PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): o248.
Published online 2007 December 12. doi:  10.1107/S1600536807065543
PMCID: PMC2915305

1,3-Bis(2,6-diisopropyl­anilino)-1-phenyl­butyl­ium hexa­fluorido­phosphate

Abstract

The cation of the title salt, C34H45N2 +·PF6 , is a protonated form of an unsymmetrical overcrowded β-imino­amine. The observed bond lengths [C—N = 1.326 (4)–1.341 (4) Å and C—C = 1.383 (4)–1.391 (4) Å] suggest significant delocalization within the π system of the N C C C N backbone.

Related literature

For related literature, see: Allen et al. (1987 [triangle]); Bourget-Merle et al. (2002 [triangle]); Filipou et al. (1993 [triangle]); Landolsi et al. (2002 [triangle], 2008 [triangle]); Mair et al. (1995 [triangle]); Parks & Holm (1968 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o248-scheme1.jpg

Experimental

Crystal data

  • C34H45N2 +·F6P
  • M r = 626.69
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o248-efi1.jpg
  • a = 12.4688 (2) Å
  • b = 15.6981 (2) Å
  • c = 17.4329 (3) Å
  • β = 95.563 (3)°
  • V = 3396.18 (9) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.14 mm−1
  • T = 293 (2) K
  • 0.31 × 0.21 × 0.16 mm

Data collection

  • Enraf–Nonius TurboCAD-4 diffractometer
  • Absorption correction: none
  • 10101 measured reflections
  • 5966 independent reflections
  • 3165 reflections with I > 2σ(I)
  • R int = 0.028
  • 2 standard reflections frequency: 120 min intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.060
  • wR(F 2) = 0.175
  • S = 1.02
  • 5966 reflections
  • 416 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.45 e Å−3
  • Δρmin = −0.27 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994 [triangle]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999 [triangle]).

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807065543/gk2111sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807065543/gk2111Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Chtioui Ahlem for the structure refinement.

supplementary crystallographic information

Comment

β-Iminoamine complexes or β-diketiminato complexes (also known as diazapentadienyl complexes) were first reported in 1968 (Parks et al., 1968) and a few reports of their structural characterizations appeared since then (Mair et al., 1995; Filipou et al., 1993). Attention to their structural chemistry is quite recent. The β-diketiminates have been recognized as ancillary ligands owing to their exceptional steric and electronic properties that can be readily modified by variation of the substituents in the main framework (Bourget-Merle et al., 2002). Recently we have been interested in synthesis of new unsymmetrical β-iminoamines with bulky substituents attached to the nitrogen atoms and their coordination chemistry (Landolsi et al., 2002). Here we report the crystal structure of the hexafluorophosphate salt of overcrowded β-iminoamine.

The PF6- anion possess an octahedral geometry with the P—F distances ranging from 1.525 (3) to 1.589 (3) Å. The cation shows the W-shaped open conformation whereas the neutral form exhibit the U-shaped closed conformation (Landolsi et al., 2008). The N—C and the C—C bond distances of the N—C—C—C—N backbone (Table 1) are intermediate between single and double-bond lengths, that suggests significant delocalization within the π-system (Allen et al., 1987). One N—C bond is longer than the other, this difference can possibly be attributed to the different groups attached to C1 and C3. This bis-(iminium) salt can be used as prospective starting materiels for organoelement and coordination chemistry.

Experimental

The title compound was obtained as a result of attempted recrystallization of the hexafluorophosphate methallyl β-diimine nickel complex, (C4 H7) Ni (C34 H44 N2) PF6 (100 mg, 0.135 mmoles) from methylene chloride (15 ml)\acetic acid (0.05%) mixture, which resulted in decomposition of the complex. The Ni complex was prepared by an oxidative addition of the hexafluorophosphate methallyloxyphosphonium salt (54 mg, 0.143 mmoles) to the (β-diimine)Ni spieces generated in situ by the chemical reduction of (β-diimine)NiBr2 (100 mg, 0.143 mmoles) with zinc (190 mg, 2.860 mmoles) in methylene chloride (20 ml). Crystals for X-ray analysis were obtained from a diluted solution of the title compound (10 mg, 0.013 mmoles) in methylene chloride /n-hexane (15 ml/15 ml) at 243 K.

Refinement

Hydrogen atoms H2, HN1 and HN2 were located in a Fourier map and refined freely. All the other H atoms were placed in calculated positions and allowed to ride on their parent atom. Uiso of H atoms are equal to 1.2 Ueq of the parent atom.

Figures

Fig. 1.
View of the cation with displacement ellipsoids drawn at the 30% probability level. H atoms and the hexaflororphosphate anion are omitted for clarity.
Fig. 2.
View of the anion and a fragment of the cation with displacement ellipsoids are drawn at the 30% probability level.

Crystal data

C34H45N2+·F6PF000 = 1328
Mr = 626.69Dx = 1.226 Mg m3
Monoclinic, P21/nMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 12.4688 (2) Åθ = 9.3–11.3º
b = 15.6981 (2) ŵ = 0.14 mm1
c = 17.4329 (3) ÅT = 293 (2) K
β = 95.563 (3)ºPrism, colourless
V = 3396.18 (9) Å30.31 × 0.21 × 0.16 mm
Z = 4

Data collection

Enraf–Nonius TurboCAD-4 diffractometerRint = 0.028
Radiation source: fine-focus sealed tubeθmax = 25.0º
Monochromator: graphiteθmin = 2.1º
T = 293(2) Kh = −14→14
non–profiled ω scansk = 0→18
Absorption correction: nonel = −10→20
10101 measured reflections2 standard reflections
5966 independent reflections every 120 min
3165 reflections with I > 2σ(I) intensity decay: 1%

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.060H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.175  w = 1/[σ2(Fo2) + (0.0756P)2 + 1.269P] where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.003
5966 reflectionsΔρmax = 0.45 e Å3
416 parametersΔρmin = −0.27 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
P1−0.00211 (8)0.84236 (7)0.17439 (7)0.0746 (4)
F1−0.0452 (2)0.91779 (17)0.22077 (19)0.1208 (10)
F20.0651 (3)0.8051 (2)0.24702 (19)0.1345 (11)
F30.0425 (3)0.76825 (19)0.1260 (2)0.1384 (12)
F40.1024 (2)0.8969 (2)0.1625 (2)0.1362 (12)
F5−0.1013 (2)0.7896 (2)0.1879 (3)0.198 (2)
F6−0.0594 (3)0.8823 (2)0.1000 (2)0.1797 (18)
N10.3134 (2)0.81810 (16)0.25332 (15)0.0420 (6)
HN10.246 (3)0.8131 (19)0.2369 (18)0.051*
N20.67098 (19)0.85742 (16)0.19588 (15)0.0445 (7)
HN20.724 (3)0.838 (2)0.1770 (19)0.054*
C10.3830 (2)0.81205 (18)0.20064 (17)0.0393 (7)
C20.4909 (2)0.83195 (19)0.22012 (19)0.0414 (7)
HC20.506 (2)0.8615 (19)0.2632 (18)0.050*
C30.5788 (2)0.81410 (18)0.18015 (17)0.0394 (7)
C40.3338 (2)0.7888 (2)0.12127 (18)0.0532 (9)
H4A0.32270.72830.11830.065*
H4B0.38130.80580.08390.065*
H4C0.26590.81740.11090.065*
C50.5816 (2)0.74619 (19)0.12192 (18)0.0416 (7)
C60.6244 (3)0.7605 (2)0.0529 (2)0.0557 (9)
H60.65220.81380.04250.067*
C70.6261 (3)0.6956 (3)−0.0011 (2)0.0697 (11)
H70.65370.7054−0.04800.084*
C80.5868 (3)0.6168 (3)0.0153 (3)0.0714 (12)
H80.58790.5733−0.02070.086*
C90.5461 (3)0.6015 (2)0.0836 (3)0.0696 (11)
H90.52060.54750.09420.084*
C100.5424 (2)0.6658 (2)0.1372 (2)0.0545 (9)
H100.51370.65530.18360.066*
C110.6796 (2)0.93436 (19)0.24075 (19)0.0447 (8)
C120.7108 (2)0.9293 (2)0.3193 (2)0.0526 (9)
C130.7167 (3)1.0056 (3)0.3608 (2)0.0648 (10)
H130.73641.00460.41360.078*
C140.6939 (3)1.0818 (3)0.3247 (3)0.0692 (11)
H140.69871.13180.35330.084*
C150.6640 (3)1.0855 (2)0.2471 (3)0.0664 (10)
H150.64951.13800.22370.080*
C160.6552 (2)1.0113 (2)0.2029 (2)0.0535 (9)
C170.6231 (3)1.0165 (3)0.1165 (2)0.0688 (11)
HC170.601 (3)0.963 (3)0.102 (2)0.083*
C180.5244 (4)1.0711 (4)0.0970 (3)0.128 (2)
H18A0.53871.12810.11510.154*
H18B0.46501.04800.12140.154*
H18C0.50681.07180.04220.154*
C190.7163 (4)1.0459 (4)0.0744 (3)0.127 (2)
H19A0.69491.04670.02000.154*
H19B0.77581.00750.08490.154*
H19C0.73751.10210.09130.154*
C200.7387 (3)0.8462 (3)0.3608 (2)0.0644 (10)
HC200.731 (3)0.799 (2)0.329 (2)0.078*
C210.8559 (3)0.8428 (3)0.3926 (3)0.1132 (18)
H21A0.87000.88660.43070.137*
H21B0.90070.85140.35150.137*
H21C0.87140.78810.41580.137*
C220.6704 (4)0.8301 (3)0.4258 (3)0.1090 (17)
H22A0.68980.86960.46690.132*
H22B0.68190.77300.44430.132*
H22C0.59580.83760.40760.132*
C230.3434 (2)0.83308 (19)0.33457 (17)0.0417 (7)
C240.3415 (2)0.9163 (2)0.36250 (19)0.0474 (8)
C250.3743 (3)0.9285 (2)0.4401 (2)0.0617 (10)
H250.37550.98330.46040.075*
C260.4052 (3)0.8608 (3)0.4875 (2)0.0643 (10)
H260.42740.87050.53920.077*
C270.4036 (3)0.7793 (2)0.4590 (2)0.0570 (9)
H270.42300.73420.49200.069*
C280.3734 (2)0.7634 (2)0.38158 (19)0.0486 (8)
C290.3744 (3)0.6724 (2)0.3519 (2)0.0620 (10)
HC290.355 (3)0.674 (2)0.296 (2)0.075*
C300.2925 (4)0.6185 (3)0.3876 (3)0.1124 (18)
H30A0.30880.61770.44260.136*
H30B0.29450.56150.36790.136*
H30C0.22190.64210.37510.136*
C310.4860 (4)0.6328 (3)0.3650 (3)0.1013 (16)
H31A0.50620.62730.41930.122*
H31B0.53710.66860.34260.17 (3)*
H31C0.48530.57760.34130.122*
C320.3040 (3)0.9907 (2)0.3117 (2)0.0571 (9)
H320.29550.97090.25820.069*
C330.1952 (3)1.0217 (3)0.3322 (3)0.0838 (13)
H33A0.14550.97480.32980.102*
H33B0.16871.06500.29630.102*
H33C0.20261.04480.38340.102*
C340.3843 (4)1.0635 (3)0.3173 (3)0.1030 (16)
H34A0.38751.08840.36770.125*
H34B0.36221.10590.27930.125*
H34C0.45421.04230.30830.125*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C30.0382 (16)0.0388 (17)0.0404 (18)0.0018 (13)−0.0006 (13)−0.0030 (14)
C20.0384 (16)0.0449 (19)0.0411 (19)−0.0019 (14)0.0051 (14)−0.0135 (15)
C10.0402 (16)0.0375 (17)0.0405 (18)0.0040 (13)0.0047 (14)−0.0042 (14)
C40.0411 (18)0.071 (2)0.047 (2)0.0035 (16)0.0004 (15)−0.0106 (18)
C320.066 (2)0.050 (2)0.057 (2)0.0066 (17)0.0131 (17)−0.0037 (17)
C290.077 (3)0.048 (2)0.060 (2)0.0017 (18)0.004 (2)0.0001 (19)
C200.070 (2)0.063 (2)0.058 (2)−0.001 (2)−0.0056 (19)−0.013 (2)
C170.082 (3)0.054 (2)0.068 (3)0.000 (2)−0.003 (2)0.000 (2)
C210.068 (3)0.136 (4)0.132 (5)0.017 (3)−0.004 (3)0.041 (4)
C330.080 (3)0.079 (3)0.094 (3)0.029 (2)0.017 (2)0.018 (2)
C300.132 (4)0.083 (3)0.128 (4)−0.036 (3)0.041 (4)−0.019 (3)
C310.103 (4)0.072 (3)0.127 (4)0.032 (3)0.000 (3)−0.022 (3)
C340.098 (3)0.081 (3)0.130 (4)−0.023 (3)0.010 (3)0.021 (3)
C220.103 (4)0.109 (4)0.118 (4)−0.003 (3)0.027 (3)0.033 (3)
C180.119 (4)0.140 (5)0.114 (5)0.049 (4)−0.041 (3)−0.015 (4)
C190.121 (4)0.178 (6)0.085 (4)−0.002 (4)0.019 (3)0.031 (4)
P10.0465 (5)0.0677 (7)0.1073 (10)0.0088 (5)−0.0044 (5)−0.0161 (6)
N10.0325 (13)0.0514 (16)0.0417 (16)0.0009 (12)0.0010 (12)−0.0082 (12)
N20.0324 (14)0.0480 (16)0.0534 (17)−0.0004 (12)0.0067 (12)−0.0127 (13)
C230.0344 (15)0.050 (2)0.0410 (19)0.0009 (14)0.0076 (13)−0.0072 (16)
C110.0322 (15)0.0454 (19)0.056 (2)−0.0033 (13)0.0019 (14)−0.0139 (17)
C50.0329 (15)0.0454 (18)0.047 (2)0.0011 (13)0.0034 (14)−0.0103 (15)
C160.0459 (18)0.050 (2)0.065 (2)−0.0049 (15)0.0063 (16)−0.0103 (18)
C120.0423 (17)0.058 (2)0.057 (2)−0.0085 (16)0.0013 (16)−0.0156 (19)
C280.0481 (18)0.050 (2)0.049 (2)0.0015 (15)0.0086 (15)−0.0029 (17)
C240.0465 (18)0.051 (2)0.045 (2)0.0051 (15)0.0101 (15)−0.0068 (16)
C100.0442 (18)0.053 (2)0.068 (2)−0.0022 (15)0.0104 (16)−0.0136 (19)
C130.061 (2)0.072 (3)0.060 (2)−0.0096 (19)−0.0020 (18)−0.022 (2)
F10.122 (2)0.0880 (18)0.158 (3)0.0191 (16)0.042 (2)−0.0302 (18)
C270.062 (2)0.065 (2)0.045 (2)0.0079 (18)0.0055 (17)0.0036 (18)
C140.060 (2)0.059 (3)0.088 (3)−0.0107 (19)0.007 (2)−0.031 (2)
C60.0501 (19)0.064 (2)0.054 (2)−0.0014 (16)0.0091 (17)−0.0124 (19)
C250.068 (2)0.060 (2)0.057 (3)0.0043 (19)0.0095 (19)−0.018 (2)
C150.066 (2)0.050 (2)0.084 (3)−0.0076 (18)0.006 (2)−0.010 (2)
C70.059 (2)0.096 (3)0.056 (2)0.006 (2)0.0129 (18)−0.027 (2)
C260.069 (2)0.083 (3)0.041 (2)0.006 (2)0.0045 (18)−0.010 (2)
C80.051 (2)0.076 (3)0.087 (3)0.003 (2)0.003 (2)−0.045 (2)
F20.120 (2)0.158 (3)0.121 (2)0.029 (2)−0.0131 (19)0.019 (2)
F30.135 (2)0.117 (2)0.159 (3)0.0506 (19)−0.014 (2)−0.059 (2)
F40.098 (2)0.119 (2)0.196 (3)−0.0125 (17)0.036 (2)−0.003 (2)
C90.049 (2)0.053 (2)0.107 (3)−0.0063 (17)0.013 (2)−0.032 (2)
F50.0667 (18)0.093 (2)0.442 (7)−0.0233 (15)0.056 (3)−0.030 (3)
F60.224 (4)0.150 (3)0.146 (3)0.086 (3)−0.077 (3)−0.028 (2)

Geometric parameters (Å, °)

C3—N21.341 (4)C18—H18B0.9600
C3—C21.383 (4)C18—H18C0.9600
C3—C51.475 (4)C19—H19A0.9600
C2—C11.391 (4)C19—H19B0.9600
C2—HC20.89 (3)C19—H19C0.9600
C1—N11.326 (4)P1—F51.525 (3)
C1—C41.503 (4)P1—F61.551 (3)
C4—H4A0.9600P1—F11.558 (3)
C4—H4B0.9600P1—F21.563 (3)
C4—H4C0.9600P1—F31.570 (3)
C32—C241.513 (5)P1—F41.589 (3)
C32—C331.515 (5)N1—C231.449 (4)
C32—C341.516 (5)N1—HN10.86 (3)
C32—H320.9800N2—C111.437 (4)
C29—C301.507 (6)N2—HN20.83 (3)
C29—C281.520 (5)C23—C241.395 (4)
C29—C311.521 (5)C23—C281.396 (4)
C29—HC290.98 (4)C11—C121.390 (5)
C20—C221.503 (6)C11—C161.396 (4)
C20—C211.513 (5)C5—C61.382 (4)
C20—C121.516 (5)C5—C101.388 (4)
C20—HC200.94 (4)C16—C151.395 (5)
C17—C191.506 (6)C12—C131.397 (5)
C17—C181.511 (6)C28—C271.389 (4)
C17—C161.522 (5)C24—C251.388 (5)
C17—HC170.91 (4)C10—C91.379 (5)
C21—H21A0.9600C10—H100.9300
C21—H21B0.9600C13—C141.369 (5)
C21—H21C0.9600C13—H130.9300
C33—H33A0.9600C27—C261.372 (5)
C33—H33B0.9600C27—H270.9300
C33—H33C0.9600C14—C151.368 (5)
C30—H30A0.9600C14—H140.9300
C30—H30B0.9600C6—C71.388 (5)
C30—H30C0.9600C6—H60.9300
C31—H31A0.9600C25—C261.377 (5)
C31—H31B0.9600C25—H250.9300
C31—H31C0.9600C15—H150.9300
C34—H34A0.9600C7—C81.370 (5)
C34—H34B0.9600C7—H70.9300
C34—H34C0.9600C26—H260.9300
C22—H22A0.9600C8—C91.360 (5)
C22—H22B0.9600C8—H80.9300
C22—H22C0.9600C9—H90.9300
C18—H18A0.9600
N2—C3—C2120.0 (3)C17—C19—H19A109.5
N2—C3—C5115.5 (2)C17—C19—H19B109.5
C2—C3—C5124.5 (3)H19A—C19—H19B109.5
C3—C2—C1128.8 (3)C17—C19—H19C109.5
C3—C2—HC2114.4 (19)H19A—C19—H19C109.5
C1—C2—HC2116.7 (19)H19B—C19—H19C109.5
N1—C1—C2119.8 (3)F5—P1—F691.9 (3)
N1—C1—C4114.7 (3)F5—P1—F190.42 (18)
C2—C1—C4125.3 (3)F6—P1—F188.41 (18)
C1—C4—H4A109.5F5—P1—F292.9 (2)
C1—C4—H4B109.5F6—P1—F2175.0 (2)
H4A—C4—H4B109.5F1—P1—F292.79 (19)
C1—C4—H4C109.5F5—P1—F390.9 (2)
H4A—C4—H4C109.5F6—P1—F390.54 (19)
H4B—C4—H4C109.5F1—P1—F3178.4 (2)
C24—C32—C33110.0 (3)F2—P1—F388.15 (18)
C24—C32—C34112.3 (3)F5—P1—F4178.6 (3)
C33—C32—C34110.2 (3)F6—P1—F489.4 (2)
C24—C32—H32108.1F1—P1—F489.20 (17)
C33—C32—H32108.1F2—P1—F485.72 (19)
C34—C32—H32108.1F3—P1—F489.54 (18)
C30—C29—C28111.0 (3)C1—N1—C23124.3 (2)
C30—C29—C31110.9 (4)C1—N1—HN1116 (2)
C28—C29—C31111.7 (3)C23—N1—HN1119 (2)
C30—C29—HC29108 (2)C3—N2—C11123.7 (2)
C28—C29—HC29108 (2)C3—N2—HN2116 (2)
C31—C29—HC29107 (2)C11—N2—HN2120 (2)
C22—C20—C21108.4 (4)C24—C23—C28122.8 (3)
C22—C20—C12112.5 (3)C24—C23—N1118.8 (3)
C21—C20—C12112.0 (3)C28—C23—N1118.4 (3)
C22—C20—HC20107 (2)C12—C11—C16122.9 (3)
C21—C20—HC20104 (2)C12—C11—N2119.1 (3)
C12—C20—HC20113 (2)C16—C11—N2117.9 (3)
C19—C17—C18111.5 (4)C6—C5—C10119.2 (3)
C19—C17—C16111.0 (4)C6—C5—C3121.3 (3)
C18—C17—C16112.5 (4)C10—C5—C3119.5 (3)
C19—C17—HC17112 (3)C15—C16—C11117.3 (3)
C18—C17—HC17104 (2)C15—C16—C17120.1 (3)
C16—C17—HC17106 (3)C11—C16—C17122.6 (3)
C20—C21—H21A109.5C11—C12—C13117.1 (3)
C20—C21—H21B109.5C11—C12—C20123.3 (3)
H21A—C21—H21B109.5C13—C12—C20119.5 (3)
C20—C21—H21C109.5C27—C28—C23117.5 (3)
H21A—C21—H21C109.5C27—C28—C29119.4 (3)
H21B—C21—H21C109.5C23—C28—C29123.2 (3)
C32—C33—H33A109.5C25—C24—C23117.1 (3)
C32—C33—H33B109.5C25—C24—C32120.6 (3)
H33A—C33—H33B109.5C23—C24—C32122.3 (3)
C32—C33—H33C109.5C9—C10—C5120.0 (3)
H33A—C33—H33C109.5C9—C10—H10120.0
H33B—C33—H33C109.5C5—C10—H10120.0
C29—C30—H30A109.5C14—C13—C12120.9 (4)
C29—C30—H30B109.5C14—C13—H13119.6
H30A—C30—H30B109.5C12—C13—H13119.6
C29—C30—H30C109.5C26—C27—C28120.8 (3)
H30A—C30—H30C109.5C26—C27—H27119.6
H30B—C30—H30C109.5C28—C27—H27119.6
C29—C31—H31A109.5C15—C14—C13121.1 (3)
C29—C31—H31B109.5C15—C14—H14119.5
H31A—C31—H31B109.5C13—C14—H14119.5
C29—C31—H31C109.5C5—C6—C7120.2 (3)
H31A—C31—H31C109.5C5—C6—H6119.9
H31B—C31—H31C109.5C7—C6—H6119.9
C32—C34—H34A109.5C26—C25—C24121.2 (3)
C32—C34—H34B109.5C26—C25—H25119.4
H34A—C34—H34B109.5C24—C25—H25119.4
C32—C34—H34C109.5C14—C15—C16120.7 (4)
H34A—C34—H34C109.5C14—C15—H15119.7
H34B—C34—H34C109.5C16—C15—H15119.7
C20—C22—H22A109.5C8—C7—C6119.5 (4)
C20—C22—H22B109.5C8—C7—H7120.3
H22A—C22—H22B109.5C6—C7—H7120.3
C20—C22—H22C109.5C27—C26—C25120.6 (3)
H22A—C22—H22C109.5C27—C26—H26119.7
H22B—C22—H22C109.5C25—C26—H26119.7
C17—C18—H18A109.5C9—C8—C7120.9 (4)
C17—C18—H18B109.5C9—C8—H8119.5
H18A—C18—H18B109.5C7—C8—H8119.5
C17—C18—H18C109.5C8—C9—C10120.2 (4)
H18A—C18—H18C109.5C8—C9—H9119.9
H18B—C18—H18C109.5C10—C9—H9119.9
N2—C3—C2—C1161.6 (3)C24—C23—C28—C29179.2 (3)
C5—C3—C2—C1−21.5 (5)N1—C23—C28—C29−1.0 (4)
C3—C2—C1—N1165.6 (3)C30—C29—C28—C2764.9 (5)
C3—C2—C1—C4−18.7 (5)C31—C29—C28—C27−59.4 (5)
C2—C1—N1—C23−9.0 (4)C30—C29—C28—C23−115.2 (4)
C4—C1—N1—C23174.9 (3)C31—C29—C28—C23120.5 (4)
C2—C3—N2—C11−13.6 (5)C28—C23—C24—C252.0 (4)
C5—C3—N2—C11169.2 (3)N1—C23—C24—C25−177.9 (3)
C1—N1—C23—C2495.7 (4)C28—C23—C24—C32−177.1 (3)
C1—N1—C23—C28−84.2 (4)N1—C23—C24—C323.0 (4)
C3—N2—C11—C1294.3 (4)C33—C32—C24—C25−71.1 (4)
C3—N2—C11—C16−85.2 (4)C34—C32—C24—C2552.0 (4)
N2—C3—C5—C6−47.3 (4)C33—C32—C24—C23108.0 (4)
C2—C3—C5—C6135.7 (3)C34—C32—C24—C23−128.9 (4)
N2—C3—C5—C10131.5 (3)C6—C5—C10—C9−0.3 (5)
C2—C3—C5—C10−45.6 (4)C3—C5—C10—C9−179.1 (3)
C12—C11—C16—C150.6 (5)C11—C12—C13—C14−0.8 (5)
N2—C11—C16—C15−179.9 (3)C20—C12—C13—C14178.8 (3)
C12—C11—C16—C17178.8 (3)C23—C28—C27—C26−1.0 (5)
N2—C11—C16—C17−1.7 (5)C29—C28—C27—C26179.0 (3)
C19—C17—C16—C1576.5 (5)C12—C13—C14—C150.4 (6)
C18—C17—C16—C15−49.3 (5)C10—C5—C6—C71.3 (5)
C19—C17—C16—C11−101.7 (4)C3—C5—C6—C7−179.9 (3)
C18—C17—C16—C11132.5 (4)C23—C24—C25—C26−1.3 (5)
C16—C11—C12—C130.3 (5)C32—C24—C25—C26177.8 (3)
N2—C11—C12—C13−179.2 (3)C13—C14—C15—C160.6 (6)
C16—C11—C12—C20−179.3 (3)C11—C16—C15—C14−1.0 (5)
N2—C11—C12—C201.3 (5)C17—C16—C15—C14−179.3 (3)
C22—C20—C12—C11−122.7 (4)C5—C6—C7—C8−1.2 (5)
C21—C20—C12—C11114.8 (4)C28—C27—C26—C251.6 (5)
C22—C20—C12—C1357.7 (5)C24—C25—C26—C27−0.4 (5)
C21—C20—C12—C13−64.7 (5)C6—C7—C8—C90.1 (6)
C24—C23—C28—C27−0.9 (4)C7—C8—C9—C100.9 (6)
N1—C23—C28—C27179.0 (3)C5—C10—C9—C8−0.8 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—HN1···F20.86 (3)2.28 (4)3.094 (4)156 (3)
N1—HN1···F40.86 (3)2.49 (4)3.187 (4)139 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2111).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bourget-Merle, L., Lappert, M. F. & Severn, J. R. (2002). Chem. Rev.102, 3031–3065. [PubMed]
  • Enraf–Nonius (1994). CAD-4 EXPRESS Software. Version 5.1/1.2. Enraf–Nonius, Delft, The Netherlands.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Filipou, A. C., Volkl, C. & Rogers, R. D. (1993). J. Organomet. Chem.463, 135–142.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • Landolsi, K., Belhaj Mbarek Elmkacher, N., Guerfel, T. & Bouachir, F. (2008). C. R. Acad. Sci. Ser. IIC Chem. In the press.
  • Landolsi, K., Rzaigui, M. & Bouachir, F. (2002). Tetrahedron Lett.43, 9463–9466.
  • Mair, F. S., Scully, D., Edwards, A. J., Raithby, P. R. & Snaith, R. (1995). Polyhedron, 14, 2397–2401.
  • Parks, J. E. & Holm, R. H. (1968). Inorg. Chem.7, 1408–1416.
  • Sheldrick, G. M. (1997). SHELXL97 and SHELXS97 University of Göttingen, Germany.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography