17)0.062 (19)0.12 (2)−0.031 (12)0.046 (17)−0.037 (13)
C21'0.067 (19)0.09 (2)0.13 (6)−0.012 (17)−0.03 (3)0.06 (2)
O10.079 (2)0.120 (2)0.095 (2)−0.0136 (15)0.0086 (16)0.0296 (19)

Geometric parameters (Å, °)

C1—O11.182 (4)C16—H16A0.9700
C1—O21.326 (4)C16—H16B0.9700
C1—C21.479 (5)C17—H17A0.9600
C2—C71.374 (5)C17—H17B0.9600
C2—C31.381 (5)C17—H17C0.9600
C3—C41.379 (5)C16'—C17'1.492 (8)
C3—H30.9300C16'—H16C0.9700
C4—C51.393 (5)C16'—H16D0.9700
C4—H40.9300C17'—H17D0.9600
C5—C61.392 (5)C17'—H17E0.9600
C5—C81.456 (4)C17'—H17F0.9600
C6—C71.370 (5)C18—N11.460 (3)
C6—H60.9300C18—C191.506 (5)
C7—H70.9300C18—H18A0.9700
C8—C91.314 (4)C18—H18B0.9700
C8—H80.9300C19—H19A0.9600
C9—C101.458 (5)C19—H19B0.9600
C9—H90.9300C19—H19C0.9600
C10—C111.376 (4)N1—C201.460 (4)
C10—C151.389 (5)C20—C211.480 (7)
C11—C121.374 (4)C20—H20A0.9700
C11—H110.9300C20—H20B0.9700
C12—C131.409 (4)C21—H21A0.9600
C12—H120.9300C21—H21B0.9600
C13—C141.386 (5)C21—H21C0.9600
C13—N11.388 (4)C20'—C21'1.481 (7)
C14—C151.364 (5)C20'—H20C0.9700
C14—H140.9300C20'—H20D0.9700
C15—H150.9300C21'—H21D0.9600
O2—C161.502 (14)C21'—H21E0.9600
C16—C171.492 (8)C21'—H21F0.9600
O1—C1—O2122.7 (4)C17—C16—O2104.6 (8)
O1—C1—C2125.7 (4)C17—C16—H16A110.8
O2—C1—C2111.6 (4)O2—C16—H16A110.8
C7—C2—C3117.8 (3)C17—C16—H16B110.8
C7—C2—C1118.0 (3)O2—C16—H16B110.8
C3—C2—C1124.2 (4)H16A—C16—H16B108.9
C4—C3—C2120.5 (3)C17'—C16'—H16C112.1
C4—C3—H3119.8C17'—C16'—H16D112.2
C2—C3—H3119.8H16C—C16'—H16D109.8
C3—C4—C5122.1 (3)C16'—C17'—H17D109.5
C3—C4—H4119.0C16'—C17'—H17E109.5
C5—C4—H4119.0H17D—C17'—H17E109.5
C6—C5—C4116.5 (3)C16'—C17'—H17F109.5
C6—C5—C8123.3 (3)H17D—C17'—H17F109.5
C4—C5—C8120.3 (3)H17E—C17'—H17F109.5
C7—C6—C5121.1 (3)N1—C18—C19114.7 (3)
C7—C6—H6119.5N1—C18—H18A108.6
C5—C6—H6119.5C19—C18—H18A108.6
C6—C7—C2122.1 (3)N1—C18—H18B108.6
C6—C7—H7118.9C19—C18—H18B108.6
C2—C7—H7118.9H18A—C18—H18B107.6
C9—C8—C5128.2 (3)C18—C19—H19A109.5
C9—C8—H8115.9C18—C19—H19B109.5
C5—C8—H8115.9H19A—C19—H19B109.5
C8—C9—C10128.3 (3)C18—C19—H19C109.5
C8—C9—H9115.8H19A—C19—H19C109.5
C10—C9—H9115.8H19B—C19—H19C109.5
C11—C10—C15115.6 (3)C13—N1—C18120.8 (3)
C11—C10—C9124.0 (3)C13—N1—C20121.9 (3)
C15—C10—C9120.4 (3)C18—N1—C20117.1 (4)
C12—C11—C10122.8 (3)N1—C20—C21112.6 (6)
C12—C11—H11118.6N1—C20—H20A109.1
C10—C11—H11118.6C21—C20—H20A109.1
C11—C12—C13120.9 (3)N1—C20—H20B109.1
C11—C12—H12119.5C21—C20—H20B109.1
C13—C12—H12119.5H20A—C20—H20B107.8
C14—C13—N1123.3 (3)C21'—C20'—H20C110.9
C14—C13—C12116.1 (3)C21'—C20'—H20D110.9
N1—C13—C12120.6 (3)H20C—C20'—H20D108.9
C15—C14—C13121.6 (3)C20'—C21'—H21D109.5
C15—C14—H14119.2C20'—C21'—H21E109.5
C13—C14—H14119.2H21D—C21'—H21E109.5
C14—C15—C10122.9 (3)C20'—C21'—H21F109.5
C14—C15—H15118.5H21D—C21'—H21F109.5
C10—C15—H15118.5H21E—C21'—H21F109.5
C1—O2—C16113.1 (4)
O1—C1—C2—C70.6 (5)C9—C10—C11—C12−177.6 (3)
O2—C1—C2—C7−179.1 (3)C10—C11—C12—C13−0.5 (5)
O1—C1—C2—C3−178.6 (4)C11—C12—C13—C14−0.6 (5)
O2—C1—C2—C31.6 (5)C11—C12—C13—N1−179.8 (3)
C7—C2—C3—C40.0 (5)N1—C13—C14—C15−179.6 (3)
C1—C2—C3—C4179.3 (3)C12—C13—C14—C151.3 (5)
C2—C3—C4—C5−0.6 (6)C13—C14—C15—C10−1.0 (6)
C3—C4—C5—C61.5 (5)C11—C10—C15—C14−0.2 (5)
C3—C4—C5—C8−179.2 (3)C9—C10—C15—C14178.4 (3)
C4—C5—C6—C7−1.9 (5)O1—C1—O2—C168.3 (8)
C8—C5—C6—C7178.8 (3)C2—C1—O2—C16−172.0 (7)
C5—C6—C7—C21.4 (5)C1—O2—C16—C17168.7 (10)
C3—C2—C7—C6−0.5 (5)C14—C13—N1—C18167.6 (3)
C1—C2—C7—C6−179.8 (3)C12—C13—N1—C18−13.4 (5)
C6—C5—C8—C9−0.9 (5)C14—C13—N1—C20−6.7 (6)
C4—C5—C8—C9179.8 (3)C12—C13—N1—C20172.3 (5)
C5—C8—C9—C10−179.8 (3)C19—C18—N1—C13−69.5 (4)
C8—C9—C10—C114.4 (5)C19—C18—N1—C20105.0 (5)
C8—C9—C10—C15−174.1 (3)C13—N1—C20—C2189.9 (6)
C15—C10—C11—C120.9 (5)C18—N1—C20—C21−84.6 (6)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2575).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Boggess, T. F. Jr, Bohnert, K. M., Mansour, K., Moss, S. C. & Boyd, I. W. (1986). IEEE J. Quant. Electron.22, 360–368.
  • Bruker (2001). SAINT-Plus (Version 6.45) and SMART (Version 5.628). Bruker AXS, Inc., Madison, Wisconsin, USA.
  • Iwase, Y., Ohta, K. & Kondo, K. (2003). J. Mater. Chem.13, 1575–1581.
  • Marynaoff, B. E. & Reitz, A. B. (1989). Chem. Rev.89, 863–927.
  • Reinhardt, B. A., Brott, L. L., Clarson, S. J., Dillard, A. G., Bhatt, J. C., Kannan, R., Yuan, L. & He, G. S. (1998). Chem. Mater.10, 1863–1874.
  • Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography