PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): o235.
Published online 2007 December 12. doi:  10.1107/S1600536807064367
PMCID: PMC2915295

2,4,6-Tris­(4-fluoro­phen­yl)-2-(1-pyrid­yl)-boroxine

Abstract

Crystals of the title compound, C23H17B3F3NO3, were obtained unintentionally by slow evaporation of a chloro­form solution of the preformed boroxine–pyridine adduct. The mol­ecule contains three fluoro-substituted benzene rings, each bonded to one of the three B atoms of a six-membered boroxine ring. A pyridyl ring is also bound to one of the B atoms through a Lewis acid–base inter­action. The binding of the pyridyl substituent causes the otherwise planar boroxine ring to twist, resulting in a maximum torsion angle within the ring of 17.6 (2)°.

Related literature

For related literature, see: Beckett et al. (1997 [triangle], 1998 [triangle]); Beckmann et al. (2001 [triangle]); Frost et al. (2006 [triangle]); Hall (2005 [triangle]); Iovine et al. (2006 [triangle]); Kua et al. (2006 [triangle]); Perttu et al. (2005 [triangle]); Sánchez et al. (2004 [triangle]); Wu et al. (1999 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o235-scheme1.jpg

Experimental

Crystal data

  • C23H17B3F3NO3
  • M r = 444.81
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o235-efi1.jpg
  • a = 11.6333 (5) Å
  • b = 14.0230 (7) Å
  • c = 14.1181 (7) Å
  • β = 109.337 (3)°
  • V = 2173.21 (18) Å3
  • Z = 4
  • Cu Kα radiation
  • μ = 0.88 mm−1
  • T = 173 (1) K
  • 0.21 × 0.17 × 0.09 mm

Data collection

  • Bruker Kappa APEXII diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2007 [triangle]) T min = 0.627, T max = 0.925
  • 14062 measured reflections
  • 3644 independent reflections
  • 2938 reflections with I > 2σ(I)
  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.103
  • S = 1.05
  • 3644 reflections
  • 298 parameters
  • H-atom parameters constrained
  • Δρmax = 0.21 e Å−3
  • Δρmin = −0.18 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXTL (Bruker, 1997 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Selected torsion angles (°)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807064367/ln2002sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807064367/ln2002Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This research was supported by Cottrell College Science Awards from Research Corporation (to SL and PMI).

supplementary crystallographic information

Comment

Boroxines are cyclic trimers of organoboronic acids produced by dehydration of the acids (Hall, 2005). Arylboroxines have recently found applications in the areas of covalent organic frameworks, nanoscale molecular scaffolds, and noncovalent polymer functionalization (Iovine et al., 2006). The Lewis acidic boroxines are known to form 1:1 adducts with a variety of nitrogenous Lewis bases such as amines, pyridines, azaindoles, and salen-type ligands (Kua et al., 2006).

The structure of the title molecule (Fig. 1) contains features that are consistent with similar boroxine compounds (Beckett et al., 1997, 1998; Beckmann et al., 2001; Frost et al., 2006; Sánchez et al., 2004; Wu et al., 1999). Two of the boron atoms, B1 and B2, are centered in a trigonal planar geometry, while B3 is part of a tetrahedral geometry. The boron-oxygen bonds involving B3 are elongated, by just over 0.10 Å, compared to the other boron-oxygen bonds. As expected, the boron-carbon bonds involving the sp2 hybridized B1 and B2 are shorter than the B3—C13 bond involving the sp3 hybridized boron atom. The four-coordinate bonding of B3 causes considerable distortion in the boroxine ring. Torsion angles involving B3 average 12.1 (2)° while the torsion angles that do not contain B3 average 4.2 (2)°. The approximate Td symmetry of the molecule results in a rather open packing arrangement, as seen by viewing down the unit cell a axis (Fig. 2).

Experimental

The title compound was synthesized by stirring 4-fluorophenylboronic acid with pyridine in CH2Cl2 in the presence of activated 4 Å molecular sieves. After decanting the reaction solution away from the sieves, the solvent was removed in vacuo and the resulting solid was dried at 323 K at atmospheric pressure (Perttu et al., 2005). Crystals of the title compound were obtained unintentionally by slow evaporation of a chloroform solution of the pre-formed boroxine:pyridine adduct (m.p. 513 decomp.).

Refinement

Although all of the aromatic H atoms were located in difference maps, H-atoms were placed at idealized positions with C—H = 0.93 Å and refined with a riding model with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of the title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms.
Fig. 2.
The packing in the unit cell, viewed along the a axis.

Crystal data

C23H17B3F3NO3F000 = 912
Mr = 444.81Dx = 1.359 Mg m3Dm = 1.337 (1) Mg m3Dm measured by flotation
Monoclinic, P21/nCu Kα radiation λ = 1.54178 Å
Hall symbol: -P 2ynCell parameters from 3658 reflections
a = 11.6333 (5) Åθ = 4.4–65.8º
b = 14.0230 (7) ŵ = 0.88 mm1
c = 14.1181 (7) ÅT = 173 (1) K
β = 109.337 (3)ºRegular parallelpiped, colorless
V = 2173.21 (18) Å30.21 × 0.17 × 0.09 mm
Z = 4

Data collection

Bruker Kappa APEXII diffractometer3644 independent reflections
Radiation source: fine-focus sealed tube2938 reflections with I > 2σ(I)
Monochromator: multi-layer opticsRint = 0.034
Detector resolution: 512 pixels mm-1θmax = 65.8º
T = 173(1) Kθmin = 4.3º
ω and [var phi] scansh = −13→13
Absorption correction: multi-scan(SADABS; Bruker, 2007)k = −14→15
Tmin = 0.627, Tmax = 0.925l = −16→16
14062 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.103  w = 1/[σ2(Fo2) + (0.0502P)2 + 0.2495P] where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3644 reflectionsΔρmax = 0.21 e Å3
298 parametersΔρmin = −0.18 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
B10.21425 (16)0.82584 (13)1.08171 (13)0.0359 (4)
B20.36099 (16)0.84177 (13)0.99727 (13)0.0363 (4)
B30.16567 (16)0.76504 (15)0.91115 (13)0.0401 (4)
C10.17805 (14)0.83897 (11)1.17787 (11)0.0358 (3)
C20.26454 (15)0.86102 (13)1.27032 (11)0.0441 (4)
C30.23264 (17)0.87064 (14)1.35604 (12)0.0513 (4)
C40.11304 (17)0.85978 (13)1.34796 (12)0.0472 (4)
C50.02435 (16)0.83801 (13)1.25904 (12)0.0498 (4)
C60.05796 (15)0.82702 (13)1.17446 (12)0.0435 (4)
C70.49109 (14)0.87074 (11)0.99830 (12)0.0373 (3)
C80.51903 (15)0.86678 (13)0.90953 (13)0.0459 (4)
C90.63189 (16)0.89261 (14)0.90573 (14)0.0530 (5)
C100.71823 (15)0.92310 (13)0.99324 (14)0.0494 (4)
C110.69654 (15)0.92824 (13)1.08238 (13)0.0476 (4)
C120.58232 (14)0.90218 (12)1.08448 (12)0.0409 (4)
C130.16258 (13)0.65162 (12)0.89309 (10)0.0382 (4)
C140.07361 (14)0.59365 (13)0.90899 (12)0.0444 (4)
C150.07124 (17)0.49535 (14)0.89499 (13)0.0541 (5)
C160.16146 (19)0.45509 (14)0.86634 (13)0.0561 (5)
C170.2526 (2)0.50777 (15)0.85120 (14)0.0601 (5)
C180.25204 (17)0.60527 (14)0.86471 (12)0.0496 (4)
C19−0.03505 (17)0.86020 (14)0.82476 (13)0.0509 (4)
C20−0.12200 (18)0.90124 (15)0.74360 (14)0.0587 (5)
C21−0.10989 (18)0.89522 (13)0.65028 (13)0.0529 (4)
C22−0.01015 (17)0.84869 (13)0.64049 (12)0.0488 (4)
C230.07340 (16)0.80916 (12)0.72425 (11)0.0440 (4)
F10.08044 (11)0.87144 (9)1.43108 (7)0.0677 (3)
F20.82939 (9)0.95033 (9)0.98983 (9)0.0696 (3)
F30.16178 (14)0.35866 (8)0.85394 (9)0.0824 (4)
N10.06137 (12)0.81444 (9)0.81514 (9)0.0386 (3)
O10.33071 (9)0.84911 (8)1.08391 (7)0.0375 (3)
O20.28014 (10)0.80708 (9)0.91196 (8)0.0452 (3)
O30.13168 (10)0.78966 (8)0.99819 (7)0.0421 (3)
H20.34540.86951.27460.053*
H30.29120.88421.41770.062*
H5−0.05640.83081.25560.060*
H6−0.00110.81121.11380.052*
H80.45970.84610.85110.055*
H90.64910.88950.84600.064*
H110.75690.94871.14040.057*
H120.56620.90581.14470.049*
H140.01350.62160.92980.053*
H150.01000.45820.90490.065*
H170.31350.47870.83230.072*
H180.31390.64150.85450.060*
H19−0.04360.86440.88780.061*
H20−0.18830.93280.75200.070*
H21−0.16800.92210.59460.063*
H220.00050.84410.57820.059*
H230.14060.77770.71750.053*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
B10.0377 (9)0.0344 (10)0.0351 (9)0.0012 (7)0.0115 (7)0.0014 (7)
B20.0382 (9)0.0332 (9)0.0379 (9)0.0002 (7)0.0131 (7)−0.0012 (7)
B30.0352 (9)0.0529 (12)0.0333 (9)−0.0059 (8)0.0128 (7)−0.0055 (8)
C10.0381 (8)0.0357 (8)0.0331 (8)0.0019 (6)0.0111 (6)0.0004 (6)
C20.0379 (8)0.0573 (11)0.0366 (8)−0.0016 (8)0.0117 (7)−0.0043 (7)
C30.0482 (10)0.0710 (13)0.0315 (8)−0.0040 (9)0.0088 (7)−0.0072 (8)
C40.0570 (10)0.0548 (11)0.0357 (8)−0.0021 (8)0.0233 (7)−0.0041 (7)
C50.0426 (9)0.0658 (12)0.0449 (10)−0.0041 (8)0.0199 (7)−0.0031 (8)
C60.0385 (8)0.0557 (11)0.0352 (8)−0.0025 (7)0.0105 (6)−0.0038 (7)
C70.0373 (8)0.0323 (8)0.0423 (8)0.0027 (6)0.0130 (6)0.0026 (6)
C80.0413 (9)0.0516 (10)0.0463 (9)−0.0015 (8)0.0165 (7)−0.0039 (7)
C90.0487 (10)0.0624 (12)0.0557 (11)−0.0008 (9)0.0278 (8)−0.0003 (9)
C100.0326 (8)0.0518 (11)0.0670 (11)0.0018 (8)0.0207 (8)0.0092 (8)
C110.0341 (8)0.0497 (11)0.0532 (10)0.0008 (7)0.0069 (7)0.0059 (8)
C120.0388 (8)0.0407 (9)0.0409 (9)0.0018 (7)0.0101 (7)0.0045 (7)
C130.0330 (8)0.0525 (10)0.0261 (7)−0.0010 (7)0.0059 (6)−0.0006 (6)
C140.0361 (8)0.0536 (11)0.0396 (9)−0.0005 (7)0.0073 (7)0.0014 (7)
C150.0519 (11)0.0556 (12)0.0475 (10)−0.0066 (9)0.0068 (8)0.0070 (8)
C160.0768 (13)0.0442 (11)0.0401 (10)0.0067 (9)0.0095 (9)0.0036 (7)
C170.0695 (13)0.0623 (13)0.0520 (11)0.0206 (10)0.0250 (9)0.0043 (9)
C180.0492 (10)0.0592 (12)0.0445 (9)0.0028 (9)0.0210 (8)0.0005 (8)
C190.0549 (10)0.0566 (11)0.0452 (10)0.0053 (9)0.0219 (8)0.0004 (8)
C200.0568 (11)0.0645 (13)0.0548 (11)0.0121 (10)0.0186 (9)0.0064 (9)
C210.0602 (11)0.0459 (11)0.0454 (10)−0.0024 (9)0.0079 (8)0.0023 (8)
C220.0645 (11)0.0457 (10)0.0347 (9)−0.0103 (9)0.0143 (8)−0.0045 (7)
C230.0520 (10)0.0451 (10)0.0377 (8)−0.0067 (8)0.0185 (7)−0.0058 (7)
F10.0732 (7)0.0978 (9)0.0428 (6)−0.0116 (7)0.0336 (5)−0.0133 (6)
F20.0372 (6)0.0859 (9)0.0901 (8)−0.0050 (6)0.0269 (6)0.0086 (7)
F30.1228 (12)0.0477 (8)0.0700 (8)0.0105 (7)0.0230 (7)0.0021 (6)
N10.0419 (7)0.0398 (8)0.0353 (7)−0.0067 (6)0.0145 (6)−0.0049 (5)
O10.0352 (5)0.0430 (6)0.0341 (6)−0.0018 (5)0.0110 (4)−0.0021 (4)
O20.0411 (6)0.0601 (8)0.0371 (6)−0.0141 (5)0.0168 (5)−0.0105 (5)
O30.0377 (6)0.0569 (7)0.0330 (6)−0.0074 (5)0.0136 (5)−0.0086 (5)

Geometric parameters (Å, °)

O3—B11.349 (2)C11—C101.365 (2)
O3—B31.4517 (19)C11—H110.9300
F1—C41.3574 (17)C3—H30.9300
F2—C101.3645 (18)C10—C91.377 (3)
F3—C161.364 (2)C6—H60.9300
O1—B11.384 (2)C9—H90.9300
O1—B21.3842 (19)C14—C151.391 (3)
O2—B21.350 (2)C14—C131.392 (2)
O2—B31.453 (2)C14—H140.9300
B1—C11.560 (2)C18—C171.381 (3)
B2—C71.563 (2)C18—C131.394 (2)
B3—C131.609 (3)C18—H180.9300
B3—N11.643 (2)C16—C151.366 (3)
C1—C61.392 (2)C16—C171.366 (3)
C1—C21.394 (2)C17—H170.9300
C8—C91.380 (2)C15—H150.9300
C8—C71.396 (2)C23—N11.3382 (18)
C8—H80.9300C23—C221.374 (2)
C12—C111.388 (2)C23—H230.9300
C12—C71.395 (2)C22—C211.377 (3)
C12—H120.9300C22—H220.9300
C4—C31.366 (2)C21—C201.373 (2)
C4—C51.370 (2)C21—H210.9300
C5—C61.383 (2)C19—N11.338 (2)
C5—H50.9300C19—C201.378 (3)
C2—C31.385 (2)C19—H190.9300
C2—H20.9300C20—H200.9300
B1—O3—B3120.97 (13)C11—C10—C9122.76 (16)
B1—O1—B2119.75 (13)C5—C6—C1121.63 (15)
B2—O2—B3121.28 (12)C5—C6—H6119.2
O3—B1—O1121.11 (14)C1—C6—H6119.2
O3—B1—C1119.07 (14)C10—C9—C8117.86 (16)
O1—B1—C1119.81 (14)C10—C9—H9121.1
O2—B2—O1120.62 (14)C8—C9—H9121.1
O2—B2—C7119.24 (14)C15—C14—C13122.45 (17)
O1—B2—C7120.11 (14)C15—C14—H14118.8
O3—B3—O2113.75 (13)C13—C14—H14118.8
O3—B3—C13111.78 (14)C17—C18—C13122.66 (18)
O2—B3—C13111.99 (14)C17—C18—H18118.7
O3—B3—N1105.32 (13)C13—C18—H18118.7
O2—B3—N1105.07 (13)F3—C16—C15118.89 (19)
C13—B3—N1108.32 (12)F3—C16—C17118.75 (18)
C6—C1—C2117.65 (14)C15—C16—C17122.35 (19)
C6—C1—B1120.85 (14)C14—C13—C18116.10 (17)
C2—C1—B1121.48 (14)C14—C13—B3122.04 (14)
C9—C8—C7122.12 (16)C18—C13—B3121.80 (15)
C9—C8—H8118.9C16—C17—C18118.34 (18)
C7—C8—H8118.9C16—C17—H17120.8
C11—C12—C7121.45 (15)C18—C17—H17120.8
C11—C12—H12119.3C16—C15—C14118.08 (18)
C7—C12—H12119.3C16—C15—H15121.0
F1—C4—C3118.86 (15)C14—C15—H15121.0
F1—C4—C5118.55 (16)N1—C23—C22122.28 (16)
C3—C4—C5122.59 (14)N1—C23—H23118.9
C4—C5—C6118.28 (16)C22—C23—H23118.9
C4—C5—H5120.9C23—C22—C21118.94 (15)
C6—C5—H5120.9C23—C22—H22120.5
C12—C7—C8117.36 (15)C21—C22—H22120.5
C12—C7—B2123.03 (14)C20—C21—C22118.87 (17)
C8—C7—B2119.61 (14)C20—C21—H21120.6
C3—C2—C1121.39 (16)C22—C21—H21120.6
C3—C2—H2119.3N1—C19—C20121.68 (16)
C1—C2—H2119.3N1—C19—H19119.2
C10—C11—C12118.45 (16)C20—C19—H19119.2
C10—C11—H11120.8C21—C20—C19119.46 (18)
C12—C11—H11120.8C21—C20—H20120.3
C4—C3—C2118.44 (15)C19—C20—H20120.3
C4—C3—H3120.8C19—N1—C23118.77 (15)
C2—C3—H3120.8C19—N1—B3122.24 (13)
F2—C10—C11118.98 (16)C23—N1—B3118.99 (13)
F2—C10—C9118.26 (16)
B3—O3—B1—O16.2 (2)C4—C5—C6—C1−1.0 (3)
B3—O3—B1—C1−172.23 (14)C2—C1—C6—C51.0 (3)
B2—O1—B1—O34.7 (2)B1—C1—C6—C5179.74 (15)
B2—O1—B1—C1−176.90 (14)F2—C10—C9—C8−178.89 (16)
B3—O2—B2—O1−8.1 (2)C11—C10—C9—C80.3 (3)
B3—O2—B2—C7170.01 (15)C7—C8—C9—C100.0 (3)
B1—O1—B2—O2−3.7 (2)C15—C14—C13—C18−1.7 (2)
B1—O1—B2—C7178.20 (14)C15—C14—C13—B3−179.04 (15)
B1—O3—B3—O2−16.6 (2)C17—C18—C13—C141.0 (2)
B1—O3—B3—C13111.45 (16)C17—C18—C13—B3178.41 (16)
B1—O3—B3—N1−131.13 (14)O3—B3—C13—C1438.0 (2)
B2—O2—B3—O317.6 (2)O2—B3—C13—C14167.00 (13)
B2—O2—B3—C13−110.35 (16)N1—B3—C13—C14−77.59 (17)
B2—O2—B3—N1132.28 (15)O3—B3—C13—C18−139.19 (15)
O3—B1—C1—C6−9.3 (2)O2—B3—C13—C18−10.2 (2)
O1—B1—C1—C6172.27 (15)N1—B3—C13—C18105.20 (16)
O3—B1—C1—C2169.37 (15)F3—C16—C17—C18−179.49 (16)
O1—B1—C1—C2−9.1 (2)C15—C16—C17—C18−0.6 (3)
F1—C4—C5—C6179.47 (16)C13—C18—C17—C160.0 (3)
C3—C4—C5—C6−0.2 (3)F3—C16—C15—C14178.88 (15)
C11—C12—C7—C8−0.2 (2)C17—C16—C15—C140.0 (3)
C11—C12—C7—B2−179.35 (15)C13—C14—C15—C161.2 (3)
C9—C8—C7—C120.0 (3)N1—C23—C22—C21−0.1 (3)
C9—C8—C7—B2179.20 (17)C23—C22—C21—C200.5 (3)
O2—B2—C7—C12−176.35 (15)C22—C21—C20—C19−0.5 (3)
O1—B2—C7—C121.8 (2)N1—C19—C20—C210.0 (3)
O2—B2—C7—C84.5 (2)C20—C19—N1—C230.4 (3)
O1—B2—C7—C8−177.37 (15)C20—C19—N1—B3−179.92 (17)
C6—C1—C2—C30.1 (3)C22—C23—N1—C19−0.3 (2)
B1—C1—C2—C3−178.59 (16)C22—C23—N1—B3179.95 (15)
C7—C12—C11—C100.4 (3)O3—B3—N1—C19−4.1 (2)
F1—C4—C3—C2−178.37 (16)O2—B3—N1—C19−124.55 (16)
C5—C4—C3—C21.3 (3)C13—B3—N1—C19115.61 (16)
C1—C2—C3—C4−1.2 (3)O3—B3—N1—C23175.57 (13)
C12—C11—C10—F2178.71 (16)O2—B3—N1—C2355.15 (18)
C12—C11—C10—C9−0.4 (3)C13—B3—N1—C23−64.69 (17)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LN2002).

References

  • Beckett, M. A., Hibbs, D. E., Hursthouse, M. B., Owen, P., Malik, K. M. A. & Varma, K. S. (1998). Main Group Chem.2, 251–258.
  • Beckett, M. A., Strickland, G. C., Varma, K. S., Hibbs, D. E., Hursthouse, M. B. & Malik, K. M. A. (1997). J. Organomet. Chem.535, 31–41.
  • Beckmann, J., Dakternieks, D., Duthie, A., Lim, A. E. K. & Tieink, E. R. T. (2001). J. Organomet. Chem.633, 149–156.
  • Bruker (1997). SHELXTL Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2007). APEX2 (Version 2.1-4) and SADABS (Version 2007/4). Bruker AXS Inc., Madison, Wisconsin, USA.
  • Frost, B. J., Mebi, C. A. & Gingrich, P. W. (2006). Eur. J. Inorg. Chem.6, 1182–1189.
  • Hall, D. G. (2005). Boronic Acids, pp. 1–99. Weinheim: Wiley-VCH
  • Iovine, P. M., Fletcher, M. N. & Lin, S. (2006). Macromolecules, 39, 6324–6326 and references therein.
  • Kua, J., Fletcher, M. N. & Iovine, P. M. (2006). J. Phys. Chem. A, 110, 8158–8166 and references therein. [PubMed]
  • Perttu, E. K., Arnold, M. & Iovine, P. M. (2005). Tetrahedron Lett.46, 8753–8756.
  • Sánchez, M., Sánchez, O., Höpfl, H., Ochoa, M.-E., Castillo, D., Farfán, N. & Rojas-Lima, S. (2004). J. Organomet. Chem.689, 811–822.
  • Wu, Q. G., Wu, G., Brancaleon, L. & Wang, S. (1999). Organometallics, 18, 2553–2556.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography