PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): o228.
Published online 2007 December 6. doi:  10.1107/S1600536807064355
PMCID: PMC2915289

(S)-1-[(S)-4-Benzyl-2-thioxothia­zolidin-3-yl]-3-hydroxy­butan-1-one

Abstract

The title compound, C14H17NO2S2, was synthesized by asymmetric aldol condensation of N-acyl­thia­zolidinethione with acetaldehyde. In the mol­ecule, the thia­zolidine five-membered ring assumes an envelope conformation. Inter­molecular C—H(...)O and intra­molecular O—H(...)O and C—H(...)S hydrogen bonding helps to stabilize the structure.

Related literature

For related literature, see: Crimmins et al. (2001 [triangle]); Drück & Littke (1980 [triangle]); Hodge & Olivo (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o228-scheme1.jpg

Experimental

Crystal data

  • C14H17NO2S2
  • M r = 295.41
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o228-efi1.jpg
  • a = 8.0278 (4) Å
  • b = 8.2637 (4) Å
  • c = 22.0158 (10) Å
  • V = 1460.51 (12) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.36 mm−1
  • T = 294 (2) K
  • 0.30 × 0.20 × 0.20 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: none
  • 9324 measured reflections
  • 2845 independent reflections
  • 2648 reflections with I > 2σ(I)
  • R int = 0.059

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.099
  • S = 1.10
  • 2845 reflections
  • 174 parameters
  • H-atom parameters constrained
  • Δρmax = 0.25 e Å−3
  • Δρmin = −0.34 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1175 Friedel pairs
  • Flack parameter: −0.03 (9)

Data collection: SMART (Bruker, 2003 [triangle]); cell refinement: SAINT (Bruker, 2003 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: SHELXTL (Bruker, 2003 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807064355/xu2370sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807064355/xu2370Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported financially by the Science Foundation of China (grant No. 20772026).

supplementary crystallographic information

Comment

The acyl thiazolidinethione enolates mediated aldol reaction is a well accepted and useful method for the preparation of β-hydroxy acids and their derivatives in high enantiomeric purity. As an important chiral intermediates in the synthesis of our target products, the title compound was synthesized and its crystal structure was determined. The configuration of (I) is in accordance with the model for diastereoselective aldol reaction of acylated chiral thiazolidinethiones derived from amino acids (Crimmins et al., 2001; Hodge & Olivo, 2004).

In the molecule the thiazolidine five membered ring assumes an envelope conformation (Fig. 1). The carbonyl group and the thiocarbonyl group adopt a a S-shaped conformation. The crystal packing is stabilized by the C—H···O, O—H···O and C—H···S hydrogen bonds (Table 1).

Experimental

A solution of N-acetyl (4S)-benzylthiazolidinethion (1.25 g, 4.98 mmol) in freshly distilled CH2Cl2 (30 ml) at 273 K, was treated dropwise with a solution of TiCl4 (5.5 ml, 1 M solution in CH2Cl2, 5.48 mmol) under nitrogen atmosphere, and the solution allowed to stir for 20 min. To the yellow slurry or suspension was added diisopropylethylamine (4.98 mmol, 0.83 ml). The dark red titanium enolate stirred for 40 min at 273 K. A solution of acetaldehyde (5.5 ml, 1.36 M in CH2Cl2, 7.47 mmol) was transferred via cannula to the reaction mixture, which was then stirred for 1 h at 273 K. The reaction was quenched with half-saturated ammonium chloride (30 ml), and the layers were separated. The organic layer was dried over sodium sulfate, filtered, and concentrated. Purification of the crude material by column chromatography afforded the major diastereomer (0.78 g, 55.8%).

Refinement

H atoms were placed in calculated positions with C—H = 0.93 (aromatic), 0.97 (methylene), 0.96 (methyl), 0.98 Å (methine) and 0.82 Å (hydroxyl), and refined in riding mode with Uiso(H) = xUeq(C), x = 1.5 for methyl and hydroxyl, x = 1.2 for others.

Figures

Fig. 1.
A view of the molecular structure of (I), with displacement ellipsoids at the 30% probability.

Crystal data

C14H17NO2S2F000 = 624
Mr = 295.41Dx = 1.343 Mg m3
Orthorhombic, P212121Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4884 reflections
a = 8.0278 (4) Åθ = 2.5–28.0º
b = 8.2637 (4) ŵ = 0.36 mm1
c = 22.0158 (10) ÅT = 294 (2) K
V = 1460.51 (12) Å3Plate, yellow
Z = 40.30 × 0.20 × 0.20 mm

Data collection

Bruker SMART CCD area-detector diffractometer2648 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.059
Monochromator: graphiteθmax = 26.0º
T = 294(2) Kθmin = 1.9º
[var phi] and ω scansh = −9→8
Absorption correction: nonek = −9→10
9324 measured reflectionsl = −27→27
2845 independent reflections

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.040  w = 1/[σ2(Fo2) + (0.0502P)2 + 0.2097P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.099(Δ/σ)max = 0.002
S = 1.10Δρmax = 0.25 e Å3
2845 reflectionsΔρmin = −0.34 e Å3
174 parametersExtinction correction: none
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1175 Friedel pairs
Secondary atom site location: difference Fourier mapFlack parameter: −0.03 (9)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.8868 (3)0.3026 (3)1.10814 (10)0.0369 (5)
C20.8600 (4)0.1376 (3)1.09897 (12)0.0493 (6)
H20.85390.09651.05970.059*
C30.8424 (4)0.0351 (4)1.14808 (15)0.0638 (8)
H30.8246−0.07481.14160.077*
C40.8510 (4)0.0937 (4)1.20634 (14)0.0666 (9)
H40.83760.02431.23920.080*
C50.8794 (4)0.2547 (5)1.21564 (11)0.0665 (9)
H50.88680.29431.25510.080*
C60.8972 (3)0.3595 (4)1.16711 (12)0.0498 (6)
H60.91630.46891.17420.060*
C70.9009 (3)0.4147 (3)1.05432 (10)0.0385 (5)
H7A0.98330.37281.02620.046*
H7B0.93770.52041.06790.046*
C80.7330 (3)0.4310 (3)1.02180 (9)0.0347 (5)
H80.68020.32411.02060.042*
C90.6146 (3)0.5474 (3)1.05289 (11)0.0462 (6)
H9A0.63860.55421.09600.055*
H9B0.50000.51301.04760.055*
C100.7229 (3)0.6529 (3)0.94970 (10)0.0331 (5)
C110.8081 (3)0.3718 (3)0.91621 (10)0.0387 (5)
C120.8266 (3)0.4103 (3)0.85002 (10)0.0416 (6)
H12A0.89550.50600.84560.050*
H12B0.71780.43450.83310.050*
C130.9047 (3)0.2712 (3)0.81438 (10)0.0409 (5)
H131.01700.25050.82990.049*
C140.9151 (4)0.3145 (4)0.74761 (13)0.0630 (8)
H14A0.96820.22810.72580.094*
H14B0.97880.41200.74290.094*
H14C0.80490.33080.73180.094*
N10.7527 (2)0.4893 (2)0.95819 (7)0.0320 (4)
O10.8358 (3)0.2380 (2)0.93639 (8)0.0578 (5)
O20.8091 (3)0.1270 (2)0.81833 (9)0.0568 (5)
H2A0.79740.10180.85410.085*
S10.65019 (9)0.74034 (8)1.01625 (3)0.04757 (18)
S20.74822 (9)0.76653 (7)0.88919 (3)0.04718 (18)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0316 (11)0.0443 (13)0.0348 (11)0.0028 (9)0.0001 (9)0.0052 (10)
C20.0572 (15)0.0449 (14)0.0459 (14)0.0026 (13)−0.0003 (12)0.0050 (11)
C30.0629 (18)0.0514 (16)0.077 (2)0.0004 (15)0.0006 (16)0.0263 (15)
C40.0532 (16)0.090 (3)0.0562 (18)0.0013 (17)0.0018 (14)0.0398 (17)
C50.0554 (16)0.111 (3)0.0331 (12)−0.003 (2)−0.0005 (11)0.0098 (16)
C60.0465 (15)0.0622 (17)0.0408 (13)−0.0039 (13)−0.0024 (11)0.0038 (12)
C70.0402 (12)0.0407 (13)0.0347 (11)−0.0045 (11)0.0017 (10)0.0029 (10)
C80.0369 (12)0.0323 (11)0.0349 (11)−0.0029 (9)0.0003 (10)0.0053 (9)
C90.0474 (14)0.0459 (14)0.0455 (13)0.0038 (12)0.0112 (11)0.0064 (11)
C100.0335 (11)0.0288 (11)0.0369 (11)−0.0006 (9)−0.0035 (9)−0.0008 (8)
C110.0486 (14)0.0305 (12)0.0370 (11)−0.0002 (10)−0.0043 (10)−0.0009 (9)
C120.0526 (15)0.0340 (12)0.0381 (12)0.0019 (11)0.0000 (11)−0.0004 (9)
C130.0426 (12)0.0385 (13)0.0417 (11)−0.0012 (11)0.0040 (10)−0.0058 (11)
C140.087 (2)0.0565 (17)0.0458 (15)0.0036 (16)0.0170 (16)−0.0079 (13)
N10.0394 (10)0.0258 (8)0.0309 (8)0.0002 (8)−0.0015 (8)0.0029 (7)
O10.1009 (15)0.0318 (9)0.0407 (8)0.0148 (11)−0.0024 (9)0.0020 (8)
O20.0795 (14)0.0428 (10)0.0479 (10)−0.0154 (10)0.0071 (10)−0.0102 (8)
S10.0624 (4)0.0364 (3)0.0439 (3)0.0114 (3)0.0089 (3)−0.0010 (3)
S20.0714 (4)0.0304 (3)0.0397 (3)0.0015 (3)−0.0005 (3)0.0067 (2)

Geometric parameters (Å, °)

C1—C61.383 (3)C9—H9A0.9700
C1—C21.395 (4)C9—H9B0.9700
C1—C71.508 (3)C10—N11.386 (3)
C2—C31.381 (4)C10—S21.643 (2)
C2—H20.9300C10—S11.735 (2)
C3—C41.373 (5)C11—O11.212 (3)
C3—H30.9300C11—N11.412 (3)
C4—C51.365 (5)C11—C121.499 (3)
C4—H40.9300C12—C131.526 (3)
C5—C61.383 (4)C12—H12A0.9700
C5—H50.9300C12—H12B0.9700
C6—H60.9300C13—O21.421 (3)
C7—C81.532 (3)C13—C141.515 (4)
C7—H7A0.9700C13—H130.9800
C7—H7B0.9700C14—H14A0.9600
C8—N11.489 (2)C14—H14B0.9600
C8—C91.515 (3)C14—H14C0.9600
C8—H80.9800O2—H2A0.8200
C9—S11.809 (2)
C6—C1—C2118.5 (2)C8—C9—H9B110.7
C6—C1—C7121.6 (2)S1—C9—H9B110.7
C2—C1—C7119.9 (2)H9A—C9—H9B108.8
C3—C2—C1120.1 (3)N1—C10—S2130.26 (17)
C3—C2—H2119.9N1—C10—S1110.52 (16)
C1—C2—H2119.9S2—C10—S1119.22 (13)
C4—C3—C2120.6 (3)O1—C11—N1116.4 (2)
C4—C3—H3119.7O1—C11—C12122.1 (2)
C2—C3—H3119.7N1—C11—C12121.4 (2)
C5—C4—C3119.5 (3)C11—C12—C13112.4 (2)
C5—C4—H4120.2C11—C12—H12A109.1
C3—C4—H4120.2C13—C12—H12A109.1
C4—C5—C6120.8 (3)C11—C12—H12B109.1
C4—C5—H5119.6C13—C12—H12B109.1
C6—C5—H5119.6H12A—C12—H12B107.9
C5—C6—C1120.4 (3)O2—C13—C14106.7 (2)
C5—C6—H6119.8O2—C13—C12112.25 (19)
C1—C6—H6119.8C14—C13—C12110.1 (2)
C1—C7—C8110.84 (18)O2—C13—H13109.2
C1—C7—H7A109.5C14—C13—H13109.2
C8—C7—H7A109.5C12—C13—H13109.2
C1—C7—H7B109.5C13—C14—H14A109.5
C8—C7—H7B109.5C13—C14—H14B109.5
H7A—C7—H7B108.1H14A—C14—H14B109.5
N1—C8—C9106.63 (17)C13—C14—H14C109.5
N1—C8—C7112.01 (18)H14A—C14—H14C109.5
C9—C8—C7113.4 (2)H14B—C14—H14C109.5
N1—C8—H8108.2C10—N1—C11129.54 (18)
C9—C8—H8108.2C10—N1—C8115.08 (17)
C7—C8—H8108.2C11—N1—C8115.27 (17)
C8—C9—S1105.01 (15)C13—O2—H2A109.5
C8—C9—H9A110.7C10—S1—C993.58 (11)
S1—C9—H9A110.7
C6—C1—C2—C30.7 (4)C11—C12—C13—C14178.1 (2)
C7—C1—C2—C3−178.2 (3)S2—C10—N1—C11−2.5 (4)
C1—C2—C3—C40.0 (5)S1—C10—N1—C11178.28 (19)
C2—C3—C4—C5−0.9 (5)S2—C10—N1—C8173.37 (18)
C3—C4—C5—C60.9 (5)S1—C10—N1—C8−5.8 (2)
C4—C5—C6—C1−0.1 (4)O1—C11—N1—C10174.9 (2)
C2—C1—C6—C5−0.7 (4)C12—C11—N1—C10−6.8 (4)
C7—C1—C6—C5178.2 (2)O1—C11—N1—C8−1.0 (3)
C6—C1—C7—C8−110.2 (3)C12—C11—N1—C8177.3 (2)
C2—C1—C7—C868.7 (3)C9—C8—N1—C1024.8 (3)
C1—C7—C8—N1−159.54 (18)C7—C8—N1—C10−99.7 (2)
C1—C7—C8—C979.7 (2)C9—C8—N1—C11−158.7 (2)
N1—C8—C9—S1−30.8 (2)C7—C8—N1—C1176.8 (2)
C7—C8—C9—S192.89 (19)N1—C10—S1—C9−11.90 (18)
O1—C11—C12—C13−7.6 (4)S2—C10—S1—C9168.79 (15)
N1—C11—C12—C13174.2 (2)C8—C9—S1—C1025.09 (19)
C11—C12—C13—O259.4 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H2A···O10.822.162.765 (3)131
C4—H4···O2i0.932.453.325 (3)158
C9—H9B···O1ii0.972.483.261 (3)137
C12—H12A···S20.972.643.131 (2)112

Symmetry codes: (i) −x+3/2, −y, z+1/2; (ii) x−1/2, −y+1/2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2370).

References

  • Bruker (2003). SMART, SAINT and SHELXTL Bruker AXS Inc., Madison, Wisconsin, USA.
  • Crimmins, M. T., King, B. W., Tabet, E. A. & Chaudhary, K. (2001). J. Org. Chem.66, 894–902. [PubMed]
  • Drück, U. & Littke, W. (1980). Acta Cryst. B36, 3002–3007.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Hodge, M. B. & Olivo, H. F. (2004). Tetrahedron, 60, 9397–9403.
  • Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography